Recent Advances in Thermochemical Water Splitting for Hydrogen Production Using Mixed Ionic-Electronic Conducting Membrane Reactors
Abstract
1. Introduction
Membrane Types | Working Principle | Maximum H2 Production Rate | Maximum Stability Hours |
---|---|---|---|
Oxygen transport membrane | Directed migration of oxygen ions | 17.4 mL min−1 cm−2 | 532 h |
Polymeric membrane | Selective separation of ions | 600 mmol h−1 m−2 | 100 h |
Proton exchange membrane | Directed migration of protons | 12.6 L h−1 | 3500 h |
2. Water Splitting via Membrane Reactors
Method | Advantages | Disadvantages |
---|---|---|
Fossil Fuel Treatment
|
|
|
Thermochemical Processes
|
|
|
Biological Processes
|
|
|
Water splitting
|
|
|
2.1. Working Principle of Membrane Reactors
2.2. Composition Optimization of Membrane Materials
2.2.1. Single-Phase Membrane Materials
Membrane Material | Membrane Structure (thick/mm) | Tem (°C) | Atmosphere on Both Sides | Catalysts at the Water Side | Hydrogen Production Rate (mL min−1 cm−2) | Stability Performance (h) | Ref. |
---|---|---|---|---|---|---|---|
BMZT | Disk (0.7) | 960 | He/H2O; CH4/CO2/He/N2 | — | 0.8 | 100 | [61] |
LSF | Disk (3) | 860 | H2O; He | — | 0.0145 | — | [58] |
LSF | Disk (3) | 860 | H2O; CO | — | 0.0048 | — | |
LSCF | Disk (0.33) | 900 | N2/H2O; H2/He | Pt | 1.93 | — | [59] |
LSCF | Thin film (0.05) | 900 | N2/H2O; H2/He | Pt | 11.41 | — | |
LCF | Thin film (0.5) | 990 | Ar/H2O; He/CH4 | — | 0.2 | — | [64] |
LCF | Thin film (0.9) | 990 | Ar/H2O; He/CH4 | — | 0.5 | — | |
BCF | Disk (0.5) | 950 | N2/H2O; H2/He | Ru-SDC | 13.5 | 100 | [63] |
BSCF | Disk (0.07) | 950 | He/H2O; CH4/He/Ne | — | 3.3 | — | [65] |
BFZ | Disk (1.6) | 900 | N2/H2O; CO2/He | — | 0.3 | — | [66] |
BFZ | Tubular (1.05) | 900 | N2/H2O; CO/He | — | 1.99 | — | [67] |
BZCF | Tubular (0.17) | 900 | H2O; CH4 | — | 2.2 | — | [31] |
PSFA | Disk (1.0) | 900 | N2/H2O; CO/N2 | — | 1.07 | 50 | [62] |
PSFA | Disk (1.0) | 940 | N2/H2O; CH4/H2 | Ni/CPO | 9.8 | 250 | [60] |
LNO/GDC10 | Double-layer disk | 900 | H2O/N2; CO2/CO/He | — | 0.12 | — | [68] |
SCFZ | Tubular | 900 | H2O; EtOH | — | 3.4 | 60 | [69] |
SFC | Thin film (0.02) | 900 | N2/H2O; H2/He | — | 17.4 | — | [70] |
SFC | Disk (1.04) | 900 | N2/H2O; H2/He | — | 4.0 | — |
2.2.2. Dual-Phase Membrane Materials
Membrane Material | Membrane Structure (thick/mm) | Tem. (°C) | Atmospheres on Both Sides | Catalysts at Water Side | Hydrogen Production Rate (mL cm−2 min−1) | Stability Performance (h) | Ref. |
---|---|---|---|---|---|---|---|
ZrO2-TiO2-Y2O3 | Tubular (2) | 1600 | H2O; H2/CO2 | — | 0.5 | — | [78] |
Ni-GDC | Disk (0.13) | 900 | H2O; H2/He | Ni-GDC | 6 | — | [72] |
Ni-GDC | Disk (0.09) | 900 | N2/H2O; H2/He | — | 3.7 | — | [79] |
Co-GDC | Disk (0.03) | 930 | H2O/He; CH4/He | LSC | 1.8 | 100 | [74] |
Ag-LCF | Hollow fiber | 950 | H2O/N2; H2/He | — | 3.6 | — | [73] |
Ag-LCF | Hollow fiber | 950 | H2O/N2; CH4 | — | 0.69 | — | |
SDC-SSAF | Symmetrical disk (0.03) | 900 | H2O; CH4 | Ni | 11.7 | 100 | [75] |
SDC-SSAF | Asymmetric disk (0.07) | 950 | H2O/He; H2/N2 | Ru-based catalyst | 12.2 | — | [80] |
SDC-SSAF | Symmetric disk (0.07) | 950 | H2O/He; H2/N2 | Ru-SDC | 11.9 | — | |
SDC-SSAF | Symmetric disk (0.4) | 950 | H2O/He; H2/N2 | Ru-SDC | 5.9 | — | |
SDC-SSCF | Disk (0.36) | 900 | H2O/He; H2/N2 | Ni-SDC | 7.5 | 120 | [81] |
SDC-SSCF | Disk (0.36) | 900 | H2O/He; H2/N2 | Co-SDC | 5.0 | ||
SDC-SSCF | Disk (0.36) | 900 | H2O/He; H2/N2 | Fe-SDC | 6.8 | ||
SDC-SSCF | Disk (0.38) | 900 | H2O/He; H2/N2 | Ni-SDC | 9 | — | [82] |
SDC-SSCF | Disk (0.38) | 900 | H2O/He; H2/N2 | Ru-SDC | 16 | — | |
SDC-SFM | Disk (0.5) | 900 | H2O/He; H2/N2 | Ni-SDC | 6.6 | 532 | [77] |
SDC-SFM | Disk (0.44) | 800 | H2O/Ar; CH4/Ar | PNO | 4.5 | 250 | [83] |
SDC- SFM | Disk | 970 | H2O/He/Ne; CH4/ He/Ne | — | 1.5 | 100 | [84] |
GDC-GSTA | Disk (1.1) | — | H2O; H2 | Ni-GDC | 3.1 | — | [85] |
GDC-GSTAδ | Disk (1.2) | 900 | Ar/H2/H2O; Ar/ H2/H2O | — | 0.67 | — | [86] |
CPO-PSMT | Disk | 940 | H2O/He; H2/N2 | — | 0.52 | 180 | [87] |
CPO-PSFA | Disk (1) | 925 | H2O/N2; CO/He | — | 1 | 20 | [88] |
CPO-PSFA | Disk layer | 925 | H2O/N2; CO/He | — | 1.2 | 20 | |
ZYO-LSCF | Symmetric disk | 900 | H2O/N2; CH4/He | — | 0.40 | 300 | [89] |
ZYO-LSCF | Symmetric disk | H2O/N2; CO/He, N2 | 0.54 | 300 | |||
YSZ-LSCF-CuO | Disk (0.5) | 900 | H2O/He; CO/H2 | Ni-SDC | 0.76 | 290 | [90] |
SDC-LCAF | Hollow fiber | 950 | H2O/CO2; CH4 | Ni-SDC | 3.81 | 100 | [76] |
2.3. Structural Design of Membrane Materials
2.4. Factors Affecting the Performance of Membrane Materials
3. Development of Water Splitting Catalysts
4. Coupling Reaction Mechanisms Across Membranes
5. Summary and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Tee, S.Y.; Win, K.Y.; Teo, W.S.; Koh, L.-D.; Liu, S.; Teng, C.P.; Han, M.-Y. Recent Progress in Energy-Driven Water Splitting. Adv. Sci. 2017, 4, 1600337. [Google Scholar] [CrossRef]
- Lee, J.E.; Shafiq, I.; Hussain, M.; Lam, S.S.; Rhee, G.H.; Park, Y.-K. A Review on Integrated Thermochemical Hydrogen Production from Water. Int. J. Hydrogen Energy 2022, 47, 4346–4356. [Google Scholar] [CrossRef]
- Tian, M.-W.; Yuen, H.-C.; Yan, S.-R.; Huang, W.-L. The Multiple Selections of Fostering Applications of Hydrogen Energy by Integrating Economic and Industrial Evaluation of Different Regions. Int. J. Hydrogen Energy 2019, 44, 29390–29398. [Google Scholar] [CrossRef]
- Cheng, H.; Duan, T.; Li, J.; Li, L.; Sun, Q. Research progress of micro- and nano-powder fillers in composite solid electrolytes. China Powder Sci. Technol. 2025, 31, 1–13. [Google Scholar] [CrossRef]
- Abbas, H.F.; Wan Daud, W.M.A. Hydrogen Production by Methane Decomposition: A Review. Int. J. Hydrogen Energy 2010, 35, 1160–1190. [Google Scholar] [CrossRef]
- Cao, Y.; Dhahad, H.A.; Hussen, H.M.; Anqi, A.E.; Farouk, N.; Issakhov, A. Development and Tri-Objective Optimization of a Novel Biomass to Power and Hydrogen Plant: A Comparison of Fueling with Biomass Gasification or Biomass Digestion. Energy 2022, 238, 122010. [Google Scholar] [CrossRef]
- Aziz, M.; Darmawan, A.; Juangsa, F.B. Hydrogen Production from Biomasses and Wastes: A Technological Review. Int. J. Hydrogen Energy 2021, 46, 33756–33781. [Google Scholar] [CrossRef]
- Bechara, R.; Azizi, F.; Boyadjian, C. Process Simulation and Optimization for Enhanced Biophotolytic Hydrogen Production from Green Algae Using the Sulfur Deprivation Method. Int. J. Hydrogen Energy 2021, 46, 14096–14108. [Google Scholar] [CrossRef]
- Azwar, M.Y.; Hussain, M.A.; Abdul-Wahab, A.K. Development of Biohydrogen Production by Photobiological, Fermentation and Electrochemical Processes: A Review. Renew. Sustain. Energy Rev. 2014, 31, 158–173. [Google Scholar] [CrossRef]
- Wang, Z.; Roberts, R.R.; Naterer, G.F.; Gabriel, K.S. Comparison of Thermochemical, Electrolytic, Photoelectrolytic and Photochemical Solar-to-Hydrogen Production Technologies. Int. J. Hydrogen Energy 2012, 37, 16287–16301. [Google Scholar] [CrossRef]
- Gong, Y.; Yao, J.; Wang, P.; Li, Z.; Zhou, H.; Xu, C. Perspective of Hydrogen Energy and Recent Progress in Electrocatalytic Water Splitting. Chin. J. Chem. Eng 2022, 43, 282–296. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Gong, X.; Guo, Z. The Intensification Technologies to Water Electrolysis for Hydrogen Production—A Review. Renew. Sustain. Energy Rev. 2014, 29, 573–588. [Google Scholar] [CrossRef]
- Abanades, S.; Flamant, G. Thermochemical Hydrogen Production from a Two-Step Solar-Driven Water-Splitting Cycle Based on Cerium Oxides. Sol. Energy 2006, 80, 1611–1623. [Google Scholar] [CrossRef]
- Fletcher, E.A.; Moen, R.L. Hydrogen- and Oxygen from Water. Science 1977, 197, 1050–1056. [Google Scholar] [CrossRef]
- Nakamura, T. Hydrogen Production from Water Utilizing Solar Heat at High Temperatures. Sol. Energy 1977, 19, 467–475. [Google Scholar] [CrossRef]
- Kogan, A. Direct Solar Thermal Splitting of Water and on Site Separation of the Products I. Theoretical Evaluation of Hydrogen Yield. Int. J. Hydrogen Energy 1997, 22, 481–486. [Google Scholar] [CrossRef]
- Kogan, A. Direct Solar Thermal Splitting of Water and on-Site Separation of the Products—II. Experimental Feasibility Study. Int. J. Hydrogen Energy 1998, 23, 89–98. [Google Scholar] [CrossRef]
- Funk, J.E.; Reinstrom, R.M. Energy Requirements in Production of Hydrogen from Water. Ind. Eng. Chem. Process Des. Dev. 1966, 5, 336–342. [Google Scholar] [CrossRef]
- Tang, M.; Xu, L.; Fan, M. Progress in Oxygen Carrier Development of Methane-Based Chemical-Looping Reforming: A Review. Appl. Energy 2015, 151, 143–156. [Google Scholar] [CrossRef]
- Scheffe, J.R.; Steinfeld, A. Oxygen Exchange Materials for Solar Thermochemical Splitting of H2O and CO2: A Review. Mater. Today 2014, 17, 341–348. [Google Scholar] [CrossRef]
- Gupta, S.; Mahapatra, M.K.; Singh, P. Lanthanum Chromite Based Perovskites for Oxygen Transport Membrane. Mater. Sci. Eng. R Rep. 2015, 90, 1–36. [Google Scholar] [CrossRef]
- Deibert, W.; Ivanova, M.E.; Baumann, S.; Guillon, O.; Meulenberg, W.A. Ion-Conducting Ceramic Membrane Reactors for High-Temperature Applications. J. Membr. Sci. 2017, 543, 79–97. [Google Scholar] [CrossRef]
- Li, W.; Zhu, X.; Cao, Z.; Wang, W.; Yang, W. Mixed Ionic-Electronic Conducting (Miec) Membranes for Hydrogen Production from Water Splitting. Int. J. Hydrogen Energy 2015, 40, 3452–3461. [Google Scholar] [CrossRef]
- Shao, Z.; Yang, W.; Cong, Y.; Dong, H.; Tong, J.; Xiong, G. Investigation of the Permeation Behavior and Stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ Oxygen Membrane. J. Membr. Sci. 2000, 172, 177–188. [Google Scholar] [CrossRef]
- Schulz, M.; Pippardt, U.; Kiesel, L.; Ritter, K.; Kriegel, R. Oxygen Permeation of Various Archetypes of Oxygen Membranes Based on Bscf. AIChE J. 2012, 58, 3195–3202. [Google Scholar] [CrossRef]
- Xu, S.J.; Thomson, W.J. Oxygen Permeation Rates through Ion-Conducting Perovskite Membranes. Chem. Eng. Sci. 1999, 54, 3839–3850. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, H.; Cong, Y.; Yang, W. Permeation Model and Experimental Investigation of Mixed Conducting Membranes. AIChE J. 2012, 58, 1744–1754. [Google Scholar] [CrossRef]
- Meng, X.-Y.; Li, J.-J.; Liu, P.; Duan, M.; Wang, J.; Zhou, Y.-N.; Xie, Y.; Luo, Z.-H.; Pan, Y.-X. Long-Term Stable Hydrogen Production from Water and Lactic Acid via Visible-Light-Driven Photocatalysis in a Porous Microreactor. Angew. Chem. Int. Ed. 2023, 62, e202307490. [Google Scholar] [CrossRef]
- Arunachalam, M.; Han, D.S. Efficient Solar-Powered Pem Electrolysis for Sustainable Hydrogen Production: An Integrated Approach. Emergent Mater. 2024, 7, 1401–1415. [Google Scholar] [CrossRef]
- Siracusano, S.; Pantò, F.; Tonella, S.; Oldani, C.; Aricò, A.S. Reinforced Short-Side-Chain Aquivion® Membrane for Proton Exchange Membrane Water Electrolysis. Int. J. Hydrogen Energy 2022, 47, 15557–15570. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, H.; Werth, S.; Schiestel, T.; Caro, J. Simultaneous Production of Hydrogen and Synthesis Gas by Combining Water Splitting with Partial Oxidation of Methane in a Hollow-Fiber Membrane Reactor. Angew. Chem. Int. Ed. 2008, 47, 9341–9344. [Google Scholar] [CrossRef]
- Chen, G.; Feldhoff, A.; Weidenkaff, A.; Li, C.; Liu, S.; Zhu, X.; Sunarso, J.; Huang, K.; Wu, X.-Y.; Ghoniem, A.F.; et al. Roadmap for Sustainable Mixed Ionic-Electronic Conducting Membranes. Adv. Funct. Mater. 2022, 32, 2105702. [Google Scholar] [CrossRef]
- Faraji, S.; Nordheden, K.J.; Stagg-Williams, S.M. A Comparative Study of Ba0.5Sr0.5Co0.8Fe0.2Ox (BSCF) and SrFeCo0.5Ox (SFC) Ceramic Membranes Used for Syngas Production. Appl. Catal. B Environ. 2010, 99, 118–126. [Google Scholar] [CrossRef]
- Balachandran, U.; Dusek, J.T.; Mieville, R.L.; Poeppel, R.B.; Kleefisch, M.S.; Pei, S.; Kobylinski, T.P.; Udovich, C.A.; Bose, A.C. Dense Ceramic Membranes for Partial Oxidation of Methane to Syngas. Appl. Catal. A Gen. 1995, 133, 19–29. [Google Scholar] [CrossRef]
- Pérez-Ramírez, J.; Vigeland, B. Perovskite Membranes in Ammonia Oxidation: Towards Process Intensification in Nitric Acid Manufacture. Angew. Chem. Int. Ed. 2005, 44, 1112–1115. [Google Scholar] [CrossRef]
- Tan, J.; Gu, Z.; Liu, Z.; Wang, P.; Meijboom, R.; Zhang, G.; Jin, W. Solar-Assisted Two-Stage Catalytic Membrane Reactor for Coupling CO2 Splitting with Methane Oxidation Reaction. Green Energy Environ. 2024, 9, 1771–1780. [Google Scholar] [CrossRef]
- Sunarso, J.; Baumann, S.; Serra, J.M.; Meulenberg, W.A.; Liu, S.; Lin, Y.S.; Diniz da Costa, J.C. Mixed Ionic–Electronic Conducting (Miec) Ceramic-Based Membranes for Oxygen Separation. J. Membr. Sci. 2008, 320, 13–41. [Google Scholar] [CrossRef]
- Fontaine, M.L.; Norby, T.; Larring, Y.; Grande, T.; Bredesen, R. Oxygen and Hydrogen Separation Membranes Based on Dense Ceramic Conductors. J. Membr. Sci. 2008, 13, 401–458. [Google Scholar] [CrossRef]
- Lee, J.; Kim, M.; Lee, Y.; Joo, J.H. Strategy to Elucidate the Reaction Mechanism of Electrodes for Realistic Solid Oxide Electrochemical Cells Using a Dense Bulk Material. Chem. Mater. 2021, 33, 6290–6298. [Google Scholar] [CrossRef]
- Epelle, E.I.; Desongu, K.S.; Obande, W.; Adeleke, A.A.; Ikubanni, P.P.; Okolie, J.A.; Gunes, B. A Comprehensive Review of Hydrogen Production and Storage: A Focus on the Role of Nanomaterials. Int. J. Hydrogen Energy 2022, 47, 20398–20431. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The Role of Renewable Energy in the Global Energy Transformation. Energy Strateg. Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Chueh, W.C.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S.M.; Steinfeld, A. High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria. Science 2010, 330, 1797–1801. [Google Scholar] [CrossRef]
- Bičáková, O.; Straka, P. Production of Hydrogen from Renewable Resources and Its Effectiveness. Int. J. Hydrogen Energy 2012, 37, 11563–11578. [Google Scholar] [CrossRef]
- Cui, B.; Zhang, J.; Liu, S.; Liu, X.; Zhang, Z.; Sun, J. A Low-Temperature Electro-Thermochemical Water-Splitting Cycle for Hydrogen Production Based on LiFeO2/Fe Redox Pair. Int. J. Hydrogen Energy 2020, 45, 20800–20807. [Google Scholar] [CrossRef]
- Oudejans, D.; Offidani, M.; Constantinou, A.; Albonetti, S.; Dimitratos, N.; Bansode, A. A Comprehensive Review on Two-Step Thermochemical Water Splitting for Hydrogen Production in a Redox Cycle. Energies 2022, 15, 3044. [Google Scholar] [CrossRef]
- Wang, B.; Li, T.; Wang, Z.; Othman, M.H.D.; Liu, S.; Xiao, R. A Review of Water Splitting Via Mixed Ionic–Electronic Conducting (Miec) Membrane Reactors. Green Chem. 2023, 25, 6930–6948. [Google Scholar] [CrossRef]
- Franca, R.V.; Thursfield, A.; Metcalfe, I.S. La0.6Sr0.4Co0.2Fe0.8O3−δ Microtubular Membranes for Hydrogen Production from Water Splitting. J. Membr. Sci. 2012, 389, 173–181. [Google Scholar] [CrossRef]
- Wagner, C. Equations for Transport in Solid Oxides and Sulfides of Transition Metals. Prog. Solid State Chem. 1975, 10, 3–16. [Google Scholar] [CrossRef]
- Bouwmeester, H.J.M.; Kruidhof, H.; Burggraaf, A.J. Importance of the Surface Exchange Kinetics as Rate Limiting Step in Oxygen Permeation through Mixed-Conducting Oxides. Solid State Ion. 1994, 72, 185–194. [Google Scholar] [CrossRef]
- Wu, X.-Y.; Ghoniem, A.F. Mixed Ionic-Electronic Conducting (Miec) Membranes for Thermochemical Reduction of CO2: A Review. Prog. Energy Combust. Sci. 2019, 74, 1–30. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, W. Microstructural and Interfacial Designs of Oxygen-Permeable Membranes for Oxygen Separation and Reaction–Separation Coupling. Adv. Mater. 2019, 31, 1902547. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, X.; Li, K. Mixed Conducting Ceramics for Catalytic Membrane Processing. Catal. Rev. 2006, 48, 145–198. [Google Scholar] [CrossRef]
- Sunarso, J.; Hashim, S.S.; Zhu, N.; Zhou, W. Perovskite Oxides Applications in High Temperature Oxygen Separation, Solid Oxide Fuel Cell and Membrane Reactor: A Review. Prog. Energy Combust. Sci. 2017, 61, 57–77. [Google Scholar] [CrossRef]
- Arratibel Plazaola, A.; Cruellas Labella, A.; Liu, Y.; Badiola Porras, N.; Pacheco Tanaka, D.A.; Sint Annaland, M.V.; Gallucci, F. Mixed Ionic-Electronic Conducting Membranes (Miec) for Their Application in Membrane Reactors: A Review. Processes 2019, 7, 128. [Google Scholar] [CrossRef]
- Hashim, S.M.; Mohamed, A.R.; Bhatia, S. Current Status of Ceramic-Based Membranes for Oxygen Separation from Air. Adv. Colloid Interface Sci. 2010, 160, 88–100. [Google Scholar] [CrossRef]
- Zhang, C.; Sunarso, J.; Liu, S. Designing CO2-Resistant Oxygen-Selective Mixed Ionic–Electronic Conducting Membranes: Guidelines, Recent Advances, and Forward Directions. Chem. Soc. Rev. 2017, 46, 2941–3005. [Google Scholar] [CrossRef]
- Han, J.; Zeng, Y.; Lin, Y.S. Oxygen Permeation through Fluorite-Type Bismuth-Yttrium-Copper Oxide Membranes. J. Membr. Sci. 1997, 132, 235–243. [Google Scholar] [CrossRef]
- Evdou, A.; Nalbandian, L.; Zaspalis, V.T. Perovskite Membrane Reactor for Continuous and Isothermal Redox Hydrogen Production from the Dissociation of Water. J. Membr. Sci. 2008, 325, 704–711. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, T.H.; Dorris, S.E.; Balachandran, U. La0.7Sr0.3Cu0.2Fe0.8O3-δ as Oxygen Transport Membrane for Producing Hydrogen Via Water Splitting. ECS Trans. 2008, 13, 393. [Google Scholar] [CrossRef]
- Ghanem, A.S.; Liang, F.; Liu, M.; Jiang, H.; Toghan, A. Hydrogen Production by Water Splitting Coupled with the Oxidation of Coke Oven Gas in a Catalytic Oxygen Transport Membrane Reactor. Chem. Eng. J. 2023, 474, 145263. [Google Scholar] [CrossRef]
- He, G.; Ling, Y.; Jiang, H.; Toghan, A. Barium Titanate as a Highly Stable Oxygen Permeable Membrane Reactor for Hydrogen Production from Thermal Water Splitting. ACS Sustain. Chem. Eng. 2021, 9, 11147–11154. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, H.; Sun, Q.; Liu, C.; Li, G.; Xu, Q.; Lu, X. Investigation on Different Valence B-Site Ions Doped Pr0.6Sr0.4FeO3-δ Ceramic Membrane for Hydrogen Production from Water Splitting. Int. J. Hydrogen Energy 2020, 45, 30689–30702. [Google Scholar] [CrossRef]
- Li, W.; Cao, Z.; Zhu, X.; Yang, W. High-Rate Hydrogen Separation Using an Miec Oxygen Permeable Membrane Reactor. AIChE J. 2017, 63, 1278–1286. [Google Scholar] [CrossRef]
- Wu, X.-Y.; Ghoniem, A.F.; Uddi, M. Enhancing Co-Production of H2 and Syngas via Water Splitting and Pom on Surface-Modified Oxygen Permeable Membranes. AIChE J. 2016, 62, 4427–4435. [Google Scholar] [CrossRef]
- Cao, Z.; Jiang, H.; Luo, H.; Baumann, S.; Meulenberg, W.A.; Voss, H.; Caro, J. Simultaneous Overcome of the Equilibrium Limitations in Bscf Oxygen-Permeable Membrane Reactors: Water Splitting and Methane Coupling. Catal. Today 2012, 193, 2–7. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, T.H.; Dorris, S.E.; Lu, Y.; Balachandran, U. Oxygen Permeation and Coal-Gas-Assisted Hydrogen Production Using Oxygen Transport Membranes. Int. J. Hydrogen Energy 2011, 36, 9345–9354. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, T.H.; Dorris, S.E.; Balachandran, U. A Cobalt-Free Oxygen Transport Membrane, BaFe0.9Zr0.1O3−δ, and Its Application for Producing Hydrogen. Int. J. Hydrogen Energy 2013, 38, 6450–6459. [Google Scholar] [CrossRef]
- Jeon, S.-Y.; Im, H.-N.; Singh, B.; Hwang, J.-H.; Song, S.-J. A Thermodynamically Stable La2NiO4+δ/Gd0.1Ce0.9O1.95 Bilayer Oxygen Transport Membrane in Membrane-Assisted Water Splitting for Hydrogen Production. Ceram. Int. 2013, 39, 3893–3899. [Google Scholar] [CrossRef]
- Zhu, N.; Dong, X.; Liu, Z.; Zhang, G.; Jin, W.; Xu, N. Toward Highly-Effective and Sustainable Hydrogen Production: Bio-Ethanol Oxidative Steam Reforming Coupled with Water Splitting in a Thin Tubular Membrane Reactor. Chem. Commun. 2012, 48, 7137–7139. [Google Scholar] [CrossRef]
- Lee, T.H.; Park, C.Y.; Dorris, S.E.; Balachandran, U. Hydrogen Production by Steam Dissociation Using Oxygen Transport Membranes. ECS Trans. 2008, 13, 379. Available online: https://iopscience.iop.org/article/10.1149/1.3050408 (accessed on 25 May 2025). [CrossRef]
- Mazanec, T.J.; Cable, T.L.; Frye, J.G. Electrocatalytic Cells for Chemical Reaction. Solid State Ion. 1992, 53–56, 111–118. [Google Scholar] [CrossRef]
- Balachandran, U.; Lee, T.H.; Wang, S.; Dorris, S.E. Use of Mixed Conducting Membranes to Produce Hydrogen by Water Dissociation. Int. J. Hydrogen Energy 2004, 29, 291–296. [Google Scholar] [CrossRef]
- Zhang, S.; Li, T.; Wang, B.; Zhou, Z.; Meng, X.; Yang, N.; Zhu, X.; Liu, S. Coupling Water Splitting and Partial Oxidation of Methane (Pom) in Ag Modified La0.8Ca0.2Fe0.94O3-δ Hollow Fiber Membrane Reactors for Co-Production of H2 and Syngas. J. Membr. Sci. 2022, 659, 120772. [Google Scholar] [CrossRef]
- Liang, W.; Kaiser, A.; Feldhoff, A.; Baumann, S.; Meulenberg, W.A.; Hu, T.; Xue, J.; Jiang, H.; Cao, Z.; Caro, J. Stable Ce0.8Gd0.2O2-δ Oxygen Transport Membrane Reactor for Hydrogen Production. Appl. Catal. A Gen. 2023, 650, 118980. [Google Scholar] [CrossRef]
- Fang, W.; Steinbach, F.; Cao, Z.; Zhu, X.; Feldhoff, A. A Highly Efficient Sandwich-Like Symmetrical Dual-Phase Oxygen-Transporting Membrane Reactor for Hydrogen Production by Water Splitting. Angew. Chem. Int. Ed. 2016, 55, 8648–8651. [Google Scholar] [CrossRef]
- Zhang, S.; Yeo, J.Y.J.; Sunarso, J.; Gapsari, F.; Song, J.; Liu, S. Robust Ceramic Hollow Fiber Membrane Reactor for Dual Syngas in-Tandem Production by Coupling of CO2-H2O Co-Decomposition with CH4 Partial Oxidation. Chem. Eng. J. 2025, 512, 162553. [Google Scholar] [CrossRef]
- Cai, L.; Hu, S.; Cao, Z.; Li, H.; Zhu, X.; Yang, W. Dual-Phase Membrane Reactor for Hydrogen Separation with High Tolerance to CO2 and H2S Impurities. AIChE J. 2019, 65, 1088–1096. [Google Scholar] [CrossRef]
- Naito, H.; Arashi, H. Hydrogen Production from Direct Water Splitting at High Temperatures Using a ZrO2-TiO2-Y2O3 Membrane. Solid State Ion. 1995, 79, 366–370. [Google Scholar] [CrossRef]
- Balachandran, U.; Lee, T.H.; Dorris, S.E. Hydrogen Production by Water Dissociation Using Mixed Conducting Dense Ceramic Membranes. Int. J. Hydrogen Energy 2007, 32, 451–456. [Google Scholar] [CrossRef]
- Li, W.; Cao, Z.; Zhu, X.; Yang, W. Effects of Membrane Thickness and Structural Type on the Hydrogen Separation Performance of Oxygen-Permeable Membrane Reactors. J. Membr. Sci. 2019, 573, 370–376. [Google Scholar] [CrossRef]
- Cai, L.; Zhu, Y.; Cao, Z.; Li, W.; Li, H.; Zhu, X.; Yang, W. Non-Noble Metal Catalysts Coated on Oxygen-Permeable Membrane Reactors for Hydrogen Separation. J. Membr. Sci. 2020, 594, 117463. [Google Scholar] [CrossRef]
- Cai, L.; Liu, W.; Cao, Z.; Li, H.; Cong, Y.; Zhu, X.; Yang, W. Effect of Ru and Ni Nanocatalysts on Water Splitting and Hydrogen Oxidation Reactions in Oxygen-Permeable Membrane Reactors. J. Membr. Sci. 2020, 599, 117702. [Google Scholar] [CrossRef]
- Son, S.J.; Lee, H.J.; Kim, S.K.; Lee, J.-H.; Park, H.J.; Joo, J.H. Exceptional Performance of Water Splitting Coupled with Methane Partial Oxidation by Oxygen-Permeable Membrane Reactor. Chem. Eng. J. 2023, 466, 143031. [Google Scholar] [CrossRef]
- Liang, W.; Zhou, H.; Caro, J.; Jiang, H. Methane Conversion to Syngas and Hydrogen in a Dual phase Ce0.8Sm0.2O2-δ-Sr2Fe1.5Mo0.5O5+δ Membrane Reactor with Improved Stability. Int. J. Hydrogen Energy 2018, 43, 14478–14485. [Google Scholar] [CrossRef]
- Hong, J.; Wang, H.; Gopalan, S.; Pal, U. Effect of Surface-Exchange Catalyst on the Transport Properties of Miec Membrane for Hydrogen Separation. ECS Trans. 2008, 6, 1. Available online: https://iopscience.iop.org/article/10.1149/1.2832393 (accessed on 25 May 2025). [CrossRef]
- Wang, H.; Gopalan, S.; Pal, U.B. Hydrogen Generation and Separation Using Gd0.2Ce0.8O1.9−δ–Gd0.08Sr0.88Ti0.95Al0.05O3±δ Mixed Ionic and Electronic Conducting Membranes. Electrochim. Acta 2011, 56, 6989–6996. [Google Scholar] [CrossRef]
- Jia, L.; He, G.; Zhang, Y.; Caro, J.; Jiang, H. Hydrogen Purification through a Highly Stable Dual-Phase Oxygen-Permeable Membrane. Angew. Chem. Int. Ed. 2021, 60, 5204–5208. [Google Scholar] [CrossRef]
- Su, F.; Cheng, H.; Liu, Y.; Sun, Q.; Xu, X.; Chen, J.; Xu, Q.; Lu, X. Permeability and Stability Enhancement of Dual-Phase Membrane by Nickel-Based Porous Layer for Water Splitting. Ceram. Int. 2022, 48, 14662–14671. [Google Scholar] [CrossRef]
- Shi, J.; Zhu, X.; Li, K.; Wei, Y.; Wang, H. Zr0.92Y0.08O1.92-La0.6Sr0.4Co0.2Fe0.8O3–δ Asymmetric Dual-Phase Oxygen Transport Membrane for Simultaneously Methane Partial Oxidation and Water Splitting. Fuel Cells 2021, 21, 58–65. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, P.; Ou, Z.; Cao, Z.; Feng, Q.; Mu, S.; Zhu, X.; Yang, W. Ysz-Based Dual-Phase Membrane Reactors for H2 Production by Coupling Water Splitting with CO2 Capture. Ind. Eng. Chem. Res. 2024, 63, 16367–16375. [Google Scholar] [CrossRef]
- Jin, W.; Li, S.; Huang, P.; Xu, N.; Shi, J. Preparation of an Asymmetric Perovskite-Type Membrane and Its Oxygen Permeability. J. Membr. Sci. 2001, 185, 237–243. [Google Scholar] [CrossRef]
- Shao, Z.; Dong, H.; Xiong, G.; Cong, Y.; Yang, W. Performance of a Mixed-Conducting Ceramic Membrane Reactor with High Oxygen Permeability for Methane Conversion. J. Membr. Sci. 2001, 183, 181–192. [Google Scholar] [CrossRef]
- ten Elshof, J.E.; Bouwmeester, H.J.M.; Verweij, H. Oxidative Coupling of Methane in a Mixed-Conducting Perovskite Membrane Reactor. Appl. Catal. A Gen. 1995, 130, 195–212. [Google Scholar] [CrossRef]
- Xu, X.; Cheng, H.; Liu, Y.; Sun, Q.; Chen, S.; Nie, W.; Duan, T.; Xu, Q.; Lu, X. Oxygen Permeability and Stability of Dual-Phase Ce0.85Pr0.15O2-δ-Pr0.6Sr0.4Fe0.9Al0.1O3-δ Membrane for Hydrogen Production by Water Splitting. Int. J. Hydrogen Energy 2021, 46, 27307–27318. [Google Scholar] [CrossRef]
- Jiang, H.; Liang, F.; Czuprat, O.; Efimov, K.; Feldhoff, A.; Schirrmeister, S.; Schiestel, T.; Wang, H.; Caro, J. Hydrogen Production by Water Dissociation in Surface-Modified BaCoxFeyZr1−x−yO3−δ Hollow-Fiber Membrane Reactor with Improved Oxygen Permeation. Chem. Eur. J. 2010, 16, 7898–7903. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Tan, X.; Jin, Y.; Liu, S. Improvement of the Oxygen Permeation through Perovskite Hollow Fibre Membranes by Surface Acid-Modification. J. Membr. Sci. 2009, 345, 65–73. [Google Scholar] [CrossRef]
- Cai, L.; Cao, Z.; Zhu, X.; Yang, W. Improved Hydrogen Separation Performance of Asymmetric Oxygen Transport Membranes by Grooving in the Porous Support Layer. Green Chem. Eng. 2021, 2, 96–103. [Google Scholar] [CrossRef]
- Zhu, Z.; Hou, J.; He, W.; Liu, W. High-Performance Ba(Zr0.1Ce0.7Y0.2)O3−δ Asymmetrical Ceramic Membrane with External Short Circuit for Hydrogen Separation. J. Alloys Compd. 2016, 660, 231–234. [Google Scholar] [CrossRef]
- Shao, X.; Dong, D.; Parkinson, G.; Li, C.-Z. A Microchanneled Ceramic Membrane for Highly Efficient Oxygen Separation. J. Mater. Chem. A 2013, 1, 9641–9644. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Q.; Duan, T.; Liu, C.; Cheng, H. Enhanced Stability of Perovskite Pr0.6Sr0.4Fe0.9Nb0.1O3−δ Oxygen Transport Membrane for Water Splitting. Ionics 2023, 29, 1267–1272. [Google Scholar] [CrossRef]
- Zhang, S.; Yeo, J.Y.J.; Song, J.; Wong, B.T.; Sunarso, J.; Li, T.; Liu, S. Co-Free La0.9Ca0.1Fe1-xCuxO3−δ (x = 0.05, 0.1) Hollow Fiber Membranes for H2/N2 and H2/CO Co-Production by Coupling Water Splitting and Partial Oxidation of Methane. J. Membr. Sci. 2025, 714, 123401. [Google Scholar] [CrossRef]
- Si, C.; Zhang, W.; Lu, Q.; Guo, E.; Yang, Z.; Chen, J.; He, X.; Luo, J. Recent Advances in Perovskite Catalysts for Efficient Overall Water Splitting. Catalysts 2022, 12, 601. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, T.H.; Dorris, S.E.; Balachandran, U. Hydrogen Production from Fossil and Renewable Sources Using an Oxygen Transport Membrane. Int. J. Hydrogen Energy 2010, 35, 4103–4110. [Google Scholar] [CrossRef]
- Cai, L.; Cao, Z.; Zhu, X.; Yang, W. Effects of Catalysts on Water Decomposition and Hydrogen Oxidation Reactions in Oxygen Transport Membrane Reactors. J. Membr. Sci. 2021, 634, 119394. [Google Scholar] [CrossRef]
- Wang, L.; Al-Mamun, M.; Liu, P.; Wang, Y.; Gui Yang, H.; Zhao, H. La1-xCaxMn1-yAlyO3 Perovskites as Efficient Catalysts for Two-Step Thermochemical Water Splitting in Conjunction with Exceptional Hydrogen Yields. Chin. J. Catal. 2017, 38, 1079–1086. [Google Scholar] [CrossRef]
- Zhong, M.; Xu, T.; Wang, C.; Teng, Y.; Cai, Y.; Zhang, Z.; Xiao, B.; Wang, X. Utilizing High Entropy Oxide (Ni0.2Co0.2Ca0.2Cu0.2Mg0.2)Fe2O4 in Chemical Looping Process for Highly Efficient and Stable Hydrogen Production. Chem. Eng. J. 2024, 487, 150521. [Google Scholar] [CrossRef]
- Schucker, R.C.; Dimitrakopoulos, G.; Derrickson, K.; Kopeć, K.K.; Alahmadi, F.; Johnson, J.R.; Shao, L.; Ghoniem, A.F. Oxidative Dehydrogenation of Ethane to Ethylene in an Oxygen-Ion-Transport-Membrane Reactor: A Proposed Design for Process Intensification. Ind. Eng. Chem. Res. 2019, 58, 7989–7997. [Google Scholar] [CrossRef]
- Liang, W.; Cao, Z.; He, G.; Caro, J.; Jiang, H. Oxygen Transport Membrane for Thermochemical Conversion of Water and Carbon Dioxide into Synthesis Gas. ACS Sustain. Chem. Eng. 2017, 5, 8657–8662. [Google Scholar] [CrossRef]
- Iwahara, H.; Esaka, T.; Uchida, H.; Maeda, N. Proton Conduction in Sintered Oxides and Its Application to Steam Electrolysis for Hydrogen Production. Solid State Ion. 1981, 3–4, 359–363. [Google Scholar] [CrossRef]
- Teraoka, Y.; Zhang, H.-M.; Furukawa, S.; Yamazoe, N. Oxygen Permeation through Perovskite-Type Oxides. Chem. Lett. 1985, 14, 1743–1746. [Google Scholar] [CrossRef]
- Jiang, H.; Cao, Z.; Schirrmeister, S.; Schiestel, T.; Caro, J. A Coupling Strategy to Produce Hydrogen and Ethylene in a Membrane Reactor. Angew. Chem. Int. Ed. 2010, 49, 5656–5660. [Google Scholar] [CrossRef]
- Li, W.; Zhu, X.; Chen, S.; Yang, W. Integration of Nine Steps into One Membrane Reactor to Produce Synthesis Gases for Ammonia and Liquid Fuel. Angew. Chem. Int. Ed. 2016, 55, 8566–8570. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yang, Q.; Liu, J.; Sun, Q.; Cheng, H. Recent Advances in Thermochemical Water Splitting for Hydrogen Production Using Mixed Ionic-Electronic Conducting Membrane Reactors. Membranes 2025, 15, 203. https://doi.org/10.3390/membranes15070203
Li J, Yang Q, Liu J, Sun Q, Cheng H. Recent Advances in Thermochemical Water Splitting for Hydrogen Production Using Mixed Ionic-Electronic Conducting Membrane Reactors. Membranes. 2025; 15(7):203. https://doi.org/10.3390/membranes15070203
Chicago/Turabian StyleLi, Jingjun, Qing Yang, Jie Liu, Qiangchao Sun, and Hongwei Cheng. 2025. "Recent Advances in Thermochemical Water Splitting for Hydrogen Production Using Mixed Ionic-Electronic Conducting Membrane Reactors" Membranes 15, no. 7: 203. https://doi.org/10.3390/membranes15070203
APA StyleLi, J., Yang, Q., Liu, J., Sun, Q., & Cheng, H. (2025). Recent Advances in Thermochemical Water Splitting for Hydrogen Production Using Mixed Ionic-Electronic Conducting Membrane Reactors. Membranes, 15(7), 203. https://doi.org/10.3390/membranes15070203