Preparation of Crown Ether-Containing Polyamide Membranes via Interfacial Polymerization and Their Desalination Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Diamino-Modified Crown Ethers
2.3. Preparation of Membranes
2.3.1. Preparation of Polyamide (PA) Membranes
2.3.2. Preparation of Crown Ether-Modified Membranes
2.4. Testing and Characterization
2.4.1. Characterization of Crown Ethers
2.4.2. Characterization of the Fabricated Membranes
2.4.3. Separation Performance Evaluation
3. Results and Discussion
3.1. Characterization Results of Crown Ethers
3.2. Chemical Composition of Membrane Surface
3.3. Membrane Morphology
3.4. Surface Hydrophilicity of Membranes
3.5. Perm-Selectivity Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFM | Atomic force microscopy |
DAB18C6 | Diamino-dibenzo-18-crown-6 |
DNB18C6 | Dinitrobenzo-dibenzo-18-crown-6 |
FT-IR | Fourier-transform infrared spectrometer |
IP | Interfacial polymerization |
LbL-IP | Layer-by-layer interfacial polymerization |
MPD | M-phenylenediamine |
NMR | Nuclear magnetic resonance |
NF | Nanofiltration |
PA | Polyamide |
RO | Reverse osmosis |
SEM | Scanning electron microscopy |
TFC | Thin-film composite |
TMC | Trimesoyl chloride |
WCA | Water contact angle |
XPS | X-ray photoelectron spectroscopy |
References
- Seckler, D.; Barker, R.; Amarasinghe, U. Water Scarcity in the Twenty-First Century. Int. J. Water Resour. Dev. 1999, 15, 29–42. [Google Scholar] [CrossRef]
- Sogno, P.; Klein, I.; Kuenzer, C. Remote Sensing of Surface Water Dynamics in the Context of Global Change—A Review. Remote Sens. 2022, 14, 2475. [Google Scholar] [CrossRef]
- Kummu, M.; Guillaume, J.H.A.; De Moel, H.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.E.; Ward, P.J. The World’s Road to Water Scarcity: Shortage and Stress in the 20th Century and Pathways towards Sustainability. Sci. Rep. 2016, 6, 38495. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.-R.; Wang, X.; Ren, Z.J.; Hu, C.; Liu, J.; Butler, D. Characterization of Implementation Limits and Identification of Optimization Strategies for Sustainable Water Resource Recovery through Life Cycle Impact Analysis. Environ. Int. 2019, 133, 105266. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse Osmosis Desalination: Water Sources, Technology, and Today’s Challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef]
- Garc, L. Renewable Energy Applications in Desalination: State of the Art. Sol. Energy 2003, 75, 381–393. [Google Scholar]
- Asempour, F.; Akbari, S.; Kanani-Jazi, M.H.; Atashgar, A.; Matsuura, T.; Kruczek, B. Chlorine-Resistant TFN RO Membranes Containing Modified Poly (Amidoamine) Dendrimer-Functionalized Halloysite Nanotubes. J. Membr. Sci. 2021, 623, 119039. [Google Scholar] [CrossRef]
- Shi, M.; Wang, Z.; Zhao, S.; Wang, J.; Zhang, P.; Cao, X. A Novel Pathway for High Performance RO Membrane: Preparing Active Layer with Decreased Thickness and Enhanced Compactness by Incorporating Tannic Acid into the Support. J. Membr. Sci. 2018, 555, 157–168. [Google Scholar] [CrossRef]
- Yung, L.; Ma, H.; Wang, X.; Yoon, K.; Wang, R.; Hsiao, B.S.; Chu, B. Fabrication of Thin-Film Nanofibrous Composite Membranes by Interfacial Polymerization Using Ionic Liquids as Additives. J. Membr. Sci. 2010, 365, 52–58. [Google Scholar] [CrossRef]
- Wu, H.; Tang, B.; Wu, P. Optimizing Polyamide Thin Film Composite Membrane Covalently Bonded with Modified Mesoporous Silica Nanoparticles. J. Membr. Sci. 2013, 428, 341–348. [Google Scholar] [CrossRef]
- Košutić, K.; Kunst, B. RO and NF Membrane Fouling and Cleaning and Pore Size Distribution Variations. Desalination 2002, 150, 113–120. [Google Scholar] [CrossRef]
- Baudino, L.; Pedico, A.; Bianco, S.; Periolatto, M.; Pirri, C.F.; Lamberti, A. Crown-Ether Functionalized Graphene Oxide Membrane for Lithium Recovery from Water. Membranes 2022, 12, 233. [Google Scholar] [CrossRef]
- Yang, Q.; Sun, L.X.; Gao, W.T.; Zhu, Z.Y.; Gao, X.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Crown Ether-Based Anion Exchange Membranes with Highly Efficient Dual Ion Conducting Pathways. J. Colloid Interface Sci. 2021, 604, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, J.; Lin, H. Thermally Stable, Homogeneous Blends of Cross-Linked Poly (Ethylene Oxide) and Crown Ethers with Enhanced CO2 Permeability. J. Membr. Sci. 2020, 610, 118253. [Google Scholar] [CrossRef]
- Pan, X.; Wang, Q.; Ma, Z.; Qin, Y.; Lu, X.; Jin, W.; Zhu, Y. Assisting Role of Water Molecules in Ionic Recognition by 18-Crown-6 Ether in Aqueous Solutions. J. Mol. Liq. 2023, 371, 121127. [Google Scholar] [CrossRef]
- Li, L.; Liu, N.; McPherson, B.; Lee, R. Influence of Counter Ions on the Reverse Osmosis through MFI Zeolite Membranes: Implications for Produced Water Desalination. Desalination 2008, 228, 217–225. [Google Scholar] [CrossRef]
- Ling, R.; Shao, J.; Chen, J.P.; Reinhard, M. Iron Catalyzed Degradation of an Aromatic Polyamide Reverse Osmosis Membrane by Free Chlorine. J. Membr. Sci. 2019, 577, 205–211. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Wang, J. Lab-Scale and Pilot-Scale Fabrication of Amine-Functional Reverse Osmosis Membrane with Improved Chlorine Resistance and Antimicrobial Property. J. Membr. Sci. 2018, 554, 221–231. [Google Scholar] [CrossRef]
- Cunha, J.; Da Silva, M.P.; Beira, M.J.; Corvo, M.C.; Almeida, P.L.; Sebastião, P.J.; Figueirinhas, J.L.; De Pinho, M.N. Water Molecular Dynamics in the Porous Structures of Ultrafiltration/Nanofiltration Asymmetric Cellulose Acetate–Silica Membranes. Membranes 2022, 12, 1122. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, K.; Zhang, S.; Zhuo, L.; Sun, F.; Wang, C.; Li, Z.; He, Y.; Chen, Y.; Zhang, W.; et al. High-Performance Proton Exchange Membrane Derived from N-Heterocycle Poly (Aryl Ether Sulfone)s with Ether-Free Hydrophilic Blocks and Exhibiting Good Stability and Proton-Conducting Performance. J. Membr. Sci. 2025, 714, 123402. [Google Scholar] [CrossRef]
- Ma, J.; Li, X.; Zhang, X.; Sui, H.; He, L.; Wang, S. A Novel Oxygen-Containing Demulsifier for Efficient Breaking of Water-in-Oil Emulsions. Chem. Eng. J. 2020, 385, 123826. [Google Scholar] [CrossRef]
- Ormanci-Acar, T.; Mohammadifakhr, M.; Benes, N.E.; De Vos, W.M. Defect Free Hollow Fiber Reverse Osmosis Membranes by Combining Layer-by-Layer and Interfacial Polymerization. J. Membr. Sci. 2020, 610, 118277. [Google Scholar] [CrossRef]
- Cui, J.; Chen, Y.; Guo, P.; Su, W.; Xu, L.; Zhang, Y. Recycling End-of-Life RO Membranes for NF Membranes via Layer-by-Layer Assembly and Interfacial Polymerization. Ind. Eng. Chem. Res. 2023, 62, 9837–9848. [Google Scholar] [CrossRef]
- Liu, Z.; Qi, L.; An, X.; Liu, C.; Hu, Y. Surface Engineering of Thin Film Composite Polyamide Membranes with Silver Nanoparticles through Layer-by-Layer Interfacial Polymerization for Antibacterial Properties. ACS Appl. Mater. Interfaces 2017, 9, 40987–40997. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Yi, C.; Doherty, C.M.; Lin, L.; Xie, Z. A Crown Ether-Containing Copolyimide Membrane with Improved Free Volume for CO2 Separation. Ind. Eng. Chem. Res. 2019, 58, 14357–14367. [Google Scholar] [CrossRef]
- Wang, P.; Anderko, A.; Young, R.D. Modeling Electrical Conductivity in Concentrated and Mixed-Solvent Electrolyte Solutions. Ind. Eng. Chem. Res. 2004, 43, 8083–8092. [Google Scholar] [CrossRef]
- Dhevi, D.M.; Prabu, A.A.; Kim, K.J. Infrared Spectroscopic Studies on Crystalline Phase Transition of PVDF and PVDF/Hyperbranched Polyester Blend Ultrathin Films. Vib. Spectrosc. 2018, 94, 74–82. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.-L.; Guan, Y.; Zhu, C.; Gong, G.; Hu, Y. Novel RO Membranes Fabricated by Grafting Sulfonamide Group: Improving Water Permeability, Fouling Resistance and Chlorine Resistant Performance. J. Membr. Sci. 2022, 641, 119919. [Google Scholar] [CrossRef]
- Verbeke, R.; Gómez, V.; Vankelecom, I.F.J. Chlorine-Resistance of Reverse Osmosis (RO) Polyamide Membranes. Prog. Polym. Sci. 2017, 72, 1–15. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Z.; Yu, L.; Wang, J.; Wang, S. A Novel Reverse Osmosis Membrane with Regenerable Anti-Biofouling and Chlorine Resistant Properties. J. Membr. Sci. 2013, 435, 80–91. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, W.; Hung, W.; Wang, N.; Sun, J.; Lee, K.; An, Q.; Liu, C.; Zhao, Q. Phosphonium Modification Leads to Ultrapermeable Antibacterial Polyamide Composite Membranes with Unreduced Thickness. Adv. Mater. 2020, 32, 2001383. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Zhao, Q. A Nano-Heterogeneous Membrane for Efficient Separation of Lithium from High Magnesium/Lithium Ratio Brine. Adv. Funct. Mater. 2021, 31, 2009430. [Google Scholar] [CrossRef]
- Goh, P.S.; Lau, W.J.; Othman, M.H.D.; Ismail, A.F. Membrane Fouling in Desalination and Its Mitigation Strategies. Desalination 2018, 425, 130–155. [Google Scholar] [CrossRef]
- Deng, L.; Li, S.; Qin, Y.; Zhang, L.; Chen, H.; Chang, Z.; Hu, Y. Fabrication of Antifouling Thin-Film Composite Nanofiltration Membrane via Surface Grafting of Polyethyleneimine Followed by Zwitterionic Modification. J. Membr. Sci. 2021, 619, 118564. [Google Scholar] [CrossRef]
- Liu, Z.; An, X.; Dong, C.; Zheng, S.; Mi, B.; Hu, Y. Modification of Thin Film Composite Polyamide Membranes with 3D Hyperbranched Polyglycerol for Simultaneous Improvement in Their Filtration Performance and Antifouling Properties. J. Mater. Chem. A 2017, 5, 23190–23197. [Google Scholar] [CrossRef]
- Kang, G.; Liu, M.; Lin, B.; Cao, Y.; Yuan, Q. A Novel Method of Surface Modification on Thin-FIlm Composite Reverse Osmosis Membrane by Grafting Poly (Ethylene Glycol). Polymer 2007, 48, 1165–1170. [Google Scholar] [CrossRef]
- Asadollahi, M. Enhancement of Surface Properties and Performance of Reverse Osmosis Membranes after Surface Modification—A Review. Desalination 2017, 420, 330–383. [Google Scholar] [CrossRef]
- Zhou, Y.; Shi, Y.; Cai, D.; Yan, W.; Zhou, Y.; Gao, C. Support-Free Interfacial Polymerized Polyamide Membrane on a Macroporous Substrate to Reduce Internal Concentration Polarization and Increase Water Flux in Forward Osmosis. J. Membr. Sci. 2024, 689, 122165. [Google Scholar] [CrossRef]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A Review of Reverse Osmosis Membrane Materials for Desalination—Development to Date and Future Potential. J. Membr. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef]
C/N | C/H | N/H | Oxygen Content | |
---|---|---|---|---|
Theoretical ratio | 8.57 | 10.91 | 1.27 | 37.9% |
Actual ratio | 8.57 | 10.84 | 1.26 | 38% |
C/N | C/H | N/H | Oxygen Content | |
---|---|---|---|---|
Theoretical ratio | 8.57 | 9.23 | 1.08 | 26.5% |
Actual ratio | 8.57 | 9.22 | 1.08 | 26.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, L.; Lin, L.; Guo, J.; He, X.; Yi, C. Preparation of Crown Ether-Containing Polyamide Membranes via Interfacial Polymerization and Their Desalination Performance. Membranes 2025, 15, 77. https://doi.org/10.3390/membranes15030077
Xing L, Lin L, Guo J, He X, Yi C. Preparation of Crown Ether-Containing Polyamide Membranes via Interfacial Polymerization and Their Desalination Performance. Membranes. 2025; 15(3):77. https://doi.org/10.3390/membranes15030077
Chicago/Turabian StyleXing, Liqing, Liping Lin, Jiaxin Guo, Xinping He, and Chunhai Yi. 2025. "Preparation of Crown Ether-Containing Polyamide Membranes via Interfacial Polymerization and Their Desalination Performance" Membranes 15, no. 3: 77. https://doi.org/10.3390/membranes15030077
APA StyleXing, L., Lin, L., Guo, J., He, X., & Yi, C. (2025). Preparation of Crown Ether-Containing Polyamide Membranes via Interfacial Polymerization and Their Desalination Performance. Membranes, 15(3), 77. https://doi.org/10.3390/membranes15030077