CO2 Separation in Nanocomposite Membranes by the Addition of Amidine and Lactamide Functionalized POSS® Nanoparticles into a PVA Layer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation
2.3. Membrane Characterization
2.3.1. Scanning Electron Microscopy (SEM)
2.3.2. Differential Scanning Calorimetry (DSC)
2.3.3. Thermogravimetric Analysis (TGA)
2.3.4. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.5. Dynamic Mechanical Analysis (DMA)
2.3.6. Gas Permeation Performance Evaluation
3. Result and Discussion
3.1. Morphology of the Membranes
3.1.1. SEM
3.1.2. FTIR
3.2. Thermomechanical Properties
3.2.1. Thermogravimetric Analysis (TGA)
3.2.2. Differential Scanning Calorimetry (DSC)
3.2.3. Dynamic Mechanical Analysis (DMA)
Storage Modulus (E’)
Tan Delta (Tand)
3.3. Gas Separation Performance of the Nanocomposite Membranes
3.3.1. Effect of Pressure
3.3.2. Effect of Nanoparticles Structure
3.3.3. Effect of Loading Concentration
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Powell, C.E.; Qiao, G.G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Membr. Sci. 2006, 279, 1–49. [Google Scholar] [CrossRef]
- Rogelj, J.; den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hägg, M.-B.; Lindbråthen, A. CO2 capture from natural gas fired power plants by using membrane technology. Ind. Eng. Chem. Res. 2005, 44, 7668–7675. [Google Scholar] [CrossRef]
- Haider, S.; Lindbråthen, A.; Hägg, M.-B. Techno-economical evaluation of membrane based biogas upgrading system: A comparison between polymeric membrane and carbon membrane technology. Green Energy Environ. 2016, 1, 222–234. [Google Scholar] [CrossRef]
- Hussain, A.; Hägg, M.-B. A feasibility study of CO2 capture from flue gas by a facilitated transport membrane. J. Membr. Sci. 2010, 359, 140–148. [Google Scholar] [CrossRef]
- White, L.S.; Wei, X.; Pande, S.; Wu, T.; Merkel, T.C. Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate. J. Membr. Sci. 2015, 496, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Gnanasekaran, D.; Reddy, B.S.R. Cost effective poly(urethane-imide)-poss membranes for environmental and energy-related processes. Clean Technol. Environ. Policy 2013, 15, 383–389. [Google Scholar] [CrossRef]
- D’Alessandro, D.M.; Smit, B.; Long, J.R. Carbon dioxide capture: Prospects for new materials. Angew. Chem. Int. Ed. 2010, 49, 6058–6082. [Google Scholar] [CrossRef] [PubMed]
- Ashley, M.; Magiera, C.; Ramidi, P.; Blackburn, G.; Scott, T.G.; Gupta, R.; Wilson, K.; Ghosh, A.; Biswas, A. Nanomaterials and processes for carbon capture and conversion into useful by-products for a sustainable energy future. Greenh. Gases Sci. Technol. 2012, 2, 419–444. [Google Scholar] [CrossRef]
- Baker, R.W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 2002, 41, 1393–1411. [Google Scholar] [CrossRef]
- Freeman, B.D.; Pinnau, I. Polymeric materials for gas separations. In Polymer Membranes for Gas and Vapor Separation; American Chemical Society: Washington, DC, USA, 1999; Volume 733, pp. 1–27. [Google Scholar]
- Koros, W.J. Gas separation membranes: Needs for combined materials science and processing approaches. Macromol. Symp. 2002, 188, 13–22. [Google Scholar] [CrossRef]
- Gupta, Y.; Hellgardt, K.; Wakeman, R.J. Enhanced permeability of polyaniline based nano-membranes for gas separation. J. Membr. Sci. 2006, 282, 60–70. [Google Scholar] [CrossRef]
- Bernardo, P.; Drioli, E.; Golemme, G. Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663. [Google Scholar] [CrossRef]
- Trong Nguyen, Q.; Sublet, J.; Langevin, D.; Chappey, C.; Marais, S.; Valleton, J.-M.; Poncin-Epaillard, F. CO2 permeation with pebax®-based membranes for global warming reduction. In Membrane Gas Separation; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 255–277. [Google Scholar]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Sorribas, S.; Zornoza, B.; Téllez, C.; Coronas, J. Mixed matrix membranes comprising silica-(ZIF-8) core–shell spheres with ordered meso–microporosity for natural- and bio-gas upgrading. J. Membr. Sci. 2014, 452, 184–192. [Google Scholar] [CrossRef]
- Thompson, J.A.; Vaughn, J.T.; Brunelli, N.A.; Koros, W.J.; Jones, C.W.; Nair, S. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas. Microporous Mesoporous Mater. 2014, 192, 43–51. [Google Scholar] [CrossRef]
- Nafisi, V.; Hägg, M.-B. Development of dual layer of ZIF-8/pebax-2533 mixed matrix membrane for CO2 capture. J. Membr. Sci. 2014, 459, 244–255. [Google Scholar] [CrossRef]
- Yong, W.F.; Ho, Y.X.; Chung, T.S. Nanoparticles embedded in amphiphilic membranes for carbon dioxide separation and dehumidification. ChemSusChem 2017, 10, 4046–4055. [Google Scholar] [CrossRef] [PubMed]
- Yong, W.F.; Li, F.Y.; Chung, T.S.; Tong, Y.W. Molecular interaction, gas transport properties and plasticization behavior of CPIM-1/torlon blend membranes. J. Membr. Sci. 2014, 462, 119–130. [Google Scholar] [CrossRef]
- Ansaloni, L.; Zhao, Y.; Jung, B.T.; Ramasubramanian, K.; Baschetti, M.G.; Ho, W.S.W. Facilitated transport membranes containing amino-functionalized multi-walled carbon nanotubes for high-pressure CO2 separations. J. Membr. Sci. 2015, 490, 18–28. [Google Scholar] [CrossRef]
- Deng, L.; Hägg, M.-B. Swelling behavior and gas permeation performance of PVAm/PVA blend FSC membrane. J. Membr. Sci. 2010, 363, 295–301. [Google Scholar] [CrossRef]
- Wu, H.; Li, X.; Li, Y.; Wang, S.; Guo, R.; Jiang, Z.; Wu, C.; Xin, Q.; Lu, X. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties. J. Membr. Sci. 2014, 465, 78–90. [Google Scholar] [CrossRef]
- Washim Uddin, M.; Hägg, M.-B. Natural gas sweetening—The effect on CO2–CH4 separation after exposing a facilitated transport membrane to hydrogen sulfide and higher hydrocarbons. J. Membr. Sci. 2012, 423–424, 143–149. [Google Scholar] [CrossRef]
- Markovic, E.; Constantopolous, K.; Matisons, J.G. Polyhedral oligomeric silsesquioxanes: From early and strategic development through to materials application. In Applications of Polyhedral Oligomeric Silsesquioxanes; Hartmann-Thompson, C., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 1–46. [Google Scholar]
- Pielichowski, K.; Njuguna, J.; Janowski, B.; Pielichowski, J. Polyhedral oligomeric silsesquioxanes (poss)-containing nanohybrid polymers. In Supramolecular Polymers Polymeric Betains Oligomers; Springer: Berlin/Heidelberg, Germany, 2006; pp. 225–296. [Google Scholar]
- Dasgupta, B.; Sen, S.K.; Banerjee, S. Aminoethylaminopropylisobutyl poss—Polyimide nanocomposite membranes and their gas transport properties. Mater. Sci. Eng. B 2010, 168, 30–35. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.; Chung, T.-S.; Kawi, S. Facilitated transport by hybrid poss®–matrimid®–ZN2+ nanocomposite membranes for the separation of natural gas. J. Membr. Sci. 2010, 356, 14–21. [Google Scholar] [CrossRef]
- Li, Y.; Chung, T.-S. Molecular-level mixed matrix membranes comprising pebax® and poss for hydrogen purification via preferential CO2 removal. Int. J. Hydrogen Energy 2010, 35, 10560–10568. [Google Scholar] [CrossRef]
- Rahman, M.M.; Filiz, V.; Shishatskiy, S.; Abetz, C.; Georgopanos, P.; Khan, M.M.; Neumann, S.; Abetz, V. Influence of poly(ethylene glycol) segment length on CO2 permeation and stability of polyactive membranes and their nanocomposites with peg poss. ACS Appl. Mater. Interfaces 2015, 7, 12289–12298. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, G.; Hägg, M.-B.; Kignelman, G.; Simon, C.; Peters, T.; Rival, N.; Denonville, C. Investigation of amino and amidino functionalized polyhedral oligomeric silsesquioxanes (poss®) nanoparticles in pva-based hybrid membranes for CO2/N2 separation. J. Membr. Sci. 2017, 544, 161–173. [Google Scholar] [CrossRef]
- Menard, K.P. Dynamic Mechanical Analysis: A Practical Introductio; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Deng, L.; Kim, T.-J.; Hägg, M.-B. Facilitated transport of CO2 in novel PVAm/PVA blend membrane. J. Membr. Sci. 2009, 340, 154–163. [Google Scholar] [CrossRef]
- Ramírez, C.; Rico, M.; Torres, A.; Barral, L.; López, J.; Montero, B. Epoxy/poss organic–inorganic hybrids: Atr-ftir and dsc studies. Eur. Polym. J. 2008, 44, 3035–3045. [Google Scholar] [CrossRef]
- Ben Hamouda, S.; Nguyen, Q.T.; Langevin, D.; Roudesli, S. Poly(vinylalcohol)/poly(ethyleneglycol)/poly(ethyleneimine) blend membranes—Structure and CO2 facilitated transport. C. R. Chim. 2010, 13, 372–379. [Google Scholar] [CrossRef]
- Mark, J.E. Polymer Data Handbook; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Yong, W.F.; Kwek, K.H.A.; Liao, K.-S.; Chung, T.-S. Suppression of aging and plasticization in highly permeable polymers. Polymer 2015, 77, 377–386. [Google Scholar] [CrossRef]
- Yang, X.; Li, L.; Shang, S.; Tao, X.-M. Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites. Polymer 2010, 51, 3431–3435. [Google Scholar] [CrossRef]
- Chua, M.L.; Shao, L.; Low, B.T.; Xiao, Y.; Chung, T.-S. Polyetheramine–polyhedral oligomeric silsesquioxane organic–inorganic hybrid membranes for CO2/H2 and CO2/N2 separation. J. Membr. Sci. 2011, 385, 40–48. [Google Scholar] [CrossRef]
- Fei, M.; Jin, B.; Wang, W.; Liu, L. Synthesis and characterization of ab block copolymers based on polyhedral oligomeric silsesquioxane. J. Polym. Res. 2010, 17, 19. [Google Scholar] [CrossRef]
- Choi, J.; Yee, A.F.; Laine, R.M. Organic/inorganic hybrid composites from cubic silsesquioxanes. Epoxy resins of octa (dimethylsiloxyethylcyclohexylepoxide) silsesquioxane. Macromolecules 2003, 36, 5666–5682. [Google Scholar] [CrossRef]
- Chen, C.-H.; Wang, F.-Y.; Mao, C.-F.; Liao, W.-T.; Hsieh, C.-D. Studies of chitosan: II. Preparation and characterization of chitosan/poly(vinyl alcohol)/gelatin ternary blend films. Int. J. Biol. Macromol. 2008, 43, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Holland, B.J.; Hay, J.N. The thermal degradation of poly(vinyl alcohol). Polymer 2001, 42, 6775–6783. [Google Scholar] [CrossRef]
- Mondal, A.; Barooah, M.; Mandal, B. Effect of single and blended amine carriers on CO2 separation from CO2/N2 mixtures using crosslinked thin-film poly(vinyl alcohol) composite membrane. Int. J. Greenh. Gas Control 2015, 39, 27–38. [Google Scholar] [CrossRef]
- Heeley, E.; Hughes, D.; Taylor, P.; Bassindale, A. Crystallization and morphology development in polyethylene–octakis (n-octadecyldimethylsiloxy) octasilsesquioxane nanocomposite blends. RSC Adv. 2015, 5, 34709–34719. [Google Scholar] [CrossRef]
- Hay, W.T.; Byars, J.A.; Fanta, G.F.; Selling, G.W. Rheological characterization of solutions and thin films made from amylose-hexadecylammonium chloride inclusion complexes and polyvinyl alcohol. Carbohydr. Polym. 2017, 161, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, Z.; Wang, J.; Wang, S. Influence of heat-treatment on CO2 separation performance of novel fixed carrier composite membranes prepared by interfacial polymerization. J. Membr. Sci. 2006, 283, 346–356. [Google Scholar] [CrossRef]
- Kim, T.-J.; Li, B.; Hägg, M.-B. Novel fixed-site–carrier polyvinylamine membrane for carbon dioxide capture. J. Membr. Sci. Part B Polym. Phys. 2004, 42, 4326–4336. [Google Scholar] [CrossRef]
- Wijmans, J.; Baker, R. The solution-diffusion model: A review. J. Membr. Sci. 1995, 107, 1–21. [Google Scholar] [CrossRef]
- Raftopoulos, K.N.; Koutsoumpis, S.; Jancia, M.; Lewicki, J.P.; Kyriakos, K.; Mason, H.E.; Harley, S.J.; Hebda, E.; Papadakis, C.M.; Pielichowski, K.; et al. Reduced phase separation and slowing of dynamics in polyurethanes with three-dimensional poss-based cross-linking moieties. Macromolecules 2015, 48, 1429–1441. [Google Scholar] [CrossRef]
- Ayandele, E.; Sarkar, B.; Alexandridis, P. Polyhedral oligomeric silsesquioxane (poss)-containing polymer nanocomposites. Nanomaterials 2012, 2, 445–475. [Google Scholar] [CrossRef] [PubMed]
- Raftopoulos, K.N.; Janowski, B.; Apekis, L.; Pissis, P.; Pielichowski, K. Direct and indirect effects of poss on the molecular mobility of polyurethanes with varying segment mw. Polymer 2013, 54, 2745–2754. [Google Scholar] [CrossRef]
- Raftopoulos, K.N.; Jancia, M.; Aravopoulou, D.; Hebda, E.; Pielichowski, K.; Pissis, P. Poss along the hard segments of polyurethane. Phase separation and molecular dynamics. Macromolecules 2013, 46, 7378–7386. [Google Scholar] [CrossRef]
- Gholap, S.G.; Jog, J.P.; Badiger, M.V. Synthesis and characterization of hydrophobically modified poly(vinyl alcohol) hydrogel membrane. Polymer 2004, 45, 5863–5873. [Google Scholar] [CrossRef]
Frequency (cm−1) | Bond Type |
---|---|
3260 | O–H stretching (PVA) |
2910–2942 | CH2 asymmetric/symmetric stretching (PVA) |
1740, 1265 | Residual acetyl group |
1615 | NH2 scissoring |
1656 | N–H bending from amidine–lactamide |
1400 | N=N bending (amidine) |
1142 | PVA crystallites |
1100 | C–O stretching |
1080 | Si–O–Si asymmetric stretch |
1020 | Aliphatic C–N stretching (lactamide) |
Sample | Loading (POSS®/PVA Ratio) | Tg (°C) | ∆Hf (J/g) | Tm (°C) | (%) |
---|---|---|---|---|---|
PVA | 0 | 70.5 | 51.7 | 223.4 | 37.3 |
Amidino POSS® | 5 | 76.9 | 81.6 | 205.8 | 58.9 |
10 | 63.2 | 106.5 | 205.7 | 76.8 | |
25 | 53.9 | 125.8 | 198.6 | 90.8 | |
50 | 67.0 | 151.6 | 195.5 | 109.4 | |
Lactamide POSS® | 5 | 77.8 | 74.4 | 211.3 | 53.7 |
10 | 66.9 | 98.9 | 203.4 | 71.3 | |
25 | 55.7 | 134.0 | 201.0 | 96.7 | |
50 | 72.4 | 178.3 | 185.0 | 128.6 |
PVA | % Loading | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Amidino POSS® | Lactamide POSS® | |||||||||
5% | 10% | 25% | 50% | 5% | 10% | 25% | 50% | |||
Storage Modulus (E’) | Value (GPa) | 8.2 | 6.7 | 8.0 | 6.9 | 8.3 | 8.0 | 7.3 | 7.4 | 10.1 |
Onset Temperature (°C) | 61 | 51 | 61 | 48 | 46 | 59 | 59 | 46 | 53 |
PVA | % Loading | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Amidino POSS® | Lactamide POSS® | |||||||||
5% | 10% | 25% | 50% | 5% | 10% | 25% | 50% | |||
Tα* | Absolute Value | 0.17 | 0.14 | 0.16 | 0.20 | 0.26 | 0.16 | 0.17 | 0.23 | 0.27 |
Tand Tg | Absolute Value | 0.42 | 0.54 | 0.56 | 0.54 | 0.50 | 0.40 | 0.40 | 0.34 | 0.30 |
Onset Temperature(°C) | 79.4 | 71.8 | 78.6 | 71.3 | 64.1 | 80.1 | 79.2 | 74.1 | 78.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero, G.; Hägg, M.-B.; Simon, C.; Peters, T.; Rival, N.; Denonville, C. CO2 Separation in Nanocomposite Membranes by the Addition of Amidine and Lactamide Functionalized POSS® Nanoparticles into a PVA Layer. Membranes 2018, 8, 28. https://doi.org/10.3390/membranes8020028
Guerrero G, Hägg M-B, Simon C, Peters T, Rival N, Denonville C. CO2 Separation in Nanocomposite Membranes by the Addition of Amidine and Lactamide Functionalized POSS® Nanoparticles into a PVA Layer. Membranes. 2018; 8(2):28. https://doi.org/10.3390/membranes8020028
Chicago/Turabian StyleGuerrero, Gabriel, May-Britt Hägg, Christian Simon, Thijs Peters, Nicolas Rival, and Christelle Denonville. 2018. "CO2 Separation in Nanocomposite Membranes by the Addition of Amidine and Lactamide Functionalized POSS® Nanoparticles into a PVA Layer" Membranes 8, no. 2: 28. https://doi.org/10.3390/membranes8020028
APA StyleGuerrero, G., Hägg, M. -B., Simon, C., Peters, T., Rival, N., & Denonville, C. (2018). CO2 Separation in Nanocomposite Membranes by the Addition of Amidine and Lactamide Functionalized POSS® Nanoparticles into a PVA Layer. Membranes, 8(2), 28. https://doi.org/10.3390/membranes8020028