Carbon Membranes Derived from Natural Polymer Precursors: Fundamentals, Developments, and Perspectives for Pervaporation Desalination
Abstract
1. Introduction
2. Membrane Separation and Carbon Membrane Fundamentals
2.1. Membrane Separation Technologies
2.2. Membrane Classification
2.2.1. Polymeric Membranes
| Materials | Technology Maturity | Applications | Advantages | Disadvantages |
|---|---|---|---|---|
| Cellulose acetate (CA) | Commercial | RO NF UF MF |
|
|
| Polysulfone (PSU), polyethersulfone (PES) | Under development | NF UF MF Gas separation |
|
|
| Polypropylene (PP) | Commercial | UF MF MD |
|
|
| Polyacrylonitrile (PAN) | Commercial | UF MF Pervaporation |
|
|
| Polyvinyl alcohol (PVA) | Under development | Pervaporation |
|
|
| Polyimides (PI) | Under development | Gas separation |
|
|
| Polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF) | Commercial | MD |
|
|
2.2.2. Inorganic Membranes
2.2.3. Mixed Matrix Membranes
2.3. Carbon Membranes
2.4. Formation Mechanism of Carbon Membranes
3. Natural Polymer Precursors for Carbon Membranes
3.1. Cellulose and Its Derivatives
3.2. Chitosan and Lignin
3.3. Starch and Related Polysaccharides
3.4. Carbonization Mechanisms and Structural Control
4. Pervaporation Desalination Using Carbon Membranes
4.1. Principles and Advantages of Pervaporation Desalination
4.2. Carbon Membranes for Pervaporation Desalination
5. Challenges and Future Perspectives
5.1. Scalability and Manufacturing Challenges
5.2. Structural Stability and Long-Term Durability
5.3. Data-Driven Design and Digitalization
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, P.; Date, A.; Shabani, B. Towards self-water-sufficient renewable hydrogen power supply systems by utilising electrolyser and fuel cell waste heat. Int. J. Hydrog. Energy 2025, 137, 380–396. [Google Scholar] [CrossRef]
- Traisak, O.; Kumar, P.; Vahaji, S.; Zhang, Y.H.; Date, A. Advancements in integrated thermoelectric power generation and water desalination technologies: A comprehensive review. Energies 2025, 18, 1454. [Google Scholar] [CrossRef]
- Ali, A.; Tufa, R.A.; Macedonio, F.; Curcio, E.; Drioli, E. Membrane technology in renewable-energy-driven desalination. Renew. Sustain. Energy Rev. 2018, 81, 1–21. [Google Scholar] [CrossRef]
- Shukla, B.K.; Parashar, B.; Patel, T.; Gupta, Y.; Verma, S.; Singh, S. Polymeric Membranes in Water Treatment: Insights into Contaminant Removal Mechanisms and Advanced Processes. Eng. Proc. 2025, 87, 69. [Google Scholar]
- Yacou, C.; Smart, S.; Diniz da Costa, J.C. Mesoporous TiO2 based membranes for water desalination and brine processing. Sep. Purif. Technol. 2015, 147, 166–171. [Google Scholar] [CrossRef]
- Elma, M.; Yacou, C.; Diniz da Costa, J.C.; Wang, D.K. Performance and Long Term Stability of Mesoporous Silica Membranes for Desalination. Membranes 2013, 3, 136–150. [Google Scholar] [CrossRef]
- Cho, C.H.; Oh, K.Y.; Kim, S.K.; Yeo, J.G.; Sharma, P. Pervaporative seawater desalination using NaA zeolite membrane: Mechanisms of high water flux and high salt rejection. J. Membr. Sci. 2011, 371, 226–238. [Google Scholar] [CrossRef]
- Song, Y.; Wang, D.K.; Birkett, G.; Martens, W.; Duke, M.C.; Smart, S.; Diniz da Costa, J.C. Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes. Sci. Rep. 2016, 6, 30703. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.; Campo, M.C.; Pacheco Tanaka, D.A.; Llosa Tanco, M.A.; Magen, C.; Mendes, A. Composite phenolic resin-based carbon molecular sieve membranes for gas separation. Carbon 2011, 49, 4348–4358. [Google Scholar] [CrossRef]
- Hamm, J.B.S.; Muniz, A.R.; Pollo, L.D.; Marcilio, N.R.; Tessaro, I.C. Experimental and computational analysis of carbon molecular sieve membrane formation upon polyetherimide pyrolysis. Carbon 2017, 119, 21–29. [Google Scholar] [CrossRef]
- Wang, C.; Ling, L.; Huang, Y.; Yao, Y.; Song, Q. Decoration of porous ceramic substrate with pencil for enhanced gas separation performance of carbon membrane. Carbon 2015, 84, 151–159. [Google Scholar] [CrossRef]
- Hou, M.; Li, L.; He, Z.; Xu, R.; Lu, Y.; Zhang, J.; Pan, Z.; Song, C.; Wang, T. High-performance carbon molecular sieving membrane derived from a novel hydroxyl-containing polyetherimide precursor for CO2 separations. J. Membr. Sci. 2022, 656, 120639. [Google Scholar] [CrossRef]
- Vatanpour, V.; Pasaoglu, M.E.; Kose-Mutlu, B.; Koyuncu, I. Polyacrylonitrile in the Preparation of Separation Membranes: A Review. Ind. Eng. Chem. Res. 2023, 62, 6537–6558. [Google Scholar] [CrossRef]
- Abd Jalil, S.N.; Wang, D.K.; Yacou, C.; Motuzas, J.; Smart, S.; Diniz da Costa, J.C. Vacuum-assisted tailoring of pore structures of phenolic resin derived carbon membranes. J. Membr. Sci. 2017, 525, 240–248. [Google Scholar] [CrossRef]
- He, L.; Li, D.; Zhang, G.; Webley, P.A.; Zhao, D.; Wang, H. Synthesis of Carbonaceous Poly(furfuryl alcohol) Membrane for Water Desalination. Ind. Eng. Chem. Res. 2010, 49, 4175–4180. [Google Scholar] [CrossRef]
- Sun, L.; Gong, Y.; Li, D.; Pan, C. Biomass-derived porous carbon materials: Synthesis, designing, and applications for supercapacitors. Green Chem. 2022, 24, 3864–3894. [Google Scholar] [CrossRef]
- Araújo, T.; Parnell, A.J.; Bernardo, G.; Mendes, A. Cellulose-based carbon membranes for gas separations—Unraveling structural parameters and surface chemistry for superior separation performance. Carbon 2023, 204, 398–410. [Google Scholar] [CrossRef]
- Rahmatunnisa, C.; Chaerun, R.I.; Budi, C.S.; Gultom, N.S. Transforming Chitosan into N-Doped Carbon for Efficient CO2 Capture: A comprehensive Review. Appl. Surf. Sci. Adv. 2025, 27, 100774. [Google Scholar] [CrossRef]
- Liu, S.; Wu, S.; Cheng, H. Preparation and characterization of lignin-derived nitrogen-doped hierarchical porous carbon for excellent toluene adsorption performance. Ind. Crops Prod. 2023, 192, 116120. [Google Scholar] [CrossRef]
- Khandaker, T.; Islam, T.; Nandi, A.; Anik, M.A.A.M.; Hossain, M.S.; Hasan, M.K.; Hossain, M.S. Biomass-derived carbon materials for sustainable energy applications: A comprehensive review. Sustain. Energy Fuels 2025, 9, 693–723. [Google Scholar] [CrossRef]
- Chen, X.; Eugene Chong, J.J.; Celine Fah, Z.W.; Hong, L. Glucose-derived carbon molecular sieve membrane: An inspiration from cooking. Carbon 2017, 111, 334–337. [Google Scholar] [CrossRef]
- Wu, T.; Wang, G.; Dong, Q.; Zhan, F.; Zhang, X.; Li, S.; Qiao, H.; Qiu, J. Starch Derived Porous Carbon Nanosheets for High-Performance Photovoltaic Capacitive Deionization. Environ. Sci. Technol. 2017, 51, 9244–9251. [Google Scholar] [CrossRef]
- Woranuch, S.; Pangon, A.; Puagsuntia, K.; Subjalearndee, N.; Intasanta, V. Starch-based and multi-purpose nanofibrous membrane for high efficiency nanofiltration. RSC Adv. 2017, 7, 35368–35375. [Google Scholar] [CrossRef]
- Khan, A.A.; Maitlo, H.A.; Khan, I.A.; Lim, D.; Zhang, M.; Kim, K.H.; Lee, J.; Kim, J.O. Metal oxide and carbon nanomaterial based membranes for reverse osmosis and membrane distillation: A comparative review. Environ. Res. 2021, 202, 111716. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.S.; Shim, C.E.; Kim, S.W.; Lee, C.S.; Kwon, J.; Byun, K.E.; Jeong, U. Amorphous carbon films for electronic applications. Adv. Mater. 2023, 35, e2204912. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cho, Y.W.; Woo, S.G.; Lee, J.N.; Lee, G.H. Advancements in chemical vapor deposited carbon films for secondary battery applications. Small 2025, 21, e2410570. [Google Scholar] [CrossRef]
- Lu, Y.M.; Wang, S.; Huang, G.J.; Xi, L.; Qin, G.H.; Zhu, M.Z.; Chu, H. Fabrication and applications of the optical diamond-like carbon films: A review. J. Mater. Sci. 2022, 57, 3971–3992. [Google Scholar] [CrossRef]
- Sazali, N. A review of the application of carbon-based membranes to hydrogen separation. J. Mater. Sci. 2020, 55, 11052–11070. [Google Scholar] [CrossRef]
- Yuan, Z.W.; Yu, Y.X.; Sui, X.; Yao, Y.Y.; Chen, Y. Carbon composite membranes for thermal-driven membrane processes. Carbon 2021, 179, 600–626. [Google Scholar] [CrossRef]
- Padaki, M.; Surya Murali, R.; Abdullah, M.S.; Misdan, N.; Moslehyani, A.; Kassim, M.A.; Hilal, N.; Ismail, A.F. Membrane technology enhancement in oil–water separation. A review. Desalination 2015, 357, 197–207. [Google Scholar] [CrossRef]
- Anis, S.F.; Hashaikeh, R.; Hilal, N. Microfiltration membrane processes: A review of research trends over the past decade. J. Water Process Eng. 2019, 32, 100941. [Google Scholar] [CrossRef]
- Shi, X.; Tal, G.; Hankins, N.P.; Gitis, V. Fouling and cleaning of ultrafiltration membranes: A review. J. Water Process Eng. 2014, 1, 121–138. [Google Scholar] [CrossRef]
- Mohammad, A.W.; Teow, Y.H.; Ang, W.L.; Chung, Y.T.; Oatley-Radcliffe, D.L.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015, 356, 226–254. [Google Scholar] [CrossRef]
- Lee, H.; Jin, Y.; Hong, S. Recent transitions in ultrapure water (UPW) technology: Rising role of reverse osmosis (RO). Desalination 2016, 399, 185–197. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, C.; Ling, Q.; Sang, L. Advances in pervaporation desalination based on polymer membranes. RSC Adv. 2025, 15, 20985–21005. [Google Scholar] [CrossRef]
- Drioli, E.; Ali, A.; Macedonio, F. Membrane distillation: Recent developments and perspectives. Desalination 2015, 356, 56–84. [Google Scholar] [CrossRef]
- Mulder, M. Basic Principles of Membrane Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Xie, Z.; Hoang, M.; Duong, T.; Ng, D.; Dao, B.; Gray, S. Sol–gel derived poly(vinyl alcohol)/maleic acid/silica hybrid membrane for desalination by pervaporation. J. Membr. Sci. 2011, 383, 96–103. [Google Scholar] [CrossRef]
- Chaudhri, S.G.; Chaudhari, J.C.; Singh, P.S. Fabrication of efficient pervaporation desalination membrane by reinforcement of poly(vinyl alcohol)–silica film on porous polysulfone hollow fiber. J. Appl. Polym. Sci. 2018, 135, 45718. [Google Scholar] [CrossRef]
- Lee, A.; Elam, J.W.; Darling, S.B. Membrane materials for water purification: Design, development, and application. Environ. Sci. Water Res. Technol. 2016, 2, 17–42. [Google Scholar] [CrossRef]
- Lalia, B.S.; Kochkodan, V.; Hashaikeh, R.; Hilal, N. A review on membrane fabrication: Structure, properties and performance relationship. Desalination 2013, 326, 77–95. [Google Scholar] [CrossRef]
- Kabsch-Korbutowicz, M.; Urbanowska, A. Comparison of polymeric and ceramic ultrafiltration membranes for separation of natural organic matter from water. Environ. Prot. Eng. 2010, 36, 125–135. [Google Scholar]
- Nunes, S.P. Block copolymer membranes for aqueous solution applications. Macromolecules 2016, 49, 2905–2916. [Google Scholar] [CrossRef]
- Werber, J.R.; Osuji, C.O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 16018. [Google Scholar] [CrossRef]
- Gryta, M. Influence of polypropylene membrane surface porosity on the performance of membrane distillation process. J. Membr. Sci. 2007, 287, 67–78. [Google Scholar] [CrossRef]
- Warsinger, D.M.; Chakraborty, S.; Tow, E.W.; Plumlee, M.H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A.M.; Achilli, A.; Ghassemi, A. A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 2018, 81, 209–237. [Google Scholar] [CrossRef]
- Thakur, V.K.; Voicu, S.I. Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydr. Polym. 2016, 146, 148–165. [Google Scholar] [CrossRef]
- Kayvani Fard, A.; McKay, G.; Buekenhoudt, A.; Al Sulaiti, H.; Motmans, F.; Khraisheh, M.; Atieh, M. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination. Materials 2018, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Athanasekou, C.P.; Romanos, G.E.; Katsaros, F.K.; Kordatos, K.; Likodimos, V.; Falaras, P. Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes. J. Membr. Sci. 2012, 392–393, 192–203. [Google Scholar] [CrossRef]
- Pizzoccaro-Zilamy, M.-A.; Huiskes, C.; Keim, E.G.; Sluijter, S.N.; van Veen, H.; Nijmeijer, A.; Winnubst, L.; Luiten-Olieman, M.W.J. New Generation of Mesoporous Silica Membranes Prepared by a Stöber-Solution Pore-Growth Approach. ACS Appl. Mater. Interfaces 2019, 11, 18528–18539. [Google Scholar] [CrossRef] [PubMed]
- Bowen, T.C.; Noble, R.D.; Falconer, J.L. Fundamentals and applications of pervaporation through zeolite membranes. J. Membr. Sci. 2004, 245, 1–33. [Google Scholar] [CrossRef]
- Ismail, A.F.; David, L. A review on the latest development of carbon membranes for gas separation. J. Membr. Sci. 2001, 193, 1–18. [Google Scholar] [CrossRef]
- Mallada, R.; Menéndez, M. Inorganic Membranes: Synthesis, Characterization and Applications; Elsevier: Amsterdam, The Netherlands, 2008; Volume 13. [Google Scholar]
- Lee, M.; Wu, Z.; Li, K. Advances in ceramic membranes for water treatment. In Advances in Membrane Technologies for Water Treatment; Elsevier: Amsterdam, The Netherlands, 2015; pp. 43–82. [Google Scholar]
- Goh, P.; Ismail, A.; Sanip, S.; Ng, B.; Aziz, M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 2011, 81, 243–264. [Google Scholar] [CrossRef]
- He, X.; Kumakiri, I. Carbon Membrane Technology: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Llosa Tanco, M.A.; Pacheco Tanaka, D.A. Recent Advances on Carbon Molecular Sieve Membranes (CMSMs) and Reactors. Processes 2016, 4, 29. [Google Scholar] [CrossRef]
- Tin, P.S.; Xiao, Y.; Chung, T.S. Polyimide-Carbonized Membranes for Gas Separation: Structural, Composition, and Morphological Control of Precursors. Sep. Purif. Rev. 2006, 35, 285–318. [Google Scholar] [CrossRef]
- Salleh, W.N.W.; Ismail, A.F. Carbon membranes for gas separation processes: Recent progress and future perspective. J. Membr. Sci. Res. 2015, 1, 2–15. [Google Scholar] [CrossRef]
- Widiastuti, N.; Widyanto, A.R.; Caralin, I.S.; Gunawan, T.; Wijiyanti, R.; Wan Salleh, W.N.; Ismail, A.F.; Nomura, M.; Suzuki, K. Development of a P84/ZCC Composite Carbon Membrane for Gas Separation of H2/CO2 and H2/CH4. ACS Omega 2021, 6, 15637–15650. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, B.; Yang, C.; Wu, Y. Fabrication of CeO2/carbon molecular sieving membranes for enhanced O2/N2 gas separation. Appl. Surf. Sci. 2024, 649, 159127. [Google Scholar] [CrossRef]
- Müller, E.A. Purification of water through nanoporous carbon membranes: A molecular simulation viewpoint. Curr. Opin. Chem. Eng. 2013, 2, 223–228. [Google Scholar] [CrossRef]
- Jang, M.-J.; Seo, H.; Koh, D.-Y. Separation of Liquid Xylene Isomers Using Thin-Film Composite Carbon Molecular Sieve Hollow Fiber Membranes. Ind. Eng. Chem. Res. 2024, 63, 12166–12176. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, Y.; Wang, H.; Yuan, J. Advanced Heteroatom-Doped Porous Carbon Membranes Assisted by Poly(ionic liquid) Design and Engineering. Acc. Mater. Res. 2020, 1, 16–29. [Google Scholar] [CrossRef]
- Kong, J.; Seyed Shahabadi, S.I.; Lu, X. Integration of inorganic nanostructures with polydopamine-derived carbon: Tunable morphologies and versatile applications. Nanoscale 2016, 8, 1770–1788. [Google Scholar] [CrossRef]
- Saufi, S.M.; Ismail, A.F. Fabrication of carbon membranes for gas separation––a review. Carbon 2004, 42, 241–259. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Q.; Zhang, B. Carbon Catalysis; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Min, Z.-h.; Cao, M.; Zhang, S.; Wang, X.-d.; Wang, Y.-g. Effect of precursor on the pore structure of carbon foams. New Carbon Mater. 2007, 22, 75–79. [Google Scholar] [CrossRef]
- Takeichi, T.; Yamazaki, Y.; Zuo, M.; Ito, A.; Matsumoto, A.; Inagaki, M. Preparation of porous carbon films by the pyrolysis of poly(urethane-imide) films and their pore characteristics. Carbon 2001, 39, 257–265. [Google Scholar] [CrossRef]
- Lu, A.; Kiefer, A.; Schmidt, W.; Schüth, F. Synthesis of Polyacrylonitrile-Based Ordered Mesoporous Carbon with Tunable Pore Structures. Chem. Mater. 2004, 16, 100–103. [Google Scholar] [CrossRef]
- Salleh, W.N.W.; Ismail, A.F.; Matsuura, T.; Abdullah, M.S. Precursor Selection and Process Conditions in the Preparation of Carbon Membrane for Gas Separation: A Review. Sep. Purif. Rev. 2011, 40, 261–311. [Google Scholar] [CrossRef]
- Grainger, D.; Hägg, M.-B. Evaluation of cellulose-derived carbon molecular sieve membranes for hydrogen separation from light hydrocarbons. J. Membr. Sci. 2007, 306, 307–317. [Google Scholar] [CrossRef]
- Lue, S.J.; Pai, Y.-L.; Shih, C.-M.; Wu, M.-C.; Lai, S.-M. Novel bilayer well-aligned Nafion/graphene oxide composite membranes prepared using spin coating method for direct liquid fuel cells. J. Membr. Sci. 2015, 493, 212–223. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, K.; Zhang, C.; Koros, W.J. Carbon molecular sieve hollow fiber membranes derived from dip-coated precursor hollow fibers comprising nanoparticles. J. Membr. Sci. 2022, 649, 120279. [Google Scholar] [CrossRef]
- Athayde, D.D.; Motuzas, J.; Diniz da Costa, J.C.; Vasconcelos, W.L. Novel two-step phase inversion and dry surface coated carbon membranes on alumina freeze-cast substrates for desalination. Desalination 2021, 500, 114862. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Nomura, T.; Sakoda, A.; Suzuki, M. Fabrication of carbon coated ceramic membranes by pyrolysis of methane using a modified chemical vapor deposition apparatus. J. Membr. Sci. 2002, 197, 23–35. [Google Scholar] [CrossRef]
- Li, H.; Yan, Q.; Li, J.; Qiu, J.; Zhang, H. Porous Carbon Materials: From Traditional Synthesis, Machine Learning-Assisted Design, to Their Applications in Advanced Energy Storage and Conversion. Adv. Funct. Mater. 2025, 35, 2504272. [Google Scholar] [CrossRef]
- Sun, X.; Li, R.; Zhang, B.; Wang, H.; Cheng, Y.; Guan, J.; Liu, Q.; Chen, X. Function–Structure–Synthesis: Machine Learning Enabled Closed-Loop Design of Biomass-Derived Porous Carbon Materials. ACS Sustain. Chem. Eng. 2025, 13, 7698–7709. [Google Scholar] [CrossRef]
- Ali, A.A.; Al-Othman, A.; Tawalbeh, M. Exploring natural polymers for the development of proton exchange membranes in fuel cells. Process Saf. Environ. Prot. 2024, 189, 1379–1401. [Google Scholar] [CrossRef]
- Priya, G.; Shanthi, N.; Pavithra, S.; Sangeetha, S.; Murugesan, S.; Shyamalagowri, S. Modern analytical approach in biopolymer characterization. Phys. Sci. Rev. 2024, 9, 1149–1170. [Google Scholar] [CrossRef]
- Jin, J.; Ma, H.; Liang, H.; Zhang, Y. Biopolymer-Derived Carbon Materials for Wearable Electronics. Adv. Mater. 2025, 37, 2414620. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.; Lie, J.A.; Lindbråthen, A.; Hägg, M.-B. Pilot–Scale Production of Carbon Hollow Fiber Membranes from Regenerated Cellulose Precursor-Part I: Optimal Conditions for Precursor Preparation. Membranes 2018, 8, 105. [Google Scholar] [CrossRef]
- Ismail, A.F.; Rana, D.; Matsuura, T.; Foley, H.C. Carbon-Based Membranes for Separation Processes; Springer Science & Business Media: Heidelberg, Germany, 2011. [Google Scholar]
- Lie, J.A.; Hägg, M.-B. Carbon membranes from cellulose and metal loaded cellulose. Carbon 2005, 43, 2600–2607. [Google Scholar] [CrossRef]
- Araújo, T.; Bernardo, G.; Mendes, A. Cellulose-Based Carbon Molecular Sieve Membranes for Gas Separation: A Review. Molecules 2020, 25, 3532. [Google Scholar] [CrossRef]
- Min, H.; Zhang, K.; Guo, Z.; Chi, F.; Fu, L.; Li, B.; Qiao, X.; Wang, S.; Cao, S.; Wang, B. N-rich chitosan-derived porous carbon materials for efficient CO2 adsorption and gas separation. Front. Chem. 2023, 11, 1333475. [Google Scholar] [CrossRef]
- Chen, X.; Oh, W.-D.; Zhang, P.-H.; Webster, R.D.; Lim, T.-T. Surface construction of nitrogen-doped chitosan-derived carbon nanosheets with hierarchically porous structure for enhanced sulfacetamide degradation via peroxymonosulfate activation: Maneuverable porosity and active sites. Chem. Eng. J. 2020, 382, 122908. [Google Scholar] [CrossRef]
- Li, H.; Wei, Z.; Xia, Y.; Han, J.; Li, X. Chitosan derived carbon membranes as protective layers on zinc anodes for aqueous zinc batteries. Int. J. Miner. Metall. Mater. 2023, 30, 621–629. [Google Scholar] [CrossRef]
- Zhang, W.; Qiu, X.; Wang, C.; Zhong, L.; Fu, F.; Zhu, J.; Zhang, Z.; Qin, Y.; Yang, D.; Xu, C.C. Lignin derived carbon materials: Current status and future trends. Carbon Res. 2022, 1, 14. [Google Scholar] [CrossRef]
- Kita, H.; Nanbu, K.; Hamano, T.; Yoshino, M.; Okamoto, K.-i.; Funaoka, M. Carbon Molecular Sieving Membranes Derived from Lignin-Based Materials. J. Polym. Environ. 2002, 10, 69–75. [Google Scholar] [CrossRef]
- Srikaeo, K. Starch: Introduction and Structure–Property Relationships; The Royal Society of Chemistry: London, UK, 2015. [Google Scholar]
- Chisenga, S.M.; Workneh, T.S.; Bultosa, G.; Alimi, B.A. Progress in research and applications of cassava flour and starch: A review. J. Food Sci. Technol. 2019, 56, 2799–2813. [Google Scholar] [CrossRef]
- Sui, Z.; Kong, X. Physical Modifications of Starch; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Ilias, H.M.; Othman, S.H.; Shapi’i, R.A.; Yunos, K.F.M. Starch/chitosan nanoparticles bionanocomposite membranes for methylene blue dye removal. Nanotechnology 2024, 35, 335704. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Tang, Q.; Li, J.; Dou, X.; Gou, D.; Liu, T. Starch–chitosan composite films for the effective removal of protein in water. Biomass Convers. Biorefinery 2024, 14, 16403–16413. [Google Scholar] [CrossRef]
- Shi, R.; Zhu, A.; Chen, D.; Jiang, X.; Xu, X.; Zhang, L.; Tian, W. In vitro degradation of starch/PVA films and biocompatibility evaluation. J. Appl. Polym. Sci. 2010, 115, 346–357. [Google Scholar] [CrossRef]
- Moradi, E.; Ebrahimzadeh, H.; Mehrani, Z.; Asgharinezhad, A.A. The efficient removal of methylene blue from water samples using three-dimensional poly (vinyl alcohol)/starch nanofiber membrane as a green nanosorbent. Environ. Sci. Pollut. Res. 2019, 26, 35071–35081. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y. Starch-Derived Carbon Membranes for Saline Pervaporation. Ph.D. Thesis, School of Chemical Engineering, The University of Queensland, Brisbane, Australia, 2022. [Google Scholar]
- Darmawan, A.; Nurfadila, H.U.; Wahyuni, A.S.; Muhtar, H.; Astuti, Y. Sucrose-derived carbon membranes for sustainable water desalination. J. Coat. Technol. Res. 2024, 21, 979–991. [Google Scholar] [CrossRef]
- Nakamura, Y.; Matsushita, S.; Nakajima, A.; Isobe, T. Preparation of amorphous carbon membranes synthesized via a glucose-solution hydrothermal method. Ceram. Int. 2023, 49, 9932–9939. [Google Scholar] [CrossRef]
- Kartal, F.; Dalbudak, Y.; Özveren, U. Prediction of thermal degradation of biopolymers in biomass under pyrolysis atmosphere by means of machine learning. Renew. Energy 2023, 204, 774–787. [Google Scholar] [CrossRef]
- Ronsse, F.; Nachenius, R.W.; Prins, W. Chapter 11—Carbonization of Biomass. In Recent Advances in Thermo-Chemical Conversion of Biomass; Pandey, A., Bhaskar, T., Stöcker, M., Sukumaran, R.K., Eds.; Elsevier: Boston, MA, USA, 2015; pp. 293–324. [Google Scholar]
- Zhang, B.; Jiang, Y.; Balasubramanian, R. Synthesis, formation mechanisms and applications of biomass-derived carbonaceous materials: A critical review. J. Mater. Chem. A 2021, 9, 24759–24802. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J.M.; Jeon, Y.; Lee, J.; Oh, J.; Antink, W.H.; Kim, D.; Piao, Y. Novel two-step activation of biomass-derived carbon for highly sensitive electrochemical determination of acetaminophen. Sens. Actuators B Chem. 2018, 259, 50–58. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, X.; Kang, Y.; Zhang, J. Biomass-derived carbon sorbents for Cd (II) removal: Activation and adsorption mechanism. ACS Sustain. Chem. Eng. 2017, 5, 4103–4109. [Google Scholar] [CrossRef]
- Jin, Z.; Yan, X.; Yu, Y.; Zhao, G. Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. J. Mater. Chem. A 2014, 2, 11706–11715. [Google Scholar] [CrossRef]
- Mukherjee, M.; Roy, S.; Bhowmick, K.; Majumdar, S.; Prihatiningtyas, I.; Van der Bruggen, B.; Mondal, P. Development of high performance pervaporation desalination membranes: A brief review. Process Saf. Environ. Prot. 2022, 159, 1092–1104. [Google Scholar] [CrossRef]
- Li, Y.; Thomas, E.R.; Molina, M.H.; Mann, S.; Walker, W.S.; Lind, M.L.; Perreault, F. Desalination by membrane pervaporation: A review. Desalination 2023, 547, 116223. [Google Scholar] [CrossRef]
- Prihatiningtyas, I.; Al-Kebsi, A.-H.A.H.; Hartanto, Y.; Zewdie, T.M.; Van der Bruggen, B. Techno-economic assessment of pervaporation desalination of hypersaline water. Desalination 2022, 527, 115538. [Google Scholar] [CrossRef]
- Darmawan, A.; Miftiyati, S.D.; Azmiyawati, C. Synthesis of Carbon Membranes Using Sorbitol as a Carbon Source for Desalination Applications. J. Mater. Eng. Perform. 2024, 33, 10024–10034. [Google Scholar] [CrossRef]
- Yang, H.; Elma, M.; Wang, D.K.; Motuzas, J.; Diniz da Costa, J.C. Interlayer-free hybrid carbon-silica membranes for processing brackish to brine salt solutions by pervaporation. J. Membr. Sci. 2017, 523, 197–204. [Google Scholar] [CrossRef]
- Yang, G.; Xie, Z.; Cran, M.; Ng, D.; Gray, S. Enhanced desalination performance of poly (vinyl alcohol)/carbon nanotube composite pervaporation membranes via interfacial engineering. J. Membr. Sci. 2019, 579, 40–51. [Google Scholar] [CrossRef]
- Liang, B.; Li, Q.; Cao, B.; Li, P. Water permeance, permeability and desalination properties of the sulfonic acid functionalized composite pervaporation membranes. Desalination 2018, 433, 132–140. [Google Scholar] [CrossRef]
- Cao, Z.; Zeng, S.; Xu, Z.; Arvanitis, A.; Yang, S.; Gu, X.; Dong, J. Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines. Sci. Adv. 2018, 4, eaau8634. [Google Scholar] [CrossRef]
- Darmawan, A.; Munzakka, L.; Karlina, L.; Saputra, R.E.; Sriatun, S.; Astuti, Y.; Wahyuni, A.S. Pervaporation membrane for desalination derived from tetraethylorthosilicate-methyltriethoxysilane. J. Sol-Gel Sci. Technol. 2022, 101, 505–518. [Google Scholar] [CrossRef]
- Liu, G.; Shen, J.; Liu, Q.; Liu, G.; Xiong, J.; Yang, J.; Jin, W. Ultrathin two-dimensional MXene membrane for pervaporation desalination. J. Membr. Sci. 2018, 548, 548–558. [Google Scholar] [CrossRef]
- Yang, L.; Feng, L.; Liu, B.; Fang, Q.; Zhou, K. Seawater pervaporation through carbon honeycomb membrane: A molecular dynamics study. Desalination 2023, 565, 116889. [Google Scholar] [CrossRef]
- Maniscalco, M.P.; Volpe, M.; Messineo, A. Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review. Energies 2020, 13, 4098. [Google Scholar] [CrossRef]
- Paramasivan, B. Microwave assisted carbonization and activation of biochar for energy-environment nexus: A review. Chemosphere 2022, 286, 131631. [Google Scholar] [CrossRef]
- Cao, Z.; Barati Farimani, O.; Ock, J.; Barati Farimani, A. Machine learning in membrane design: From property prediction to AI-guided optimization. Nano Lett. 2024, 24, 2953–2960. [Google Scholar] [CrossRef]
- Ahmad, U.; Abdala, A.; Ng, K.C.; Akhtar, F.H. Machine learning-driven design of membranes for saline and produced water treatment across scales. Environ. Sci. Water Res. Technol. 2025, 11, 2080–2099. [Google Scholar] [CrossRef]
- Gungormus, E. Data driven modeling and design of cellulose acetate-polysulfone blend ultrafiltration membranes based on Artificial Neural Networks. J. Environ. Chem. Eng. 2025, 13, 116337. [Google Scholar] [CrossRef]





| Membrane Types | Technology Maturity | Applications | Advantages | Disadvantages |
|---|---|---|---|---|
| Metallic membranes (mostly Pd-based membranes) | Under development | Separation of hydrogen |
|
|
| Ceramic membranes | Commercial | UF MF Gas separation Membrane reactor |
|
|
| Glass membranes | Commercial | Gas separation Membrane reactor Pervaporation |
|
|
| Carbon membranes | Under development | Gas separation |
|
|
| Zeolitic membranes | Under development | RO Gas separation Pervaporation |
|
|
| Membrane Type | Feed | Temp. (°C) | Water Flux (L/m2/h) | Salt Rejection (%) | Ref. |
|---|---|---|---|---|---|
| Starch-derived carbon membrane | 1 wt% NaCl | 70 | 4.98 | 92.6 | [98] |
| Sucrose-derived carbon membrane | 1~7 wt% NaCl | 60 | 7~23 | ≥97 | [99] |
| Sorbitol-derived carbon membrane | 3.5 wt% NaCl | 60 | 17.35 | >99.9 | [110] |
| Phenolic resin-derived carbon membrane | 1–5 wt% NaCl | 75 | 14.6 | 99 | [75] |
| Carbon–silica hybrid membrane | 1 wt% NaCl | 60 | 26.5 | 99.5 | [111] |
| PVA/CNT composite membrane | 3.5 wt% NaCl | 22 | 6.96 | 99.91 | [112] |
| Sulfonic acid functionalized PVA/PAN composite membrane | 3.5 wt% NaCl | 70 | 46.3 | 99.8 | [113] |
| ZSM-5 thin membrane | 3 wt% NaCl | 80 | 10.4 | 99.5 | [114] |
| TEOS-MTES silica membrane | 1 wt% NaCl | 30 | 2 | 98 | [115] |
| Ultrathin MXene membrane | 3.5 wt% NaCl | 60 | 85.4 | 99.5 | [116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Wang, F.; Yu, Y.; Qin, Z.; Xi, H.; Wu, C. Carbon Membranes Derived from Natural Polymer Precursors: Fundamentals, Developments, and Perspectives for Pervaporation Desalination. Membranes 2025, 15, 354. https://doi.org/10.3390/membranes15120354
Yuan Y, Wang F, Yu Y, Qin Z, Xi H, Wu C. Carbon Membranes Derived from Natural Polymer Precursors: Fundamentals, Developments, and Perspectives for Pervaporation Desalination. Membranes. 2025; 15(12):354. https://doi.org/10.3390/membranes15120354
Chicago/Turabian StyleYuan, Yue, Fang Wang, Yin Yu, Zhikai Qin, Hongbo Xi, and Changyong Wu. 2025. "Carbon Membranes Derived from Natural Polymer Precursors: Fundamentals, Developments, and Perspectives for Pervaporation Desalination" Membranes 15, no. 12: 354. https://doi.org/10.3390/membranes15120354
APA StyleYuan, Y., Wang, F., Yu, Y., Qin, Z., Xi, H., & Wu, C. (2025). Carbon Membranes Derived from Natural Polymer Precursors: Fundamentals, Developments, and Perspectives for Pervaporation Desalination. Membranes, 15(12), 354. https://doi.org/10.3390/membranes15120354

