Quaternized Polysulfone as a Solid Polymer Electrolyte Membrane with High Ionic Conductivity for All-Solid-State Zn-Air Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Chloromethylation and Quaternization of Polysulfone
2.3. Preparation of Alkaline Solid Polymer Electrolyte
2.4. Characterization
2.5. Zn–Air Battery Test
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A-SPE | Anion Exchange Solid Polymer Electrolyte |
PSf | Polysulfone |
QPSf | Quaternized Polysulfone |
PSf−Cl | Chlorometylated Polysulfone |
NMP | N-methyl-pyrrolidone |
TEA | Triethylamine |
DI | Deionized Water |
1H NMR | Proton Nuclear Magnetic Resonance Spectroscopy |
TMS | Tetramethylsilane |
FT-IR | Fourier Transform–Infrared Spectroscopy |
ATR | Attenuated Reflectance |
TGA | Thermogravimetric Analysis |
SEM | Scanning Electronic Microscope |
KOU | Potassium Hydroxide Uptake |
IEC | Ion Exchange Capacity |
DC | Degree of Chloromethylation |
DMSO | Dimethylsulfoxide |
References
- Abdalla, A.N.; Nazir, M.S.; Tao, H.; Cao, S.; Ji, R.; Jiang, M.; Yao, L. Integration of Energy Storage System and Renewable Energy Sources Based on Artificial Intelligence: An Overview. J. Energy Storage 2021, 40, 102811. [Google Scholar] [CrossRef]
- Farghali, M.; Osman, A.I.; Chen, Z.; Abdelhaleem, A.; Ihara, I.; Mohamed, I.M.A.; Yap, P.-S.; Rooney, D.W. Social, Environmental, and Economic Consequences of Integrating Renewable Energies in the Electricity Sector: A Review. Environ. Chem. Lett. 2023, 21, 1381–1418. [Google Scholar] [CrossRef]
- Amir, M.; Deshmukh, R.G.; Khalid, H.M.; Said, Z.; Raza, A.; Muyeen, S.M.; Nizami, A.-S.; Elavarasan, R.M.; Saidur, R.; Sopian, K. Energy Storage Technologies: An Integrated Survey of Developments, Global Economical/Environmental Effects, Optimal Scheduling Model, and Sustainable Adaption Policies. J. Energy Storage 2023, 72, 108694. [Google Scholar] [CrossRef]
- Iqbal, A.; El-Kadri, O.M.; Hamdan, N.M. Insights into Rechargeable Zn-Air Batteries for Future Advancements in Energy Storing Technology. J. Energy Storage 2023, 62, 106926. [Google Scholar] [CrossRef]
- Hosseini, S.; Masoudi Soltani, S.; Li, Y.-Y. Current Status and Technical Challenges of Electrolytes in Zinc–Air Batteries: An in-Depth Review. Chem. Eng. J. 2021, 408, 127241. [Google Scholar] [CrossRef]
- Fu, J.; Cano, Z.P.; Park, M.G.; Yu, A.; Fowler, M.; Chen, Z. Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives. Adv. Mater. 2017, 29, 1604685. [Google Scholar] [CrossRef]
- Sankaralingam, R.K.; Seshadri, S.; Sunarso, J.; Bhatt, A.I.; Kapoor, A. Effect of Electrolyte Parameters on the Discharge Characteristics of Planar Zinc-Air Flow Battery with Polymer Gel Electrolyte as Separator. Energy Storage 2022, 4, e304. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Tang, Z.; Liu, Z.; Ruan, Z.; Ma, L.; Yang, Q.; Wang, D.; Zhi, C. Hydrogel Electrolytes for Flexible Aqueous Energy Storage Devices. Adv. Funct. Mater. 2018, 28, 1804560. [Google Scholar] [CrossRef]
- Wang, M.; Xu, N.; Fu, J.; Liu, Y.; Qiao, J. High-Performance Binary Cross-Linked Alkaline Anion Polymer Electrolyte Membranes for All-Solid-State Supercapacitors and Flexible Rechargeable Zinc–Air Batteries. J. Mater. Chem. A 2019, 7, 11257–11264. [Google Scholar] [CrossRef]
- Huang, S.; Zhu, J.; Tian, J.; Niu, Z. Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries. Chem.–A Eur. J. 2019, 25, 14480–14494. [Google Scholar] [CrossRef]
- Das, G.; Choi, J.-H.; Nguyen, P.K.T.; Kim, D.-J.; Yoon, Y.S. Anion Exchange Membranes for Fuel Cell Application: A Review. Polymers 2022, 14, 1197. [Google Scholar] [CrossRef]
- Dong, H.; German, M.; Tian, L.; SenGupta, A.K. Multifunctional Ion Exchange Pretreatment Driven by Carbon Dioxide for Enhancing Reverse Osmosis Recovery during Impaired Water Reuse. Desalination 2020, 485, 114459. [Google Scholar] [CrossRef]
- Yang, Y.; Li, P.; Zheng, X.; Sun, W.; Dou, S.X.; Ma, T.; Pan, H. Anion-Exchange Membrane Water Electrolyzers and Fuel Cells. Chem. Soc. Rev. 2022, 51, 9620–9693. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wei, T.; Peng, Z.; Zhao, Y.; Jannasch, P.; Yang, J. High-Performance Anion Exchange Membranes Based on Poly(Oxindole Benzofuran Dibenzo-18-Crown-6)s Functionalized with Hydroxyl and Quaternary Ammonium Groups for Alkaline Water Electrolysis. J. Colloid Interface Sci. 2025, 686, 304–317. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, N.; Yao, M.; Siroma, Z.; Senoh, H.; Ioroi, T.; Yasuda, K. Reversible Air Electrodes Integrated with an Anion-Exchange Membrane for Secondary Air Batteries. J. Power Sources 2011, 196, 808–813. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, M.; Xu, N.; Peng, L.; Mao, J.; Gong, Q.; Qiao, J. Alkaline Exchange Polymer Membrane Electrolyte for High Performance of All-Solid-State Electrochemical Devices. ACS Appl. Mater. Interfaces 2018, 10, 29593–29598. [Google Scholar] [CrossRef]
- Fu, J.; Lee, D.U.; Hassan, F.M.; Yang, L.; Bai, Z.; Park, M.G.; Chen, Z. Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc–Air Batteries. Adv. Mater. 2015, 27, 5617–5622. [Google Scholar] [CrossRef]
- Teresa Pérez-Prior, M.; Ureña, N.; Tannenberg, M.; del Río, C.; Levenfeld, B. DABCO-Functionalized Polysulfones as Anion-Exchange Membranes for Fuel Cell Applications: Effect of Crosslinking. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 1326–1336. [Google Scholar] [CrossRef]
- Song, F.; Fu, Y.; Gao, Y.; Li, J.; Qiao, J.; Zhou, X.-D.; Liu, Y. Novel Alkaline Anion-Exchange Membranes Based on Chitosan/Ethenylmethylimidazoliumchloride Polymer with Ethenylpyrrolidone Composites for Low Temperature Polymer Electrolyte Fuel Cells. Electrochim. Acta 2015, 177, 137–144. [Google Scholar] [CrossRef]
- Xu, N.; Zhang, Y.; Wang, M.; Fan, X.; Zhang, T.; Peng, L.; Zhou, X.-D.; Qiao, J. High-Performing Rechargeable/Flexible Zinc-Air Batteries by Coordinated Hierarchical Bi-Metallic Electrocatalyst and Heterostructure Anion Exchange Membrane. Nano Energy 2019, 65, 104021. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J. Preparation of Anion Exchange Membrane by Efficient Functionalization of Polysulfone for Electrodialysis. J. Memb. Sci. 2020, 596, 117591. [Google Scholar] [CrossRef]
- Tang, H.; Geng, K.; Hao, J.; Zhang, X.; Shao, Z.; Li, N. Properties and Stability of Quaternary Ammonium-Biphosphate Ion-Pair Poly(Sulfone)s High Temperature Proton Exchange Membranes for H2/O2 Fuel Cells. J. Power Sources 2020, 475, 228521. [Google Scholar] [CrossRef]
- Lekoane, T.; Msomi, P.F. Quarternized Polysulfone/ZSM-5 Zeolite Composite Anion Exchange Membrane Separators for Aluminum-Air Battery. J. Appl. Polym. Sci. 2023, 140, e54006. [Google Scholar] [CrossRef]
- Simari, C.; Caprì, A.; Ur Rehman, M.H.; Enotiadis, A.; Gatto, I.; Baglio, V.; Nicotera, I. Composite Anion Exchange Membranes Based on Polysulfone and Silica Nanoscale Ionic Materials for Water Electrolyzers. Electrochim. Acta 2023, 462, 142788. [Google Scholar] [CrossRef]
- Dong, D.; Xiao, Y.; Zhang, M.; Yang, Z.; Wang, K.; Fan, M. Crosslinked Anion Exchange Membranes with Regional Intensive Ion Clusters Prepared from Quaternized Branched Polyethyleneimine/Quaternized Polysulfone. Int. J. Hydrogen Energy 2022, 47, 24991–25006. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, J.; Song, X.; Jiang, G.; Zarrin, H.; Xu, P.; Li, K.; Yu, A.; Chen, Z. Laminated Cross-Linked Nanocellulose/Graphene Oxide Electrolyte for Flexible Rechargeable Zinc–Air Batteries. Adv. Energy Mater. 2016, 6, 1600476. [Google Scholar] [CrossRef]
- Xu, M.; Dou, H.; Zhang, Z.; Zheng, Y.; Ren, B.; Ma, Q.; Wen, G.; Luo, D.; Yu, A.; Zhang, L.; et al. Hierarchically Nanostructured Solid-State Electrolyte for Flexible Rechargeable Zinc–Air Batteries. Angew. Chem. Int. Ed. 2022, 61, e202117703. [Google Scholar] [CrossRef]
- Song, W.; Zhang, X.; Yang, C.; Yang, Z.; Wu, L.; Ge, X.; Xu, T. Alkaline Membranes toward Electrochemical Energy Devices: Recent Development and Future Perspectives. ACS Cent. Sci. 2023, 9, 1538–1557. [Google Scholar] [CrossRef]
- Dumbrava, O.; Filimon, A.; Marin, L. Tailoring Properties and Applications of Polysulfone Membranes by Chemical Modification: Structure-Properties-Applications Relationship. Eur. Polym. J. 2023, 196, 112316. [Google Scholar] [CrossRef]
- Avram, E.; Butuc, E.; Luca, C.; Druta, I. Polymers with Pendant Functional Group. III. Polysulfones Containing Viologen Group. J. Macromol. Sci.-Pure Appl. Chem. 1997, 34, 1701–1714. [Google Scholar] [CrossRef]
- Vinodh, R.; Purushothaman, M.; Sangeetha, D. Novel Quaternized Polysulfone/ZrO2 Composite Membranes for Solid Alkaline Fuel Cell Applications. Int. J. Hydrogen Energy 2011, 36, 7291–7302. [Google Scholar] [CrossRef]
- Wan, Y.; Peppley, B.; Creber, K.A.M.; Bui, V.T. Anion-Exchange Membranes Composed of Quaternized-Chitosan Derivatives for Alkaline Fuel Cells. J. Power Sources 2010, 195, 3785–3793. [Google Scholar] [CrossRef]
- Xu, S.; Sun, Z.; Sun, C.; Li, F.; Chen, K.; Zhang, Z.; Hou, G.; Cheng, H.; Li, F. Homogeneous and Fast Ion Conduction of PEO-Based Solid-State Electrolyte at Low Temperature. Adv. Funct. Mater. 2020, 30, 2007172. [Google Scholar] [CrossRef]
- Chen, N.; Wang, H.H.; Kim, S.P.; Kim, H.M.; Lee, W.H.; Hu, C.; Bae, J.Y.; Sim, E.S.; Chung, Y.-C.; Jang, J.-H.; et al. Poly(Fluorenyl Aryl Piperidinium) Membranes and Ionomers for Anion Exchange Membrane Fuel Cells. Nat. Commun. 2021, 12, 2367. [Google Scholar] [CrossRef]
- Swaby, S.; Ureña, N.; Pérez-Prior, M.T.; Várez, A.; Levenfeld, B. Synthesis and Characterization of Novel Anion Exchange Membranes Based on Semi-Interpenetrating Networks of Functionalized Polysulfone: Effect of Ionic Crosslinking. Polymers 2021, 13, 958. [Google Scholar] [CrossRef]
- An, E.J.; Sim, G.H.; Yu, S.; Kim, H.G.; An, S.J.; Lee, C.; Kim, M.; Kim, J.H.; Lee, J.H.; Chi, W.S. Cross-Linked Polysulfone Membranes with Controllable Cross-Linkers for Anion-Exchange Membrane Water Electrolysis. Eur. Polym. J. 2024, 221, 113543. [Google Scholar] [CrossRef]
- Celik, A.; Hasar, H. Effect of Same Chloromethylation and Sulfonation Process on the Ion Exchange Membranes in Terms of Polymer Types and Ionic Properties. Ionics (Kiel) 2021, 27, 1243–1254. [Google Scholar] [CrossRef]
- Lin, S.W.; Martínez-Ayala, A.V.; Pérez-Sicairos, S.; Félix-Navarro, R.M. Preparation and Characterization of Low-Pressure and High MgSO4 Rejection Thin-Film Composite NF Membranes via Interfacial Polymerization Process. Polym. Bull. 2019, 76, 5619–5632. [Google Scholar] [CrossRef]
- Kumar, R.; Isloor, A.M.; Ismail, A.F.; Rashid, S.A.; Matsuura, T. Polysulfone–Chitosan Blend Ultrafiltration Membranes: Preparation, Characterization, Permeation and Antifouling Properties. RSC Adv. 2013, 3, 7855–7861. [Google Scholar] [CrossRef]
- Singh, K.; Devi, S.; Bajaj, H.C.; Ingole, P.; Choudhari, J.; Bhrambhatt, H. Optical Resolution of Racemic Mixtures of Amino Acids through Nanofiltration Membrane Process. Sep. Sci. Technol. 2014, 49, 2630–2641. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, M.; Zhao, Z.; Zhang, X.; Fan, M. Construction of Quaternized Polysulfone/Polyquaternium-10 Anion Exchange Membrane with Semi-Interpenetrating Network for Alkaline Fuel Cell. Macromol. Mater. Eng. 2022, 307, 2100539. [Google Scholar] [CrossRef]
- Bhowmick, S.; Qureshi, M. Vanadium Oxide Nanosheet-Infused Functionalized Polysulfone Bipolar Membrane for an Efficient Water Dissociation Reaction. ACS Appl. Mater. Interfaces 2023, 15, 5466–5477. [Google Scholar] [CrossRef]
- Qaisrani, N.A.; Ma, L.; Hussain, M.; Liu, J.; Li, L.; Zhou, R.; Jia, Y.; Zhang, F.; He, G. Hydrophilic Flexible Ether Containing, Cross-Linked Anion-Exchange Membrane Quaternized with DABCO. ACS Appl. Mater. Interfaces 2020, 12, 3510–3521. [Google Scholar] [CrossRef]
- Audeves−Audeves, Y.; Arredondo−Espínola, A.; Nava, O.; Olivas, A.; Torres-González, J.; Álvarez–Contreras, L.; Guerra-Balcázar, M.; Arjona, N. High Activity of Cobalt-Atomically Dispersed Catalyst on Mesoporous Carbon for Rechargeable Zn-Air Batteries via Effective Removal of the Hard Template. Microporous Mesoporous Mater. 2025, 381, 113359. [Google Scholar] [CrossRef]
- Dewi, E.L.; Oyaizu, K.; Nishide, H.; Tsuchida, E. Cationic Polysulfonium Membrane as Separator in Zinc–Air Cell. J. Power Sources 2003, 115, 149–152. [Google Scholar] [CrossRef]
- Jabbari, V.; Foroozan, T.; Shahbazian-Yassar, R. Dendritic Zn Deposition in Zinc-Metal Batteries and Mitigation Strategies. Adv. Energy Sustain. Res. 2021, 2, 2000082. [Google Scholar] [CrossRef]
- Contreras-Martínez, M.V.; Arredondo-Espínola, A.; Guerra-Balcázar, M.; Álvarez-Contreras, L.; España-Sánchez, B.L.; Arriaga, L.G.; Arjona, N. Development of Electrospun and Casted Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Membranes and Their Effect on the Performance of Rechargeable Zinc-Air Batteries. J. Mater. Sci. 2025, 60, 4502–4518. [Google Scholar] [CrossRef]
A-SPE | Functionalization Degree in Cl form (%) | IEC (mmol/g) | KOH Uptake (%) Including Water Uptake | σ (mS cm−1) |
---|---|---|---|---|
PSf120 | 122 | 1.7124 | 56.05 | 22.19 |
PSf30 | 30 | 1.3393 | 6.17 | 8.82 |
Fumapem | NA | 2.0200 | 37.56 | 8.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salazar-Gastélum, L.J.; Arredondo-Espínola, A.; Pérez-Sicairos, S.; Álvarez-Contreras, L.; Arjona, N.; Guerra-Balcázar, M. Quaternized Polysulfone as a Solid Polymer Electrolyte Membrane with High Ionic Conductivity for All-Solid-State Zn-Air Batteries. Membranes 2025, 15, 102. https://doi.org/10.3390/membranes15040102
Salazar-Gastélum LJ, Arredondo-Espínola A, Pérez-Sicairos S, Álvarez-Contreras L, Arjona N, Guerra-Balcázar M. Quaternized Polysulfone as a Solid Polymer Electrolyte Membrane with High Ionic Conductivity for All-Solid-State Zn-Air Batteries. Membranes. 2025; 15(4):102. https://doi.org/10.3390/membranes15040102
Chicago/Turabian StyleSalazar-Gastélum, Luis Javier, Alejandro Arredondo-Espínola, Sergio Pérez-Sicairos, Lorena Álvarez-Contreras, Noé Arjona, and Minerva Guerra-Balcázar. 2025. "Quaternized Polysulfone as a Solid Polymer Electrolyte Membrane with High Ionic Conductivity for All-Solid-State Zn-Air Batteries" Membranes 15, no. 4: 102. https://doi.org/10.3390/membranes15040102
APA StyleSalazar-Gastélum, L. J., Arredondo-Espínola, A., Pérez-Sicairos, S., Álvarez-Contreras, L., Arjona, N., & Guerra-Balcázar, M. (2025). Quaternized Polysulfone as a Solid Polymer Electrolyte Membrane with High Ionic Conductivity for All-Solid-State Zn-Air Batteries. Membranes, 15(4), 102. https://doi.org/10.3390/membranes15040102