Construction of Transport Channels by HNTs@ZIF-67 Composites in a Mixed-Matrix Membrane for He/CH4 Separation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of HNTs@ZIF-67
2.3. Preparation of HNTs@ZIF-67/6FDA-TFMB MMMs
2.4. Characterization of Fillers and Membranes
2.5. Gas Permeability Test
2.6. Molecular Simulation
2.6.1. Density Functional Theory Calculation (DFT)
2.6.2. Monte Carlo Calculation (MC)
3. Results and Discussions
3.1. Characterization of HNTs@ZIF-67 Composites
3.2. Characterization of HNTs@ZIF-67/6FDA-TFMB MMMs
3.3. Gas Separation Performance of HNTs@ZIF-67/6FDA-TFMB MMMs
- (1)
- The difference in activation energy. According to the Arrhenius Equation (4), the higher the activation energy, the more significant the effect of temperature on the permeation rate.
- (2)
- The interaction between the gas and material. He is an inert gas, and the interaction between helium and the material is weak. There is a strong adsorption between CH4 and the material. When the temperature increases, these interactions will be weakened, thus greatly improving the permeability of CH4.
- (3)
- Differences in diffusion mechanisms. Compared with He, CH4 has a stronger adsorption–desorption process in diffusion. The temperature has a greater impact on the diffusion and desorption process of CH4. The increase in temperature may reduce the energy barrier of methane desorption, reducing the mass transfer resistance of methane and finally decreasing the selectivity of the MMMs.
3.4. Evaluation of Gas Separation Performance of MMMs
3.5. Mechanism Explanation of HNTs@ZIF-67/6FDA-TFMB MMMs
3.5.1. Molecular Dynamics Simulation
- (1)
- Calculation of adsorption energy
- (2)
- Adsorption density field
3.5.2. Separation Mechanism of MMMs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, Z.; Deng, J.; He, X.; Scholes, C.A.; Jiang, X.; Wang, B.; Guo, H.; Ma, Y.; Deng, L. Helium separation using membrane technology: Recent advances and perspectives. Sep. Purif. Technol. 2021, 274, 119004. [Google Scholar] [CrossRef]
- Sunarso, J.; Hashim, S.S.; Lin, Y.S.; Liu, S.M. Membranes for helium recovery: An overview on the context, materials and future directions. Sep. Purif. Technol. 2017, 176, 335–383. [Google Scholar] [CrossRef]
- Partridge, H.; Stallcop, J.R.; Levin, E. Potential energy curves and transport properties for the interaction of He with other ground-state atoms. J. Chem. Phys. 2001, 115, 6471–6488. [Google Scholar] [CrossRef]
- Scholes, C.A.; Ghosh, U.K. Review of Membranes for Helium Separation and Purification. Membranes 2017, 7, 9. [Google Scholar] [CrossRef]
- Genduso, G.; Ogieglo, W.; Wang, Y.; Pinnau, I. Carbon molecular sieve gas separation materials and membranes: A comprehensive review. J. Membr. Sci. 2024, 699, 122533. [Google Scholar] [CrossRef]
- Omidvar, M.; Nguyen, H.; Liu, J.; Lin, H. Sorption-enhanced membrane materials for gas separation: A road less traveled. Curr. Opin. Chem. Eng. 2018, 20, 50–59. [Google Scholar] [CrossRef]
- Xing, L.; Qin, J.; Wang, J.; Wang, K.; Wang, H.; Yang, Z.; He, G.; Ruan, X. Polyimide Membrane Materials with Multiple Trifluoromethyl Groups for Helium Enrichment from Natural Gases. Ind. Eng. Chem. Res. 2023, 62, 16081–16092. [Google Scholar] [CrossRef]
- Akbari, A.; Karimi-Sabet, J.; Ghoreishi, S.M. Matrimid® 5218 based mixed matrix membranes containing metal organic frameworks (MOFs) for helium separation. Chem. Eng. Process. Process Intensif. 2020, 148, 107804. [Google Scholar] [CrossRef]
- Akbari, A.; Karimi-Sabet, J.; Ghoreishi, S.M. Polyimide based mixed matrix membranes incorporating Cu-BDC nanosheets for impressive helium separation. Sep. Purif. Technol. 2020, 253, 117430. [Google Scholar] [CrossRef]
- Wang, B.; Sheng, M.; Xu, J.; Zhao, S.; Wang, J.; Wang, Z. Recent Advances of Gas Transport Channels Constructed with Different Dimensional Nanomaterials in Mixed-Matrix Membranes for CO2 Separation. Small Methods 2020, 4, 1900749. [Google Scholar] [CrossRef]
- Dong, H.; Shi, F.; Yi, H.; Ruan, X.; Jiang, X.; He, G.; Xiao, W. Selective enhancement mechanism of CO2/N2 separation in Pebax mixed matrix membrane doped with oriented optional magnetic two-dimensional carbon nitride. J. Membr. Sci. 2025, 719, 123740. [Google Scholar] [CrossRef]
- Shi, F.; Wang, K.; Guo, F.; Ruan, X.; He, G.; Ma, C.; Jiang, X.; Xiao, W. Orientation of two-dimensional materials mf-BN in Pebax mixed matrix membranes by magnetic fields for enhancing CO2/N2 separation performance. Sep. Purif. Technol. 2024, 343, 127040. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, L.; Liu, P.; Li, L.; Yang, S.-Q.; Li, Z.-F.; Hu, T.-L. Integrating tri-mural nanotraps into a microporous metal-organic framework for C2H2/CO2 and C2H2/C2H4 separation. Sep. Purif. Technol. 2022, 296, 1383–5866. [Google Scholar] [CrossRef]
- Xu, G.; Meng, Z.; Liu, Y.; Guo, X.; Deng, K.; Ding, L.; Lu, R. Porous MOF-205 with multiple modifications for efficiently storing hydrogen and methane as well as separating carbon dioxide from hydrogen and methane. Int. J. Energy Res. 2019, 43, 7517–7528. [Google Scholar] [CrossRef]
- Kim, M.; Choi, W.; Lee, C.H.; Kim, D.W. 2D MOFs and Zeolites for Composite Membrane and Gas Separation Applications: A Brief Review. ACS Mater. Au 2024, 4, 148–161. [Google Scholar] [CrossRef]
- Zhao, Z.; Ding, L.; Hinterding, R.; Mundstock, A.; Belke, C.; Haug, R.J.; Wang, H.; Feldhoff, A. MXene assisted preparation of well-intergrown ZIF-67 membrane for helium separation. J. Membr. Sci. 2022, 652, 120432. [Google Scholar] [CrossRef]
- He, Z.; Li, Y.; Liu, G.; Wang, C.; Chang, S.; Hu, J.; Zhang, X.; Vasseghian, Y. Fabrication of a novel hollow wood fiber membrane decorated with halloysite and metal-organic frameworks nanoparticles for sustainable water treatment. Ind. Crops Prod. 2023, 202, 117082. [Google Scholar] [CrossRef]
- Guo, F.; Li, B.; Ding, R.; Li, D.; Jiang, X.; He, G.; Xiao, W. A Novel Composite Material UiO-66@HNT/Pebax Mixed Matrix Membranes for Enhanced CO2/N2 Separation. Membranes 2021, 11, 693. [Google Scholar] [CrossRef]
- Lin, R.; Ge, L.; Diao, H.; Rudolph, V.; Zhu, Z. Propylene/propane selective mixed matrix membranes with grape-branched MOF/CNT filler. J. Mater. Chem. A 2016, 4, 6084–6090. [Google Scholar] [CrossRef]
- Lin, R.; Ge, L.; Liu, S.; Rudolph, V.; Zhu, Z. Mixed-Matrix Membranes with Metal-Organic Framework-Decorated CNT Fillers for Efficient CO2 Separation. ACS Appl. Mater. Interfaces 2015, 7, 14750–14757. [Google Scholar] [CrossRef]
- Chehrazi, E.; Sharif, A.; Karimi, M. Rational Design of Halloysite Surface Chemistry for High Performance Nanotube-Thin Film Nanocomposite Gas Separation Membranes. ACS Appl. Mater. Interfaces 2020, 12, 37527–37537. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, S.; He, G.; Wu, H.; Pan, F.; Jiang, Z. Facilitated transport of small molecules and ions for energy-efficient membranes. Chem. Soc. Rev. 2015, 44, 103–118. [Google Scholar] [CrossRef]
- Ma, X.; Liu, B.; Wu, Q.; Li, D.; Chen, R.; Zeng, Z.; Li, L. Specific Li+ sites in a nanoporous carbon for enhanced light hydrocarbons storage and separation: GCMC and DFT simulations. Fuel 2021, 288, 119647. [Google Scholar] [CrossRef]
- Yang, L.-Q.; Yu, J.; Zhang, P.; Wang, Y.; Yuan, W.-Y.; Zhai, Q.-G. Controllable C2H2/CO2 inverse adsorption and separation in pillar-layered Zn-1,2,4-triazolate-dicarboxylate frameworks induced by the ligand aromaticity. Sep. Purif. Technol. 2023, 327, 124930. [Google Scholar] [CrossRef]
- Gaaz, T.S.; Sulong, A.B.; Ansari, M.N.M.; Kadhum, A.A.H.; Al-Amiery, A.A.; Al-Furjan, M.S.H. Effect of halloysite nanotubes loading on thermo-mechanical and morphological properties of polyurethane nanocomposites. Mater. Technol. 2017, 32, 430–442. [Google Scholar] [CrossRef]
- Sahiner, M.; Demirci, S.; Sahiner, N. Enhanced Bioactive Properties of Halloysite Nanotubes via Polydopamine Coating. Polymers 2022, 14, 4346. [Google Scholar] [CrossRef]
- Mo, C.; Dai, P.; Zhao, W. Preparation and Properties of PI/ZIF-67 Three-layer Composite Film. Insul. Mater. 2021, 54, 31–35. [Google Scholar] [CrossRef]
- Li, Q.; Guo, J.; Zhu, H.; Yan, F. Space-Confined Synthesis of ZIF-67 Nanoparticles in Hollow Carbon Nanospheres for CO2 Adsorption. Small 2019, 15, 1804874. [Google Scholar] [CrossRef]
- Liu, Y.; Goncalves, A.A.S.; Zhou, Y.; Jaroniec, M. Importance of surface modification of γ-alumina in creating its nanostructured composites with zeolitic imidazolate framework ZIF-67. J. Colloid Interface Sci. 2018, 526, 497–504. [Google Scholar] [CrossRef]
- Pachecoa, P.S.; Zawadzkib, S.F.; Eirasa, D. Influence of ZIF-67 Drying Temperatures on the Structure and Properties of PEBAX® MH-1657/ZIF-67 Mixed Matrix Membranes for Enhanced CO2/N2 Separation. Mater. Res.-Ibero-Am. J. Mater. 2024, 27, e20230539. [Google Scholar] [CrossRef]
- Saeed, S.; Bashir, R.; Rehman, S.U.; Nazir, M.T.; Alothman, Z.A.A.; Aljuwayid, A.M.; Abid, A.; Adnan, A. Synthesis and Characterization of ZIF-67 Mixed Matrix Nanobiocatalysis for CO2 Adsorption Performance. Front. Bioeng. Biotechnol. 2022, 10, 891549. [Google Scholar] [CrossRef] [PubMed]
- Suppiah, K.; Leng, T.P.; Husseinsyah, S.; Rahman, R.; Keat, Y.C.; Heng, C.W. Thermal properties of carboxymethyl cellulose (CMC) filled halloysite nanotube (HNT) bio-nanocomposite films. In Proceedings of the Conference on Biomedical and Advanced Materials (Bio-CAM), Langkawi, Malaysia, 28–29 November 2017; pp. 1611–1616. [Google Scholar]
- Bheeram, V.R.; Dadhich, A.S.; Mukkamala, S.B. Rapid room temperature synthesis and CO2 uptake performance of nanocrystalline ZIF-67 and Ni@ZIF-67. Inorg. Chem. Commun. 2023, 150, 110455. [Google Scholar] [CrossRef]
- Dong, H.; Liu, W.; Chen, W.; Feng, T.; Wang, Y.; Piao, J.; Ren, J.; Wang, Y.; Li, S.; Chen, X.; et al. Novel C3N4/PANI@PA for enhancement of fire protection and smoke suppression in intumescent fire retardant epoxy coatings. Prog. Org. Coat. 2021, 161, 106496. [Google Scholar] [CrossRef]
- Soleimany, A.; Karimi-Sabet, J.; Hosseini, S.S. Experimental and modeling investigations towards tailoring cellulose triacetate membranes for high performance helium separation. Chem. Eng. Res. Des. 2018, 137, 194–212. [Google Scholar] [CrossRef]
- Akbari, A.; Karimi-Sabet, J.; Ghoreishi, S.M. Intensification of helium separation from CH4 and N2 by size-reduced Cu-BTC particles in Matrimid matrix. Sep. Purif. Technol. 2020, 251, 117317. [Google Scholar] [CrossRef]
- Molavi, H.; Shojaei, A.; Mousavi, S.A. Improving mixed-matrix membrane performance via PMMA grafting from functionalized NH2–UiO-66. J. Mater. Chem. A 2018, 6, 2775–2791. [Google Scholar] [CrossRef]
- Zhou, Y.; He, K.; Lou, Y.; Xue, J.; Wang, H. Polyimide-based mixed matrix membranes incorporated with g-C3N4 nanosheets for efficient helium enrichment. Chem. Eng. Sci. 2025, 302, 120882. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Wu, C. Uncertainty in the separation properties of functionalized porous graphenes. Appl. Surf. Sci. 2020, 525, 146524. [Google Scholar] [CrossRef]
Item | Residual Mass of HNTs@ZIF-67 (%) |
---|---|
Theoretical | 68.92 |
Experimental | 70.80 |
MMMs | PHe (Barrer) | SHe/CH4 | Literature |
---|---|---|---|
ZIF-8/PIM-1 | 3180 | 7.4 | [35] |
Cu-BTC-R/Matrimid | 74.5 | 212.9 | [36] |
Cu-BTC/Matrimid | 49.7 | 217.1 | [8] |
Cu-BDC/Matrimid | 51.8 | 257.9 | [8] |
NH2-UiO-66/PMMA | ~14 | ~1800 | [37] |
g-C3N4/Matrimid | 40.7 | 160.4 | [38] |
HNTs@ZIF-67/6FDA-TFMB | 116 | 305 | This work |
Gas | Binding Energy 1 | |||
---|---|---|---|---|
ZIF-67 | HNTsouter | HNTsinner | 6FDA-TFMB | |
He | −11.12 | −0.6746 | −0.5949 | −0.21 |
CH4 | −96.12 | −1.1910 | −2.1341 | −2.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Dong, H.; Guo, F.; Yi, H.; Jiang, X.; He, G.; Xiao, W. Construction of Transport Channels by HNTs@ZIF-67 Composites in a Mixed-Matrix Membrane for He/CH4 Separation. Membranes 2025, 15, 197. https://doi.org/10.3390/membranes15070197
Zhang J, Dong H, Guo F, Yi H, Jiang X, He G, Xiao W. Construction of Transport Channels by HNTs@ZIF-67 Composites in a Mixed-Matrix Membrane for He/CH4 Separation. Membranes. 2025; 15(7):197. https://doi.org/10.3390/membranes15070197
Chicago/Turabian StyleZhang, Jiale, Huixin Dong, Fei Guo, Huijun Yi, Xiaobin Jiang, Gaohong He, and Wu Xiao. 2025. "Construction of Transport Channels by HNTs@ZIF-67 Composites in a Mixed-Matrix Membrane for He/CH4 Separation" Membranes 15, no. 7: 197. https://doi.org/10.3390/membranes15070197
APA StyleZhang, J., Dong, H., Guo, F., Yi, H., Jiang, X., He, G., & Xiao, W. (2025). Construction of Transport Channels by HNTs@ZIF-67 Composites in a Mixed-Matrix Membrane for He/CH4 Separation. Membranes, 15(7), 197. https://doi.org/10.3390/membranes15070197