Dewatering Hypersaline Na2SO4 and NaCl via Commercial Forward Osmosis Module
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Equipment
2.2. FO Apparatus
2.3. FO Procedure
2.4. Calculation and Measurement of FO Operating Metrics
2.5. Minimum Osmotic Differential
- Feed-In (Feed) and Draw-Out (Diluted Draw Solution, DDS),
- Feed-Out (Conc) and Draw-In (Concentrated Draw Solution, CDS).
2.6. Measurement and Validation of Osmotic Pressures
3. Results and Discussion
3.1. Na and S Rejection
3.2. Reverse Draw Solute Flux
- Mg2+ exchanges with 2 Na+ ions from the feed,
- Mg2+ diffuses with one reverse Cl− ion and exchanges with 1 Na+ ion,
- Mg2+ diffuses with two reverse Cl− ions.
3.3. Water Flux Versus Minimum Osmotic Differential
3.4. Limited pH Effect on FO Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Binnemans, K.; Jones, P.T. The Twelve Principles of Circular Hydrometallurgy. J. Sustain. Metall. 2023, 9, 1–25. [Google Scholar] [CrossRef]
- Devaere, N.; Papangelakis, V. Forward Osmosis for Metal Processing Effluents under Similar Osmotic Pressure Gradients. Membranes 2023, 13, 501. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.M.; Billinge, I.H.; Chen, X.; Fan, H.; Huang, Y.; Winton, R.K.; Yip, N.Y. Drivers, challenges, and emerging technologies for desalination of high-salinity brines: A critical review. Desalination 2022, 538, 115827. [Google Scholar] [CrossRef]
- Choi, J.-W.; Shim, H.-W.; Kim, H.-I.; Kim, S.; Tho Tran, D.; Bae, M. Toward closed-loop hydrometallurgy: A critical review of wastewater reuse strategies for end-of-life LiFePO 4 battery recycling. Green Chem. 2025, 27, 10423–10443. [Google Scholar] [CrossRef]
- Matebese, F.; Mosai, A.K.; Tutu, H.; Tshentu, Z.R. Mining wastewater treatment technologies and resource recovery techniques: A review. Heliyon 2024, 10, e24730. [Google Scholar] [CrossRef]
- Kolliopoulos, G.; Xu, C.; Martin, J.T.; Devaere, N.; Papangelakis, V.G. Hybrid forward osmosis—Freeze concentration: A promising future in the desalination of effluents in cold regions. J. Water Process Eng. 2022, 47, 102711. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Shu, L.; Jegatheesan, J.; Shah, K.; Haque, N.; Bhuiyan, M.A. Rejection of rare earth elements from a simulated acid mine drainage using forward osmosis: The role of membrane orientation, solution pH, and temperature variation. Process Saf. Environ. Prot. 2019, 126, 53–59. [Google Scholar] [CrossRef]
- Pham, M.T.; Nishihama, S.; Yoshizuka, K. Concentration of lithium by forward osmosis. Hydrometallurgy 2020, 197, 105485. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Rodríguez-Galán, M.; Arroyo-Torralvo, F.; Vilches, L.F. Low-Energy Method for Water-Mineral Recovery from Acid Mine Drainage Based on Membrane Technology: Evaluation of Inorganic Salts as Draw Solutions. Environ. Sci. Technol. 2020, 54, 10936–10943. [Google Scholar] [CrossRef]
- Rahbari-Sisakht, M.; Ismail, A.F. A comprehensive review of pressure and osmosis driven membrane processes: Processes, characteristics and materials. Desalination 2025, 598, 118427. [Google Scholar] [CrossRef]
- Blandin, G.; Ferrari, F.; Lesage, G.; Le-Clech, P.; Héran, M.; Martinez-Lladó, X. Forward Osmosis as Concentration Process: Review of Opportunities and Challenges. Membranes 2020, 10, 284. [Google Scholar] [CrossRef] [PubMed]
- Mahto, A.; Aruchamy, K.; Meena, R.; Kamali, M.; Nataraj, S.K.; Aminabhavi, T.M. Forward osmosis for industrial effluents treatment—Sustainability considerations. Sep. Purif. Technol. 2021, 254, 117568. [Google Scholar] [CrossRef]
- Shaffer, D.L.; Werber, J.R.; Jaramillo, H.; Lin, S.; Elimelech, M. Forward osmosis: Where are we now? Desalination 2015, 356, 271–284. [Google Scholar] [CrossRef]
- Abounahia, N.; Ibrar, I.; Kazwini, T.; Altaee, A.; Samal, A.K.; Zaidi, S.J.; Hawari, A.H. Desalination by the forward osmosis: Advancement and challenges. Sci. Total Environ. 2023, 886, 163901. [Google Scholar] [CrossRef]
- Ferella, F.; Suichies, A.; Abdelkader, B.A.; Dabhi, N.K.; Werber, J.; de Lannoy, C.-F. Ocean Alkalinity Enhancement Using Bipolar Membrane Electrodialysis: Technical Analysis and Cost Breakdown of a Full-Scale Plant. Ind. Eng. Chem. Res. 2025, 64, 7085–7099. [Google Scholar] [CrossRef]
- Fang, Z.; Zhu, P.; Zhang, X.; Feng, Y.; Wang, H. Self-looped electrochemical recycling of lithium-ion battery cathode materials to manufacturing feedstocks. Nat. Chem. Eng. 2025, 2, 142–151. [Google Scholar] [CrossRef]
- Baker, R.W. Membrane Technology and Applications, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2004. [Google Scholar]
- McCutcheon, J.R.; Elimelech, M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J. Membr. Sci. 2006, 284, 237–247. [Google Scholar] [CrossRef]
- Yalamanchili, R.; Cegarra, P.O.; Galizia, A.; Rodriguez-Roda, I.; Blandin, G. Single-pass forward osmosis for efficient feed concentration: Optimizing multiple modules arrangement and flow distribution. Desalination 2025, 615, 119224. [Google Scholar] [CrossRef]
- Sbardella, L.; Blandin, G.; Fàbregas, A.; Carlos Real Real, J.; Serra Clusellas, A.; Ferrari, F.; Bosch, C.; Martinez-Lladó, X. Optimization of pilot scale forward osmosis process integrated with electrodialysis to concentrate landfill leachate. Chem. Eng. J. 2022, 434, 134448. [Google Scholar] [CrossRef]
- Sanahuja-Embuena, V.; Khensir, G.; Yusuf, M.; Andersen, M.F.; Nguyen, X.T.; Trzaskus, K.; Pinelo, M.; Helix-Nielsen, C. Role of Operating Conditions in a Pilot Scale Investigation of Hollow Fiber Forward Osmosis Membrane Modules. Membranes 2019, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.M.; Jalab, R.; Minier-Matar, J.; Adham, S.; Nasser, M.S.; Judd, S.J. The status of forward osmosis technology implementation. Desalination 2019, 461, 10–21. [Google Scholar] [CrossRef]
- Jun, B.M.; Kim, S.H.; Lim, H.Y.; Kwak, S.K.; Kwon, Y.N. Acid stability of polyamide membranes. Polymer 2022, 241, 124516. [Google Scholar] [CrossRef]
- Porter, C.J.; Werber, J.R.; Zhong, M.; Wilson, C.J.; Elimelech, M. Pathways and Challenges for Biomimetic Desalination Membranes with Sub-Nanometer Channels. ACS Nano 2020, 14, 10894–10916. [Google Scholar] [CrossRef] [PubMed]
- Jie Lim, Y.; Goh, K.; Wang, R. The coming of age of water channels for separation membranes: From biological to biomimetic to synthetic. Chem. Soc. Rev. 2022, 51, 4537–4582. [Google Scholar] [CrossRef]
- Aquaporin A/S. Aquaporin Inside HFFO2 Datasheet. 24 March 2025. Available online: https://aquaporin.com/products/aquaporin-inside-hffo2/ (accessed on 18 August 2025).
- Suwaileh, W.; Pathak, N.; Shon, H.; Hilal, N. Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook. Desalination 2020, 485, 114455. [Google Scholar] [CrossRef]
- Toyobo MC Corporation. TOYOBO MC Membrane Module for Forward Osmosis. October 2023. Available online: https://www.toyobo-mc.jp/wordpress/wp-content/uploads/2023/10/Brochure_TMC_FO.pdf (accessed on 17 October 2025).
- Fluid Technology Solutions Inc. OsmoF2OTM FO Industrial Membrane. July 2018. Available online: https://ftsh2o.com/wp-content/uploads/2018/07/FTS_FO_Industrial-Membrane_FINAL-FTSCTA-02.pdf (accessed on 17 October 2025).
- Towler, G.; Sinnott, R. Chapter 3—Utilities and energy-efficient design. In Chemical Engineering Design, 3rd ed.; Towler, G., Sinnott, R., Eds.; Butterworth-Heinemann: Oxford, UK, 2022; pp. 79–121. [Google Scholar] [CrossRef]
- Borgnakke, C.; Sonntag, R.E. Fundamentals of Thermodynamics; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Lide, D.R.; Rumble, J.R.; Bruno, T.J. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 100th ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Coday, B.D.; Luxbacher, T.; Childress, A.E.; Almaraz, N.; Xu, P.; Cath, T.Y. Indirect determination of zeta potential at high ionic strength: Specific application to semipermeable polymeric membranes. J. Membr. Sci. 2015, 478, 58–64. [Google Scholar] [CrossRef]
- Marcus, Y. Ionic radii in aqueous solutions. Chem. Rev. 1988, 88, 1475–1498. [Google Scholar] [CrossRef]
- Tansel, B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 2012, 86, 119–126. [Google Scholar] [CrossRef]
- Song, L.; Heiranian, M.; Elimelech, M. True driving force and characteristics of water transport in osmotic membranes. Desalination 2021, 520, 115360. [Google Scholar] [CrossRef]
- Wang, L.; He, J.; Heiranian, M.; Fan, H.; Song, L.; Li, Y.; Elimelech, M. Water transport in reverse osmosis membranes is governed by pore flow, not a solution-diffusion mechanism. Sci. Adv. 2023, 9, eadf8488. [Google Scholar] [CrossRef]
- Hancock, N.T.; Phillip, W.A.; Elimelech, M.; Cath, T.Y. Bidirectional Permeation of Electrolytes in Osmotically Driven Membrane Processes. Environ. Sci. Technol. 2011, 45, 10642–10651. [Google Scholar] [CrossRef] [PubMed]
- Arena, J.T.; Chwatko, M.; Robillard, H.A.; McCutcheon, J.R. pH Sensitivity of Ion Exchange through a Thin Film Composite Membrane in Forward Osmosis. Environ. Sci. Technol. Lett. 2015, 2, 177–182. [Google Scholar] [CrossRef]
- Anderko, A.; Wang, P.; Rafal, M. Electrolyte solutions: From thermodynamic and transport property models to the simulation of industrial processes. Fluid Phase Equilibria 2002, 194–197, 123–142. [Google Scholar] [CrossRef]
- Khan, M.A.W.; Zubair, M.M.; Saleem, H.; AlHawari, A.; Zaidi, S.J. Modeling of osmotically-driven membrane processes: An overview. Desalination 2024, 573, 117183. [Google Scholar] [CrossRef]
- Werber, J.R.; Deshmukh, A.; Elimelech, M. The Critical Need for Increased Selectivity, Not Increased Water Permeability, for Desalination Membranes. Environ. Sci. Technol. Lett. 2016, 3, 112–120. [Google Scholar] [CrossRef]
- McGinnis, R.L.; Hancock, N.T.; Nowosielski-Slepowron, M.S.; McGurgan, G.D. Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines. Desalination 2013, 312, 67–74. [Google Scholar] [CrossRef]
- Agrawal, V.; Kharade, S.; Achari, M.; Pawar, H.; Sarode, D. Forward Osmosis: An Energy-Efficient Approach for the Treatment and Recovery of Resources from the Dairy Industry Effluent: Forward Osmosis Treatment of Dairy Industry Waste Stream Whey. J. Sci. Ind. Res. JSIR 2024, 83, 943–954. [Google Scholar] [CrossRef]







| Manufacturer, City, Country | Membrane Material | Membrane Geometry | Module Area (m2) | pH Tolerance | Reference |
|---|---|---|---|---|---|
| Aquaporin, Kongens Lyngby, Denmark | Polyamide | Hollow Fibre | 2.3, 13.8 | 3–10 | [26] |
| Porifera, San Leandro, CA, USA | Polyamide | Flat Sheet | N/A * | 2–11 | [14,27] |
| Toyobo, Osaka, Japan | Cellulose Triacetate | Hollow Fibre | 31.5 | 3–8 | [28] |
| Fluid Technology Solutions, Albany, NY, USA | Cellulose Triacetate | Flat Sheet/ Spiral Wound | N/A */ 13.0, 21.5 | 3–7 | [29] |
| Feed | Draw | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Solute | Initial Conc. | Initial Osmotic Pressure | Inlet Flow Rate | Final Conc. | Final Osmotic Pressure | Solute | Initial Conc. | Initial Osmotic Pressure | Inlet Flow Rate | Final Conc. | Final Osmotic Pressure |
| (wt%) | (bar) | (L/min) | (wt%) | (bar) | (wt%) | (bar) | (L/min) | (wt%) | (bar) | ||
| Na2SO4 | 12.9 | 51 | 0.8 ± 0.1 | 21.2 ± 0.2 | 91 ± 1 | MgCl2 | 13.8 | 175 | 0.5 ± 0.1 | 10.3 ± 0.1 | 104 ± 1 |
| NaCl | 5.9 | 50 | 0.8 ± 0.1 | 9.7 ± 0.2 | 90 ± 3 | MgCl2 | 14.6 | 195 | 0.5 ± 0.1 | 10.4 ± 0.1 | 105 ± 1 |
| Feed | Draw | ||||||
|---|---|---|---|---|---|---|---|
| Solute | Measured Initial pH | Measured Final pH | Predicted Final pH | Solute | Measured Initial pH | Measured Final pH | Predicted Final pH |
| Na2SO4 | 3.0 ± 0.1 | 2.9 ± 0.1 | 2.8 | MgCl2 | 3.1 ± 0.1 | 4.3 ± 0.1 | 3.3 |
| 5.6 ± 0.1 | 5.1 ± 0.1 | 5.3 | 5.5 ± 0.1 | 6.1 ± 0.1 | 5.8 | ||
| 7.0 ± 0.1 | 6.1 ± 0.1 | 6.9 | 7.0 ± 0.1 | 7.2 ± 0.1 | 7.2 | ||
| NaCl | 3.0 ± 0.1 | 2.8 ± 0.1 | 2.5 | MgCl2 | 3.0 ± 0.1 | 3.1 ± 0.1 | 3.4 |
| 5.6 ± 0.1 | 5.3 ± 0.1 | 5.1 | 5.4 ± 0.1 | 5.6 ± 0.1 | 5.8 | ||
| 7.1 ± 0.1 | 6.8 ± 0.1 | 7.0 | 7.0 ± 0.1 | 7.2 ± 0.1 | 7.3 | ||
| Solute | Initial pH | Na Rejection (%) | Min. Water Flux * (LMH) | Specific Mg Flux (mmolMg/LFlux) | Min. Water Flux ** (LMH) | Δπmin (bar) |
|---|---|---|---|---|---|---|
| Na2SO4 | 3.0 | 99.7 ± 0.1 | 2.94 | 5.2 ± 3.1 | 1.54 | 14.0 ± 0.8 |
| 5.5 | 99.7 ± 0.1 | 2.14 | 5.3 ± 3.1 | 2.82 | 12.7 ± 0.7 | |
| 7.0 | 99.7 ± 0.1 | 2.38 | 8.1 ± 2.4 | 1.74 | 10.7 ± 1.1 | |
| NaCl | 3.0 | 95.0 ± 1.7 | 3.68 | 2.1 ± 0.3 | 2.25 | 13.5 ± 0.6 |
| 5.5 | 95.8 ± 1.7 | 3.28 | 2.6 ± 1.0 | 3.25 | 12.6 ± 0.6 | |
| 7.0 | 97.2 ± 1.6 | 3.31 | 3.8 ± 0.7 | 3.78 | 11.6 ± 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Devaere, N.; Papangelakis, V.G. Dewatering Hypersaline Na2SO4 and NaCl via Commercial Forward Osmosis Module. Membranes 2026, 16, 14. https://doi.org/10.3390/membranes16010014
Devaere N, Papangelakis VG. Dewatering Hypersaline Na2SO4 and NaCl via Commercial Forward Osmosis Module. Membranes. 2026; 16(1):14. https://doi.org/10.3390/membranes16010014
Chicago/Turabian StyleDevaere, Noel, and Vladimiros G. Papangelakis. 2026. "Dewatering Hypersaline Na2SO4 and NaCl via Commercial Forward Osmosis Module" Membranes 16, no. 1: 14. https://doi.org/10.3390/membranes16010014
APA StyleDevaere, N., & Papangelakis, V. G. (2026). Dewatering Hypersaline Na2SO4 and NaCl via Commercial Forward Osmosis Module. Membranes, 16(1), 14. https://doi.org/10.3390/membranes16010014

