Advancements and Applications of Artificial Intelligence and Machine Learning in Material Science and Membrane Technology: A Comprehensive Review
Abstract
1. Introduction
2. Literature Search Methodology
3. AI and ML Paradigms and Their Roles in Membrane Technology
| ML Model | Learning Type | Membrane Application | Input Features | Output | Performance Metrics | Ref. |
|---|---|---|---|---|---|---|
| Random Forest | Supervised (Regression) | Predicting water flux in osmotic membrane bioreactor (OMBR) | Phosphate, MLSS, TOC, NH4, Influent phosphate | Water flux | R2 = 0.987, RMSE = 0.044 | [77] |
| XGBoost | Supervised (Regression) | Prediction of organic contaminant rejection rate in nanofiltration (NF) and reverse osmosis (RO) membranes | MWCO, molecular weight (MW), McGowan volume (V), contact angle (CA), total charge (TC), pressure (P), initial concentration (Cin), pH, hydrogen bond basicity (B), and time (T) | Rejection rate (%) | R2_adj = 99.5%, R2_ext = 87.3%, RMSE = 1.674, MAE = 1.065 | [78] |
| CatBoost | Supervised (Regression) | Prediction of water permeability (A) in RO membranes | Membrane composition (structure, chemistry, modification), concentration polarization modulus (CP), and pressure difference (ΔP) | Water Permeability (A, L·m−2·h−1·bar−1) | R2_adj = 0.925, MAE = 0.246 | [79] |
| Extremely Randomized Trees (ET) | Supervised (Regression) | Prediction of solute permeability (B) in RO membranes | Membrane composition, R_real, and CP | Solute permeability (B, L·m−2·h−1) | R2_adj = 0.986, MAE = 0.069 | [79] |
| Logistic Regression | Supervised (Classification) | Predictive classification of pore size in regenerated cellulose (RC) membranes using AFM data | AFM surface parameters (pore radius, scan area, skewness, kurtosis, Fourier-fit data, imaging mode: tapping/fluid) | Pore size class (50 kDa, 100 kDa, 1000 kDa) | AUC = 0.83 (tapping), 0.76 (fluid); Accuracy ≈ 76–77% | [80] |
| Random Forest | Supervised (Regression) | Quantitative prediction of protein adsorption (BSA, lysozyme) on polymer brush surfaces | Polymer brush thickness (nm), water contact angle (°), ζ potential (mV), and molecular descriptors (hydrophobicity, polarity, and surface charge parameters) | Adsorption amount (ng/cm2) for BSA and lysozyme | R2 = 0.94 (BSA); lower accuracy for lysozyme | [81] |
| Random Forest | Supervised (Regression) | Prediction of Affinity Energy between human serum proteins and hemodialysis membrane materials | 12 molecular descriptors (e.g., number of atoms, carbon, nitrogen, oxygen, sulfur, MW, aromatic rings, charged groups, H-bond donors/acceptors, protein type indicators) | Affinity Energy (kcal/mol) | R2 = 0.8987, MSE = 0.36, MAE = 0.45 | [82] |
| Gaussian Mixture Model (GMM) + Principal Component Analysis (PCA) | Unsupervised (Clustering) | Morphology clustering of polyamide membranes | TEM morphology shape fingerprints | Morphology clusters | BIC used for cluster validation | [83] |
| Proximal Policy Optimization (PPO) − Deep Reinforcement Learning (DRL) with LSTM environment | Reinforcement Learning (Process control and dynamic optimization) | Ultrafiltration system operation optimization | Feed pressure, cleaning time, cleaning concentration, and system states (flux, turbidity, conductivity, temperature) | Optimized operating policy to maximize water flux and reduce energy consumption | Reduction in specific energy consumption (SEC) by 20.9%, with average flux increased (39.5 → 43.7 L·m−2·h−1) | [84] |
| CNN | Deep Learning (Supervised Regression) | Prediction of membrane fouling | Hyperspectral image data | Fouling indices | R2 = 0.71; MSE = 435.21 | [87] |
| BPNN | Supervised (Regression) | Prediction of Unified Membrane Fouling Index (UMFI) | UV–Vis and EEM fluorescence, and synchrotron fluorescence spectra | UMFI (fouling potential) | R2 = 0.965, RMSE = 0.002 | [88] |

4. AI and ML in the Membrane Fabrication
5. AI and ML for Membrane Process Modeling and Simulation
6. AI and ML for Membrane Fouling Detection and Control
7. AI and ML in Membrane Characterization and Design
8. Challenges and Future Directions: AI and ML in Membrane Science
- Data Quality and Availability: AI and ML algorithms are heavily reliant on large, high-quality datasets for training and validation. In membrane engineering, experimental data on permeability, selectivity, fouling resistance, and material composition are often scarce or inconsistently reported. The labor-intensive nature of membrane characterization (e.g., SEM, FTIR, AFM, zeta potential measurements) further limits dataset generation. Hence, the development of standardized data formats, membrane-specific open-access repositories, and strategies for data augmentation and fusion (e.g., combining simulation and experimental data) is urgently needed [147].
- Model Validation and Interpretation: While ML models can effectively capture the nonlinear behavior of membrane performance (e.g., flux versus pressure, solute rejection versus pore size), their “black box” nature often hinders adoption in engineering design. In membrane development, interpretability is essential to understand structure–property relationships. As such, rigorous validation using membrane module testing, cross-lab reproducibility, and explainable AI (XAI) approaches are critical to ensure trustworthiness and facilitate regulatory or industrial adoption [148].
- Integration of Domain Knowledge: While AI and ML methods can learn from data without prior knowledge or assumptions, they can also benefit from incorporating domain knowledge and physical laws into their models. Membrane systems are governed by complex physical and chemical phenomena such as Donnan exclusion, concentration polarization, and hydrodynamic shear stress. Hybrid ML models that incorporate transport equations, sorption models, or empirical correlations can improve generalization, especially under extrapolative conditions. Embedding such physics-informed priors or constraints can also reduce the need for large datasets and prevent overfitting in membrane-specific applications.
- Generative Models: AI and ML methods are commonly used for predictive and descriptive modeling to infer outputs from inputs or identify patterns in data. Recently, generative approaches—such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs)—have emerged as powerful tools for inverse design, enabling the creation of novel membrane materials or surface modifications that have not yet been experimentally tested. These models can accelerate the discovery of membranes with tailored physicochemical properties, such as enhanced antifouling resistance, improved selectivity, or tunable hydrophilicity, by efficiently exploring the material design space beyond the limitations of conventional trial-and-error experimentation [149].
- Optimization Methods: AI and ML techniques can be used to solve complex optimization problems by identifying optimal solutions under specific objectives and constraints. In membrane engineering, these methods can assist in optimizing fabrication parameters—such as solvent ratios, casting speed, and annealing temperature—as well as operational conditions, including pressure cycles, cleaning intervals, and feed temperature. Additionally, optimization algorithms (e.g., Bayesian optimization, evolutionary algorithms) can be employed to tune hyperparameters or architectures of predictive models, thereby improving generalization and model performance. These approaches are particularly valuable for addressing nonlinear, multi-objective optimization challenges commonly encountered in membrane material design and process development. In addition to these directions, promising strategies include Hybrid modeling that combines AI/ML with classical transport models (e.g., solution-diffusion or pore flow) to achieve both predictive accuracy and interpretability/Active learning frameworks that can reduce the experimental burden by selecting the most informative data points—especially useful in fouling studies or degradation scenarios where data collection is time-intensive.
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakraborty, T.; Yadav, D.; Bedar, A.; Joshi, R.; Pandey, M.K.; Saxena, S.; Shukla, S. Modified PVDF ultrafiltration membrane with host–guest supramolecular trapping for efficient separation of multiple organic contaminants. Sep. Purif. Technol. 2025, 356, 129725. [Google Scholar] [CrossRef]
- Saxena, A.; Panday, D.P.; Kumar, M. Modern Water Treatment and Technological Solutions. In Water Scarcity Management: Enabling Technologies; John Wiley & Sons: Hoboken, NJ, USA, 2025; pp. 225–234. [Google Scholar]
- Gavrilaș, S. Nanomembranes as Eco-Friendly Instruments for Modern Food Processing, from Filtration to Packaging. Membranes 2025, 15, 167. [Google Scholar] [CrossRef] [PubMed]
- Martingo, M.L.; Baptista-Silva, S.; Pintado, M.; Borges, S. A new vision upon hemodialysis: A shift from synthetic to sustainable chitosan membranes. Biomed. Eng. Adv. 2025, 9, 100175. [Google Scholar] [CrossRef]
- Aquino, M.; Santoro, S.; Avci, A.H.; Tufa, R.A.; Bouzek, K.; Straface, S.; La Russa, M.F.; Davoli, M.; Politano, A.; Politano, G.G. Asymmetric sulfonated polysulfone cation exchange membranes prepared by non-solvent induced phase separation for reverse electrodialysis using desalination brines. Electrochim. Acta 2025, 541, 147292. [Google Scholar] [CrossRef]
- Kiamehr, Z.; Shafiee, M.; Shokri, B.; Razavi Rad, S.A. Investigating the effect of plasma irradiation of diamond-like carbon nanostructures on the separation performance of membranes based on PES, PP and PVDF. J. Mod. Res. Phys. 2025, 10, 1–12. [Google Scholar]
- Lei, M.H.; Gao, D.L.; Zhang, Y.Y.; Qin, N.; Xiang, P.; Huang, X.; Xu, L.N.; Chen, J.H.; Yang, Q. Efficient separation of phosphate ions from water across a wide pH range using a triphenylamine-p-phenylenediamine/TMC composite membrane. Appl. Surf. Sci. 2025, 717, 164855. [Google Scholar]
- Zaman, S.U.; Mehdi, M.S. Dialysis treatment, in vitro, and anticoagulation activity of polysulfone-polyacrylamide based-blend membranes: An experimental study. J. Biomater. Sci. Polym. Ed. 2025, 36, 169–190. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Tian, R.; Li, Y.; Pranantyo, D.; Sun, L.; Chen, L.; Xia, F. Recent Progress in Polyamide Membranes: Strategies for Enhancing Ion-Sieving Performance. Adv. Mater. Technol. 2025, 10, e00048. [Google Scholar] [CrossRef]
- Fu, W.; Hu, M.; Liu, J.; Deng, L.; Guan, K.; Gonzales, R.R.; Fang, S.; Wang, Z.; Shi, Y.; Xiang, S. Surface polarity modulation enables high-performance polyamide membranes for separation of polar/non-polar organic solvent mixtures. J. Membr. Sci. 2024, 704, 122901. [Google Scholar] [CrossRef]
- Arundhathi, B.; Pabba, M.; Raj, S.S.; Sahu, N.; Sridhar, S. Advancements in mixed-matrix membranes for various separation applications: State of the art and future prospects. Membranes 2024, 14, 224. [Google Scholar] [CrossRef]
- Noorani, N.; Mehrdad, A.; Fatehi-Mollayousef, A.; Niaei, A. The advancements in mixed matrix membranes containing MOFs and ionic liquids for CO2/N2 separation. Sci. Rep. 2025, 15, 26271. [Google Scholar] [CrossRef]
- Kravets, L.; Vinogradov, I.; Rossouw, A.; Gorberg, B.; Nechaev, A.; Apel, P. Functionalization of PET track-etched membranes with electrospun PVDF nanofibers for hybrid membranes fabrication in water desalination. Sep. Purif. Technol. 2025, 371, 133395. [Google Scholar] [CrossRef]
- Oxley, A.; Livingston, A.G. Effect of polymer molecular weight on the long-term process stability of crosslinked polybenzimidazole organic solvent nanofiltration (OSN) membranes. J. Membr. Sci. 2024, 689, 122149. [Google Scholar] [CrossRef]
- Wang, Z.; Shao, Y.; Wang, T.; Zhang, J.; Cui, Z.; Guo, J.; Li, S.; Chen, Y. Janus membranes with asymmetric superwettability for high-performance and long-term on-demand oil/water emulsion separation. ACS Appl. Mater. Interfaces 2024, 16, 15558–15568. [Google Scholar] [CrossRef]
- Gao, J.; Song, Y.; Jia, C.; Sun, L.; Wang, Y.; Wang, Y.; Kipper, M.J.; Huang, L.; Tang, J. A comprehensive review of recent developments and challenges for gas separation membranes based on two-dimensional materials. FlatChem 2024, 43, 100594. [Google Scholar] [CrossRef]
- Liu, L.; Ma, H.; Khan, M.; Hsiao, B.S. Recent advances and challenges in anion exchange membranes development/application for water electrolysis: A review. Membranes 2024, 14, 85. [Google Scholar] [CrossRef] [PubMed]
- DebRoy, T.; Wei, H.; Zuback, J.; Mukherjee, T.; Elmer, J.; Milewski, J.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components–process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Du Plessis, A.; Razavi, S.M.J.; Benedetti, M.; Murchio, S.; Leary, M.; Watson, M.; Bhate, D.; Berto, F. Properties and applications of additively manufactured metallic cellular materials: A review. Prog. Mater. Sci. 2022, 125, 100918. [Google Scholar] [CrossRef]
- Smith, W.F.; Hashemi, J.; Presuel-Moreno, F. Foundations of Materials Science and Engineering; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Stoll, A.; Benner, P. Machine learning for material characterization with an application for predicting mechanical properties. GAMM-Mitteilungen 2021, 44, e202100003. [Google Scholar] [CrossRef]
- Qi, D.; Liu, Y.; Liu, Y.; Liu, Z.; Luo, Y.; Xu, H.; Zhou, X.; Zhang, J.; Yang, H.; Wang, W. Polymeric membranes with selective solution-diffusion for intercepting volatile organic compounds during solar-driven water remediation. Adv. Mater. 2020, 32, 2004401. [Google Scholar] [CrossRef]
- Obotey Ezugbe, E.; Rathilal, S. Membrane technologies in wastewater treatment: A review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Issaoui, M.; Jellali, S.; Zorpas, A.A.; Dutournie, P. Membrane technology for sustainable water resources management: Challenges and future projections. Sustain. Chem. Pharm. 2022, 25, 100590. [Google Scholar] [CrossRef]
- Baker, R.W. Membrane Technology and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Adam, M.R.; Othman, M.H.D.; Kurniawan, T.A.; Puteh, M.H.; Ismail, A.; Khongnakorn, W.; Rahman, M.A.; Jaafar, J. Advances in adsorptive membrane technology for water treatment and resource recovery applications: A critical review. J. Environ. Chem. Eng. 2022, 10, 107633. [Google Scholar] [CrossRef]
- Ali, A.; Tufa, R.A.; Macedonio, F.; Curcio, E.; Drioli, E. Membrane technology in renewable-energy-driven desalination. Renew. Sustain. Energy Rev. 2018, 81, 1–21. [Google Scholar] [CrossRef]
- Voutchkov, N. Energy use for membrane seawater desalination–current status and trends. Desalination 2018, 431, 2–14. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, K.; Bagheri, M.; Burken, J.G.; Gu, A.; Li, B.; Ma, X.; Marrone, B.L.; Ren, Z.J.; Schrier, J. Machine learning: New ideas and tools in environmental science and engineering. Environ. Sci. Technol. 2021, 55, 12741–12754. [Google Scholar] [CrossRef]
- Yin, H.; Xu, M.; Luo, Z.; Bi, X.; Li, J.; Zhang, S.; Wang, X. Machine learning for Membrane Design and Discovery. Green Energy Environ. 2022, 9, 54–70. [Google Scholar] [CrossRef]
- Xue, K.; Wang, F.; Suwardi, A.; Han, M.-Y.; Teo, P.; Wang, P.; Wang, S.; Ye, E.; Li, Z.; Loh, X.J. Biomaterials by design: Harnessing data for future development. Mater. Today Bio 2021, 12, 100165. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y. Data-Driven Computational Design and Discovery of Antifouling Materials and Amyloid Inhibitors; The University of Akron: Akron, OH, USA, 2021. [Google Scholar]
- Guan, Y.; Chaffart, D.; Liu, G.; Tan, Z.; Zhang, D.; Wang, Y.; Li, J.; Ricardez-Sandoval, L. Machine learning in solid heterogeneous catalysis: Recent developments, challenges and perspectives. Chem. Eng. Sci. 2022, 248, 117224. [Google Scholar] [CrossRef]
- Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555. [Google Scholar] [CrossRef]
- Nash, W.; Drummond, T.; Birbilis, N. A review of deep learning in the study of materials degradation. npj Mater. Degrad. 2018, 2, 37. [Google Scholar] [CrossRef]
- Wang, M.; Wang, T.; Cai, P.; Chen, X. Nanomaterials discovery and design through machine learning. Small Methods 2019, 3, 1900025. [Google Scholar] [CrossRef]
- Wei, J.; Sun, G.; Zhao, L.; Yang, X.; Liu, X.; Lin, D.; Li, T.; Ma, X. Analysis of hair cortisol level in first-episodic and recurrent female patients with depression compared to healthy controls. J. Affect. Disord. 2015, 175, 299–302. [Google Scholar] [CrossRef]
- WU, W.; SUN, Q. Applying machine learning to accelerate new materials development. Sci. Sin. Phys. Mech. Astron. 2018, 48, 107001. [Google Scholar] [CrossRef]
- Agrawal, A.; Choudhary, A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. Apl Mater. 2016, 4, 053208. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, B.; Zou, X.; Li, Y.; Shi, S. Machine learning assisted materials design and discovery for rechargeable batteries. Energy Storage Mater. 2020, 31, 434–450. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, T.; Ju, W.; Shi, S. Materials discovery and design using machine learning. J. Mater. 2017, 3, 159–177. [Google Scholar] [CrossRef]
- Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and challenges in big data analytics. J. Big Data 2015, 2, 1. [Google Scholar] [CrossRef]
- Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C. Machine learning in materials informatics: Recent applications and prospects. npj Comput. Mater. 2017, 3, 54. [Google Scholar] [CrossRef]
- Schmidt, J.; Marques, M.R.; Botti, S.; Marques, M.A. Recent advances and applications of machine learning in solid-state materials science. npj Comput. Mater. 2019, 5, 83. [Google Scholar] [CrossRef]
- Taal, A.; Sherer, J.A.; Bent, K.-A.; Fedeles, E.R. Cognitive computing and proposed approaches to conceptual organization of case law knowledge bases: A proposed model for information preparation, indexing, and analysis. Artif. Intell. Law 2016, 24, 347–370. [Google Scholar] [CrossRef]
- Ghiringhelli, L.M.; Vybiral, J.; Levchenko, S.V.; Draxl, C.; Scheffler, M. Big data of materials science: Critical role of the descriptor. Phys. Rev. Lett. 2015, 114, 105503. [Google Scholar] [CrossRef]
- Himanen, L.; Geurts, A.; Foster, A.S.; Rinke, P. Data-driven materials science: Status, challenges, and perspectives. Adv. Sci. 2019, 6, 1900808. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Liu, Z.; Kudyshev, Z.A.; Boltasseva, A.; Cai, W.; Liu, Y. Deep learning for the design of photonic structures. Nat. Photonics 2021, 15, 77–90. [Google Scholar] [CrossRef]
- Bagheri, M.; Akbari, A.; Mirbagheri, S.A. Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: A critical review. Process Saf. Environ. Prot. 2019, 123, 229–252. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, T.; Qiao, Z.; Sun, P.; Hao, J.; Yang, Y. Application of artificial intelligence to wastewater treatment: A bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse. Process Saf. Environ. Prot. 2020, 133, 169–182. [Google Scholar] [CrossRef]
- De Pablo, J.J.; Jones, B.; Kovacs, C.L.; Ozolins, V.; Ramirez, A.P. The materials genome initiative, the interplay of experiment, theory and computation. Curr. Opin. Solid State Mater. Sci. 2014, 18, 99–117. [Google Scholar] [CrossRef]
- Kline, R. Cybernetics, automata studies, and the Dartmouth conference on artificial intelligence. IEEE Ann. Hist. Comput. 2010, 33, 5–16. [Google Scholar] [CrossRef]
- Sha, W.; Guo, Y.; Yuan, Q.; Tang, S.; Zhang, X.; Lu, S.; Guo, X.; Cao, Y.-C.; Cheng, S. Artificial intelligence to power the future of materials science and engineering. Adv. Intell. Syst. 2020, 2, 1900143. [Google Scholar] [CrossRef]
- Vasudevan, R.K.; Choudhary, K.; Mehta, A.; Smith, R.; Kusne, G.; Tavazza, F.; Vlcek, L.; Ziatdinov, M.; Kalinin, S.V.; Hattrick-Simpers, J. Materials science in the artificial intelligence age: High-throughput library generation, machine learning, and a pathway from correlations to the underpinning physics. MRS Commun. 2019, 9, 821–838. [Google Scholar] [CrossRef]
- Gaudio, M.T.; Coppola, G.; Zangari, L.; Curcio, S.; Greco, S.; Chakraborty, S. Artificial intelligence-based optimization of industrial membrane processes. Earth Syst. Environ. 2021, 5, 385–398. [Google Scholar] [CrossRef]
- Habib, A.; Wong, E.; Sacks, R.; Singh, N. Artificial intelligence to detect tympanic membrane perforations. J. Laryngol. Otol. 2020, 134, 311–315. [Google Scholar] [CrossRef]
- Kamali, M.; Appels, L.; Yu, X.; Aminabhavi, T.M.; Dewil, R. Artificial intelligence as a sustainable tool in wastewater treatment using membrane bioreactors. Chem. Eng. J. 2021, 417, 128070. [Google Scholar] [CrossRef]
- Li, T.; Lu, W.; Yuan, Z.; Zhang, H.; Li, X. A data-driven and DFT assisted theoretic guide for membrane design in flow batteries. J. Mater. Chem. A 2021, 9, 14545–14552. [Google Scholar] [CrossRef]
- Niu, C.; Li, X.; Dai, R.; Wang, Z. Artificial intelligence-incorporated membrane fouling prediction for membrane-based processes in the past 20 years: A critical review. Water Res. 2022, 216, 118299. [Google Scholar] [CrossRef] [PubMed]
- Viet, N.D.; Jang, D.; Yoon, Y.; Jang, A. Enhancement of membrane system performance using artificial intelligence technologies for sustainable water and wastewater treatment: A critical review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 3689–3719. [Google Scholar] [CrossRef]
- Westphalen, H.; Saadati, S.; Bahig, J.; Doan, H.; Shoker, A.; Abdelrasoul, A. Impact of Dialysis Clinical Operating Conditions on Human Serum Protein-Mediated Inflammatory Biomarkers Released in Patients Using Polyarylethersulfone Membranes. J. Compos. Sci. 2022, 6, 226. [Google Scholar] [CrossRef]
- Westphalen, H.; Abdelrasoul, A.; Shoker, A.; Zhu, N. Assessment of hemodialysis clinical practices using polyaryl ether sulfone-polyvinylpyrrolidone (PAES: PVP) clinical membrane: Modeling of in vitro fibrinogen adsorption, in situ synchrotron-based imaging, and clinical inflammatory biomarkers investigations. Sep. Purif. Technol. 2021, 259, 118136. [Google Scholar]
- Nazari, S.; Abdelrasoul, A. Impact of Membrane Modification and Surface Immobilization Techniques on the Hemocompatibility of Hemodialysis Membranes: A Critical Review. Membranes 2022, 12, 1063. [Google Scholar] [CrossRef]
- Nazari, S.; Abdelrasoul, A. Surface zwitterionization of hemodialysismembranesfor hemocompatibility enhancement and protein-mediated anti-adhesion: A critical review. Biomed. Eng. Adv. 2022, 3, 100026. [Google Scholar] [CrossRef]
- Mollahosseini, A.; Abdelrasoul, A.; Shoker, A. A critical review of recent advances in hemodialysis membranes hemocompatibility and guidelines for future development. Mater. Chem. Phys. 2020, 248, 122911. [Google Scholar] [CrossRef]
- Mollahosseini, A.; Abdelrasoul, A.; Shoker, A. Latest advances in zwitterionic structures modified dialysis membranes. Mater. Today Chem. 2020, 15, 100227. [Google Scholar] [CrossRef]
- Mollahosseini, A.; Abdelrasoul, A. Novel insights in hemodialysis: Most Recent theories on the membrane hemocompatibility improvement. Biomed. Eng. Adv. 2022, 3, 100034. [Google Scholar] [CrossRef]
- Abdelrasoul, A.; Kalugin, D.; Shoker, A. Recent Developments and Current Challenges of Heparin-Grafted Hemodialysis Membranes. J. Compos. Sci. 2022, 6, 244. [Google Scholar] [CrossRef]
- Shahouni, R.; Abbasi, M.; Dibaj, M.; Akrami, M. Utilising artificial intelligence to predict membrane behaviour in water purification and desalination. Water 2024, 16, 2940. [Google Scholar] [CrossRef]
- Abuwatfa, W.H.; AlSawaftah, N.; Darwish, N.; Pitt, W.G.; Husseini, G.A. A review on membrane fouling prediction using artificial neural networks (ANNs). Membranes 2023, 13, 685. [Google Scholar] [CrossRef]
- Al-Kathiri, D.S.M.S.; Rao, G.B.; Qahoor, N.M.S.; Banerjee, S.; Babu, N.R.; Kavitha, G.; Lakkimsetty, N.R.; Namdeti, R. Membrane Fouling Prediction and Control Using AI and Machine Learning: A Comprehensive Review. J. Environ. Earth Sci. 2025, 7, 315–350. [Google Scholar] [CrossRef]
- Osman, A.I.; Nasr, M.; Farghali, M.; Bakr, S.S.; Eltaweil, A.S.; Rashwan, A.K.; Abd El-Monaem, E.M. Machine learning for membrane design in energy production, gas separation, and water treatment: A review. Environ. Chem. Lett. 2024, 22, 505–560. [Google Scholar] [CrossRef]
- Talukder, M.J.; Alshami, A.S.; Tayyebi, A.; Ismail, N.; Yu, X. Membrane science meets machine learning: Future and potential use in assisting membrane material design and fabrication. Sep. Purif. Rev. 2024, 53, 216–229. [Google Scholar] [CrossRef]
- Dangayach, R.; Jeong, N.; Demirel, E.; Uzal, N.; Fung, V.; Chen, Y. Machine learning-aided inverse design and discovery of novel polymeric materials for membrane separation. Environ. Sci. Technol. 2024, 59, 993–1012. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zhang, J.; Yan, Q.; Wang, J.; Yang, H. Machine Learning in the Design and Performance Prediction of Organic Framework Membranes: Methodologies, Applications, and Industrial Prospects. Membranes 2025, 15, 178. [Google Scholar] [CrossRef]
- Larose, D.T.; Larose, C.D. Discovering Knowledge in Data: An Introduction to Data Mining; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Chang, H.-M.; Xu, Y.; Chen, S.-S.; He, Z. Enhanced understanding of osmotic membrane bioreactors through machine learning modeling of water flux and salinity. Sci. Total Environ. 2022, 838, 156009. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Zhang, Y.; Tao, C.; Chen, W.; Cheng, H. Prediction of organic contaminant rejection by nanofiltration and reverse osmosis membranes using interpretable machine learning models. Sci. Total Environ. 2023, 857, 159348. [Google Scholar] [CrossRef]
- Chae, S.H.; Hong, S.W.; Son, M.; Cho, K.H. Determining water and solute permeability of reverse osmosis membrane using a data-driven machine learning pipeline. J. Water Process Eng. 2024, 64, 105634. [Google Scholar] [CrossRef]
- Hadsell, A.; Chau, H.; Barber Jr, R.; Kim, U.; Mobed-Miremadi, M. Supervised learning for predictive pore size classification of regenerated cellulose membranes based on atomic force microscopy measurements. Materials 2021, 14, 6724. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Masuda, T.; Takai, M. Machine Learning for Quantitative Prediction of Protein Adsorption on Well-Defined Polymer Brush Surfaces with Diverse Chemical Properties. Langmuir 2025, 41, 7534–7545. [Google Scholar] [CrossRef] [PubMed]
- Nazari, S.; Abdelrasoul, A. Machine learning models for predicting interaction affinity energy between human serum proteins and hemodialysis membrane materials. Sci. Rep. 2025, 15, 3474. [Google Scholar] [CrossRef]
- Yao, L.; An, H.; Zhou, S.; Kim, A.; Luijten, E.; Chen, Q. Seeking regularity from irregularity: Unveiling the synthesis–nanomorphology relationships of heterogeneous nanomaterials using unsupervised machine learning. Nanoscale 2022, 14, 16479–16489. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Shim, J.; Yoon, N.; Lee, S.; Kwak, D.; Lee, S.; Kim, Y.M.; Son, M.; Cho, K.H. Deep reinforcement learning in an ultrafiltration system: Optimizing operating pressure and chemical cleaning conditions. Chemosphere 2022, 308, 136364. [Google Scholar] [CrossRef]
- Rajasekhar, N.; Radhakrishnan, T.; Samsudeen, N. Exploring reinforcement learning in process control: A comprehensive survey. Int. J. Syst. Sci. 2025, 56, 3528–3557. [Google Scholar] [CrossRef]
- Liang, S.; Fu, K.; Li, X.; Wang, Z. Unveiling the spatiotemporal dynamics of membrane fouling: A focused review on dynamic fouling characterization techniques and future perspectives. Adv. Colloid Interface Sci. 2024, 328, 103179. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.Y.; Kwon, D.H.; Lee, J.; Lim, J.; Hong, S. Advancing harmful algal bloom detection with hyperspectral imaging: Correlation of algal organic matter and fouling indices based on deep learning. Desalination 2025, 600, 118505. [Google Scholar] [CrossRef]
- Mu, S.; Liu, Y.; Zhang, H.; Wang, J. Characterization of coagulant-induced ultrafiltration membrane fouling by multi-spectral fusion: DOM properties and model prediction based on machine learning. Desalination 2022, 531, 115711. [Google Scholar] [CrossRef]
- Dardzinska, A.; Zdrodowska, M. Classification algorithms in the material science and engineering data mining techniques. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 770, p. 012096. [Google Scholar]
- Meigooni, M.; Tajkhorshid, E. A Semi-supervised Learning Approach for Calculation of Membrane Curvature Properties, with Application to Mitochondrial Model Membranes. Biophys. J. 2020, 118, 185a–186a. [Google Scholar] [CrossRef]
- Van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Li, Y. Deep reinforcement learning: An overview. arXiv 2017, arXiv:1701.07274. [Google Scholar]
- Jia, J.; Wang, W. Review of reinforcement learning research. In Proceedings of the 2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC), Zhanjiang, China, 16–18 October 2020; IEEE: Zhanjiang, China, 2020; pp. 186–191. [Google Scholar]
- Busoniu, L.; Babuska, R.; De Schutter, B.; Ernst, D. Reinforcement Learning and Dynamic Programming Using Function Approximators; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Nassif, A.B.; Shahin, I.; Attili, I.; Azzeh, M.; Shaalan, K. Speech recognition using deep neural networks: A systematic review. IEEE Access 2019, 7, 19143–19165. [Google Scholar] [CrossRef]
- Lalia, B.S.; Kochkodan, V.; Hashaikeh, R.; Hilal, N. A review on membrane fabrication: Structure, properties and performance relationship. Desalination 2013, 326, 77–95. [Google Scholar] [CrossRef]
- Kim, J. Recent progress on improving the sustainability of membrane fabrication. J. Membr. Sci. Res. 2020, 6, 241–250. [Google Scholar]
- Dong, X.; Lu, D.; Harris, T.A.; Escobar, I.C. Polymers and solvents used in membrane fabrication: A review focusing on sustainable membrane development. Membranes 2021, 11, 309. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Boutilier, M.S.; Kidambi, P.R.; Jang, D.; Hadjiconstantinou, N.G.; Karnik, R. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 2017, 12, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.Z.; Chung, T.-S.; Lai, J.-Y. A review of polymeric composite membranes for gas separation and energy production. Prog. Polym. Sci. 2019, 97, 101141. [Google Scholar] [CrossRef]
- Dong, G.; Hou, J.; Wang, J.; Zhang, Y.; Chen, V.; Liu, J. Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. J. Membr. Sci. 2016, 520, 860–868. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhai, L.; Ying, Y.; Wang, Y.; Liu, G.; Dong, J.; Ng, D.Z.; Khan, S.A.; Zhao, D. Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers. J. Mater. Chem. A 2019, 7, 4549–4560. [Google Scholar] [CrossRef]
- Chaudhary, M.; Rawat, S.; Maiti, A. Defluoridation by bare nanoadsorbents, nanocomposites, and nanoadsorbent loaded mixed matrix membranes. Sep. Purif. Rev. 2023, 52, 135–153. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, X.; Geng, C.; Sun, Y.; He, Y.; Qiao, Z.; Zhong, C. Machine learning aided high-throughput prediction of ionic liquid@ MOF composites for membrane-based CO2 capture. J. Membr. Sci. 2022, 650, 120399. [Google Scholar] [CrossRef]
- Tao, L.; He, J.; Arbaugh, T.; McCutcheon, J.R.; Li, Y. Machine learning prediction on the fractional free volume of polymer membranes. J. Membr. Sci. 2023, 665, 121131. [Google Scholar] [CrossRef]
- Barnett, J.W.; Bilchak, C.R.; Wang, Y.; Benicewicz, B.C.; Murdock, L.A.; Bereau, T.; Kumar, S.K. Designing exceptional gas-separation polymer membranes using machine learning. Sci. Adv. 2020, 6, eaaz4301. [Google Scholar] [CrossRef]
- Tan, M.; He, G.; Nie, F.; Zhang, L.; Hu, L. Optimization of ultrafiltration membrane fabrication using backpropagation neural network and genetic algorithm. J. Taiwan Inst. Chem. Eng. 2014, 45, 68–75. [Google Scholar] [CrossRef]
- Li, B.; Yue, R.; Shen, L.; Chen, C.; Li, R.; Xu, Y.; Zhang, M.; Hong, H.; Lin, H. A novel method integrating response surface method with artificial neural network to optimize membrane fabrication for wastewater treatment. J. Clean. Prod. 2022, 376, 134236. [Google Scholar] [CrossRef]
- Deng, H.; Luo, Z.; Imbrogno, J.; Swenson, T.M.; Jiang, Z.; Wang, X.; Zhang, S. Machine learning guided polyamide membrane with exceptional solute–solute selectivity and permeance. Environ. Sci. Technol. 2022, 57, 17841–17850. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Mohamed, A.; Kim, K. Optimal design and flow-field pattern selection of proton exchange membrane electrolyzers using artificial intelligence. Energy 2023, 264, 126135. [Google Scholar] [CrossRef]
- Yang, J.; Tao, L.; He, J.; McCutcheon, J.R.; Li, Y. Machine learning enables interpretable discovery of innovative polymers for gas separation membranes. Sci. Adv. 2022, 8, eabn9545. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Zhong, S.; Zhang, W.; Igou, T.; Berger, E.; Reid, E.; Zhao, Y.; Lambeth, D.; Gan, L.; Afolabi, M.A. Revolutionizing membrane design using machine learning-bayesian optimization. Environ. Sci. Technol. 2021, 56, 2572–2581. [Google Scholar] [CrossRef]
- Huo, W.; Li, W.; Zhang, Z.; Sun, C.; Zhou, F.; Gong, G. Performance prediction of proton-exchange membrane fuel cell based on convolutional neural network and random forest feature selection. Energy Convers. Manag. 2021, 243, 114367. [Google Scholar] [CrossRef]
- Hossain, S.S.; Ayodele, B.V.; Ali, S.S.; Cheng, C.K.; Mustapa, S.I. Comparative Analysis of Support Vector Machine Regression and Gaussian Process Regression in Modeling Hydrogen Production from Waste Effluent. Sustainability 2022, 14, 7245. [Google Scholar] [CrossRef]
- Li, W.; Li, C.; Wang, T. Application of machine learning algorithms in MBR simulation under big data platform. Water Pract. Technol. 2020, 15, 1238–1247. [Google Scholar] [CrossRef]
- Lai, Y.; Xiao, K.; He, Y.; Liu, X.; Tan, J.; Xue, W.; Zhang, A.; Huang, X. Machine learning for membrane bioreactor research: Principles, methods, applications, and a tutorial. Front. Environ. Sci. Eng. 2025, 19, 34. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Zhu, E.; Ma, Z.; Wang, H.; Chen, C.; Guan, J.; Waite, T.D. Predicting Membrane Fouling of Submerged Membrane Bioreactor Wastewater Treatment Plants Using Machine Learning. Environ. Sci. Technol. 2025, 59, 10010–10021. [Google Scholar] [CrossRef]
- Frontistis, Z.; Lykogiannis, G.; Sarmpanis, A. Machine learning implementation in membrane bioreactor systems: Progress, challenges, and future perspectives: A review. Environments 2023, 10, 127. [Google Scholar] [CrossRef]
- Yeo, C.S.H.; Xie, Q.; Wang, X.; Zhang, S. Understanding and optimization of thin film nanocomposite membranes for reverse osmosis with machine learning. J. Membr. Sci. 2020, 606, 118135. [Google Scholar] [CrossRef]
- Rall, D.; Schweidtmann, A.M.; Kruse, M.; Evdochenko, E.; Mitsos, A.; Wessling, M. Multi-scale membrane process optimization with high-fidelity ion transport models through machine learning. J. Membr. Sci. 2020, 608, 118208. [Google Scholar] [CrossRef]
- Rall, D.; Schweidtmann, A.M.; Aumeier, B.M.; Kamp, J.; Karwe, J.; Ostendorf, K.; Mitsos, A.; Wessling, M. Simultaneous rational design of ion separation membranes and processes. J. Membr. Sci. 2020, 600, 117860. [Google Scholar] [CrossRef]
- Ma, X.; Lu, D.; Lu, J.; Qian, Y.; Zhang, S.; Yao, Z.; Liang, L.; Sun, Z.; Zhang, L. Revealing key structural and operating features on water/salts selectivity of polyamide nanofiltration membranes by ensemble machine learning. Desalination 2023, 548, 116293. [Google Scholar] [CrossRef]
- Lin, D.; Sun, Q. Development of hybrid mechanistic-artificial intelligence computational technique for separation of organic molecules from water in polymeric membranes. Case Stud. Therm. Eng. 2023, 42, 102771. [Google Scholar] [CrossRef]
- Ismail, U.M.; Bani-Melhem, K.; Khan, M.F.; Elnakar, H. Optimizing membrane bioreactor performance in wastewater treatment using machine learning and meta-heuristic techniques. Results Eng. 2025, 25, 104626. [Google Scholar] [CrossRef]
- Al-Obaidi, M.A.; Rashid, F.L.; Ameen, A.; Kadhom, M.; Mujtaba, I.M. Optimizing Reverse Osmosis Feed Spacer Design for Enhanced Dimethylphenol Removal from Wastewater: A Study of Hydrodynamics and Performance Indicators. Water 2024, 16, 895. [Google Scholar] [CrossRef]
- Liang, Y. Role of spacers in osmotic membrane desalination: Advances, challenges, practical and artificial intelligence-driven solutions. Process Saf. Environ. Prot. 2025, 201, 107587. [Google Scholar] [CrossRef]
- Sutariya, B.; Mer, P. Leveraging machine learning with Bayesian optimization for optimizing feed spacer geometry using insights from predicting Sherwood and Power numbers. Chem. Eng. Commun. 2025, 1–19. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Aytaç, E.; Khanzada, N.K.; Khayet, M.; Hilal, N. The role of feed spacers in membrane technology: 45 years of research. Sep. Purif. Technol. 2025, 357, 130109. [Google Scholar] [CrossRef]
- Luo, J.; Li, M.; Heng, Y. Supercomputing and machine-learning-aided optimal design of high permeability seawater reverse osmosis membrane systems. In High-Performance Computing and Artificial Intelligence in Process Engineering; IOP Publishing: Bristol, UK, 2025; pp. 9-1–9-25. [Google Scholar]
- Kovacs, D.J.; Li, Z.; Baetz, B.W.; Hong, Y.; Donnaz, S.; Zhao, X.; Zhou, P.; Ding, H.; Dong, Q. Membrane fouling prediction and uncertainty analysis using machine learning: A wastewater treatment plant case study. J. Membr. Sci. 2022, 660, 120817. [Google Scholar] [CrossRef]
- Schmitt, F.; Do, K.-U. Prediction of membrane fouling using artificial neural networks for wastewater treated by membrane bioreactor technologies: Bottlenecks and possibilities. Environ. Sci. Pollut. Res. 2017, 24, 22885–22913. [Google Scholar] [CrossRef] [PubMed]
- Mirbagheri, S.A.; Bagheri, M.; Bagheri, Z.; Kamarkhani, A.M. Evaluation and prediction of membrane fouling in a submerged membrane bioreactor with simultaneous upward and downward aeration using artificial neural network-genetic algorithm. Process Saf. Environ. Prot. 2015, 96, 111–124. [Google Scholar] [CrossRef]
- Park, S.; Baek, S.-S.; Pyo, J.; Pachepsky, Y.; Park, J.; Cho, K.H. Deep neural networks for modeling fouling growth and flux decline during NF/RO membrane filtration. J. Membr. Sci. 2019, 587, 117164. [Google Scholar] [CrossRef]
- Kamrava, S.; Tahmasebi, P.; Sahimi, M. Physics-and image-based prediction of fluid flow and transport in complex porous membranes and materials by deep learning. J. Membr. Sci. 2021, 622, 119050. [Google Scholar] [CrossRef]
- Jawad, J.; Hawari, A.H.; Zaidi, S. Modeling of forward osmosis process using artificial neural networks (ANN) to predict the permeate flux. Desalination 2020, 484, 114427. [Google Scholar] [CrossRef]
- Gao, H.; Zhong, S.; Dangayach, R.; Chen, Y. Understanding and Designing a High-Performance Ultrafiltration Membrane Using Machine Learning. Environ. Sci. Technol. 2023, 57, 17831–17840. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Huang, T.; Liu, W.; Feng, F.; Japip, S.; Li, J.; Wang, X.; Zhang, S. Design and prediction of metal organic framework-based mixed matrix membranes for CO2 capture via machine learning. Cell Rep. Phys. Sci. 2022, 3, 100864. [Google Scholar] [CrossRef]
- Rall, D.; Menne, D.; Schweidtmann, A.M.; Kamp, J.; von Kolzenberg, L.; Mitsos, A.; Wessling, M. Rational design of ion separation membranes. J. Membr. Sci. 2019, 569, 209–219. [Google Scholar] [CrossRef]
- Ritt, C.L.; Liu, M.; Pham, T.A.; Epsztein, R.; Kulik, H.J.; Elimelech, M. Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores. Sci. Adv. 2022, 8, eabl5771. [Google Scholar] [CrossRef] [PubMed]
- Maleki, R.; Shams, S.M.; Chellehbari, Y.M.; Rezvantalab, S.; Jahromi, A.M.; Asadnia, M.; Abbassi, R.; Aminabhavi, T.; Razmjou, A. Materials discovery of ion-selective membranes using artificial intelligence. Commun. Chem. 2022, 5, 132. [Google Scholar] [CrossRef] [PubMed]
- Salehi, R.; Krishnan, S.; Nasrullah, M.; Chaiprapat, S. Using Machine Learning to Predict the Performance of a Cross-Flow Ultrafiltration Membrane in Xylose Reductase Separation. Sustainability 2023, 15, 4245. [Google Scholar] [CrossRef]
- Kang, D.H.; Kim, N.K.; Lee, W.; Kang, H.W. Geometric feature extraction in nanofiber membrane image based on convolution neural network for surface roughness prediction. Heliyon 2024, 10, e35358. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, M.; Liu, K.; Zhang, F.; Huang, H. New insight into pore characteristics for cake layers formed on nanocomposite membranes: Effect of membrane surface fractality. J. Membr. Sci. 2025, 715, 123498. [Google Scholar] [CrossRef]
- Deng, X.; Zhao, Y.; Yang, F.; Li, Y.; Ouyang, M. Artificial Neural Network-Based Prediction and Optimization of Polymer Membrane for Alkaline Water Electrolysis. ACS Appl. Polym. Mater. 2024, 7, 210–219. [Google Scholar] [CrossRef]
- Im, S.J.; Nguyen, V.D.; Jang, A. Prediction of forward osmosis membrane engineering factors using artificial intelligence approach. J. Environ. Manag. 2022, 318, 115544. [Google Scholar] [CrossRef] [PubMed]
- Imtiaz, A.; Othman, M.H.D.; Jilani, A.; Khan, I.U.; Kamaludin, R.; Iqbal, J.; Al-Sehemi, A.G. Challenges, Opportunities and Future Directions of Membrane Technology for Natural Gas Purification: A Critical Review. Membranes 2022, 12, 646. [Google Scholar] [CrossRef] [PubMed]
- Samek, W.; Montavon, G.; Vedaldi, A.; Hansen, L.K.; Müller, K.-R. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508. [Google Scholar] [CrossRef]










| ML Model | Learning Type | Membrane Application | Input Features | Output/ Target Variable | Performance Metrics | Key Finding | Remarks/ Challenges | Ref. |
|---|---|---|---|---|---|---|---|---|
| CNN | Supervised (Deep Learning—Regression) | Prediction of average surface roughness of nanofiber membranes | Preprocessed SEM images (grayscale, CLAHE, binarization, 2D Discrete Fourier Transform) capturing. geometric features such as fiber diameter, pore fraction, and pixel intensity gradients | Logarithmic average surface roughness (log Ra) | Mean Absolute Percentage Error (MAPE) = 4.8%; R2 = 0.979 (test) | CNN model accurately predicted surface roughness across a 3 nm–3 µm range, geometric feature extraction | Out-of-range prediction challenges for smooth surfaces (<30 nm); trade-off between accuracy and inference time | [143] |
| GA-BPNN | Supervised (Regression) | Prediction of Kf on CNT nanocomposite membranes | Pore space fractal dimension (2.44–2.81), pore anisotropy (0.64–0.81), porosity (0.30–0.71)—extracted from 3D CLSM imaging and pore network modeling | Kf | R2 = 0.99 (training), R2 = 0.96 (testing); RMSE ≈ 0.13 | Demonstrated strong correlation between membrane surface fractality and fouling behavior; GA-BPNN hybrid modeling accurately predicts cake permeability and outperforms classical models | Limited dataset and material scope; generalization to other membranes and dynamic fouling conditions requires further validation. | [144] |
| Fully Connected Neural Network (FCNN) and CNN | Supervised (Regression) | Prediction and optimization of membrane pore structure for alkaline water electrolysis | Polymer concentration (wt%), solvent/ nonsolvent ratio, interaction parameters (χsp, χnp, χns), diffusion coefficients, and coagulation bath composition | Tortuosity and maximum pore size | R2 = 0.75 (tortuosity), R2 = 0.89 (pore size) | Coupling phase-field simulation with ML enables accurate prediction of microstructure parameters; polymer concentration and solvent–nonsolvent affinity strongly affect tortuosity and pore size. | Limited dataset; extension to other polymers and electrochemical systems required for broader generalization. | [145] |
| ANN (Feed-forward, trained with Levenberg–Marquardt algorithm) | Supervised (Regression) | Prediction of FO membrane fouling, water flux, and pollutant removal performance | DOC, UV254, TN, TP, Ca2+, Na+, Cl−, proteins, polysaccharides (real wastewater data) | Fouling properties: thickness, porosity, roughness, density Flux: water flux Removal: DOC, TN, TP removal | R2 = 0.85–0.98 (fouling) R2 = 0.92; RMSE = 0.9 L·m−2·h−1 (flux) R2 = 0.87–0.92; error ≤ 2.7% (removal) | ANN accurately predicted fouling behavior, flux, and removal efficiencies; highest precision for fouling properties (R2 ≈ 0.98). | Limited dataset (single FO configuration); model generalization to other feeds and scales requires validation | [146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazari, S.; Abdelrasoul, A. Advancements and Applications of Artificial Intelligence and Machine Learning in Material Science and Membrane Technology: A Comprehensive Review. Membranes 2025, 15, 353. https://doi.org/10.3390/membranes15120353
Nazari S, Abdelrasoul A. Advancements and Applications of Artificial Intelligence and Machine Learning in Material Science and Membrane Technology: A Comprehensive Review. Membranes. 2025; 15(12):353. https://doi.org/10.3390/membranes15120353
Chicago/Turabian StyleNazari, Simin, and Amira Abdelrasoul. 2025. "Advancements and Applications of Artificial Intelligence and Machine Learning in Material Science and Membrane Technology: A Comprehensive Review" Membranes 15, no. 12: 353. https://doi.org/10.3390/membranes15120353
APA StyleNazari, S., & Abdelrasoul, A. (2025). Advancements and Applications of Artificial Intelligence and Machine Learning in Material Science and Membrane Technology: A Comprehensive Review. Membranes, 15(12), 353. https://doi.org/10.3390/membranes15120353

