Evaluation of End-of-Life Reverse Osmotic Membrane for High-Retention Anaerobic Membrane Bioreactor
Abstract
1. Introduction
2. Materials and Methods
2.1. Membranes, Modules, and Characterization
2.2. Pilot-Scale G-AnMBR Setup and Operating Conditions
2.3. Operation of the G-AnMBR
3. Results and Discussion
3.1. EoL Membrane Conversion-Membrane Properties
3.2. G-AnMBR Operation
3.2.1. Flux and Operating Pressure
3.2.2. COD Removal and Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Judd, S. The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 0-08-096767-1. [Google Scholar]
- Anjum, F.; Khan, I.M.; Kim, J.; Aslam, M.; Blandin, G.; Heran, M.; Lesage, G. Trends and Progress in AnMBR for Domestic Wastewater Treatment and Their Impacts on Process Efficiency and Membrane Fouling. Environ. Technol. Innov. 2021, 21, 101204. [Google Scholar] [CrossRef]
- Lin, H.; Peng, W.; Zhang, M.; Chen, J.; Hong, H.; Zhang, Y. A Review on Anaerobic Membrane Bioreactors: Applications, Membrane Fouling and Future Perspectives. Desalination 2013, 314, 169–188. [Google Scholar] [CrossRef]
- Pretel, R.; Robles, A.; Ruano, M.V.; Seco, A.; Ferrer, J. The Operating Cost of an Anaerobic Membrane Bioreactor (AnMBR) Treating Sulphate-Rich Urban Wastewater. Sep. Purif. Technol. 2014, 126, 30–38. [Google Scholar] [CrossRef]
- Chen, C.; Guo, W.; Ngo, H.H. Advances in Granular Growth Anaerobic Membrane Bioreactor (G-AnMBR) for Low Strength Wastewater Treatment. J. Energy Environ. Sustain. 2016, 1, 77–83. [Google Scholar] [CrossRef]
- Sanchez, L.; Carrier, M.; Cartier, J.; Charmette, C.; Heran, M.; Steyer, J.-P.; Lesage, G. Enhanced Organic Degradation and Biogas Production of Domestic Wastewater at Psychrophilic Temperature through Submerged Granular Anaerobic Membrane Bioreactor for Energy-Positive Treatment. Bioresour. Technol. 2022, 353, 127145. [Google Scholar] [CrossRef]
- Adekunle, K.F.; Okolie, J.A. A Review of Biochemical Process of Anaerobic Digestion. Adv. Biosci. Biotechnol. 2015, 6, 205–212. [Google Scholar] [CrossRef]
- Al Seadi, T.; Ruiz, D.; Prassl, H.; Kottner, M.; Finsterwaldes, T.; Volke, S.; Janssers, R. Handbook of Biogas; University of Southern: Esbjerg, Denmark, 2008; Available online: https://www.scirp.org/reference/referencespapers?referenceid=1437252 (accessed on 29 July 2025).
- Aslanzadeh, S. Pretreatment of Cellulosic Waste and High Rate Biogas Production. Ph.D. Thesis, on Resource Recovery. University of Borås, Borås, Sweden, 2014; pp. 1–50. Available online: https://www.scirp.org/reference/referencespapers?referenceid=1437270 (accessed on 29 July 2025).
- Le-Clech, P.; Chen, V.; Fane, T.A.G. Fouling in Membrane Bioreactors Used in Wastewater Treatment. J. Membr. Sci. 2006, 284, 17–53. [Google Scholar] [CrossRef]
- Choo, K.-H.; Lee, C.-H. Membrane Fouling Mechanisms in the Membrane-Coupled Anaerobic Bioreactor. Water Res. 1996, 30, 1771–1780. [Google Scholar] [CrossRef]
- Ghyoot, W.R.; Verstraete, W.H. Coupling Membrane Filtration to Anaerobic Primary Sludge Digestion. Environ. Technol. 1997, 18, 569–580. [Google Scholar] [CrossRef]
- Luo, W.; Hai, F.I.; Price, W.E.; Guo, W.; Ngo, H.H.; Yamamoto, K.; Nghiem, L.D. High Retention Membrane Bioreactors: Challenges and Opportunities. Bioresour. Technol. 2014, 167, 539–546. [Google Scholar] [CrossRef]
- Phattaranawik, J.; Fane, A.G.; Pasquier, A.C.S.; Bing, W. A Novel Membrane Bioreactor Based on Membrane Distillation. Desalination 2008, 223, 386–395. [Google Scholar] [CrossRef]
- Pathak, N.; Tran, V.H.; Merenda, A.; Johir, M.A.H.; Phuntsho, S.; Shon, H. Removal of Organic Micro-Pollutants by Conventional Membrane Bioreactors and High-Retention Membrane Bioreactors. Appl. Sci. 2020, 10, 2969. [Google Scholar] [CrossRef]
- Asif, M.B.; Ansari, A.J.; Chen, S.-S.; Nghiem, L.D.; Price, W.E.; Hai, F.I. Understanding the Mechanisms of Trace Organic Contaminant Removal by High Retention Membrane Bioreactors: A Critical Review. Environ. Sci. Pollut. Res. 2019, 26, 34085–34100. [Google Scholar] [CrossRef]
- Qiu, G.; Ting, Y.-P. Osmotic Membrane Bioreactor for Wastewater Treatment and the Effect of Salt Accumulation on System Performance and Microbial Community Dynamics. Bioresour. Technol. 2013, 150, 287–297. [Google Scholar] [CrossRef]
- Olives, P.; Sanchez, L.; Lesage, G.; Héran, M.; Rodriguez-Roda, I.; Blandin, G. Impact of Integration of FO Membranes into a Granular Biomass AnMBR for Water Reuse. Membranes 2023, 13, 265. [Google Scholar] [CrossRef]
- Lay, W.C.L.; Liu, Y.; Fane, A.G. Impacts of Salinity on the Performance of High Retention Membrane Bioreactors for Water Reclamation: A Review. Water Res. 2010, 44, 21–40. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-H.; Fukushi, K.; Yamamoto, K. A Submerged Nanofiltration Membrane Bioreactor for Domestic Wastewater Treatment: The Performance of Cellulose Acetate Nanofiltration Membranes for Long-Term Operation. Sep. Purif. Technol. 2007, 52, 470–477. [Google Scholar] [CrossRef]
- Tay, M.F.; Liu, C.; Cornelissen, E.R.; Wu, B.; Chong, T.H. The Feasibility of Nanofiltration Membrane Bioreactor (NF-MBR)+reverse Osmosis (RO) Process for Water Reclamation: Comparison with Ultrafiltration Membrane Bioreactor (UF-MBR)+RO Process. Water Res. 2018, 129, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Senán-Salinas, J.; Landaburu-Aguirre, J.; Contreras-Martinez, J.; García-Calvo, E. Life Cycle Assessment Application for Emerging Membrane Recycling Technologies: From Reverse Osmosis into Forward Osmosis. Resour. Conserv. Recycl. 2022, 179, 106075. [Google Scholar] [CrossRef]
- Khanzada, N.K.; Al-Juboori, R.A.; Khatri, M.; Ahmed, F.E.; Ibrahim, Y.; Hilal, N. Sustainability in Membrane Technology: Membrane Recycling and Fabrication Using Recycled Waste. Membranes 2024, 14, 52. [Google Scholar] [CrossRef]
- García-Pacheco, R.; Landaburu-Aguirre, J.; Molina, S.; Rodríguez-Sáez, L.; Teli, S.B.; García-Calvo, E. Transformation of End-of-Life RO Membranes into NF and UF Membranes: Evaluation of Membrane Performance. J. Membr. Sci. 2015, 495, 305–315. [Google Scholar] [CrossRef]
- Moreira, V.R.; Lebron, Y.A.R.; de Souza Santos, L.V.; Amaral, M.C.S. Low-Cost Recycled End-of-Life Reverse Osmosis Membranes for Water Treatment at the Point-of-Use. J. Clean. Prod. 2022, 362, 132495. [Google Scholar] [CrossRef]
- Moreira, V.R.; Lebron, Y.A.R.; de Paula, E.C.; de Souza Santos, L.V.; Amaral, M.C.S. Recycled Reverse Osmosis Membrane Combined with Pre-Oxidation for Improved Arsenic Removal from High Turbidity Waters and Retrofit of Conventional Drinking Water Treatment Process. J. Clean. Prod. 2021, 312, 127859. [Google Scholar] [CrossRef]
- Moradi, M.R.; Pihlajamäki, A.; Hesampour, M.; Ahlgren, J.; Mänttäri, M. End-of-Life RO Membranes Recycling: Reuse as NF Membranes by Polyelectrolyte Layer-by-Layer Deposition. J. Membr. Sci. 2019, 584, 300–308. [Google Scholar] [CrossRef]
- Lawler, W.; Antony, A.; Cran, M.; Duke, M.; Leslie, G.; Le-Clech, P. Production and Characterisation of UF Membranes by Chemical Conversion of Used RO Membranes. J. Membr. Sci. 2013, 447, 203–211. [Google Scholar] [CrossRef]
- de Paula, E.C.; Gomes, J.C.L.; Amaral, M.C.S. Recycling of End-of-Life Reverse Osmosis Membranes by Oxidative Treatment: A Technical Evaluation 2017. Water Sci. Technol. 2017, 76, 605–622. [Google Scholar] [CrossRef]
- García-Pacheco, R.; Landaburu-Aguirre, J.; Lejarazu-Larrañaga, A.; Rodríguez-Sáez, L.; Molina, S.; Ransome, T.; García-Calvo, E. Free Chlorine Exposure Dose (ppm·h) and Its Impact on RO Membranes Ageing and Recycling Potential. Desalination 2019, 457, 133–143. [Google Scholar] [CrossRef]
- Govardhan, B.; Fatima, S.; Madhumala, M.; Sridhar, S. Modification of Used Commercial Reverse Osmosis Membranes to Nanofiltration Modules for the Production of Mineral-Rich Packaged Drinking Water. Appl. Water Sci. 2020, 10, 230. [Google Scholar] [CrossRef]
- Ahmed, J.; Jamal, Y. A Pilot Application of Recycled Discarded RO Membranes for Low Strength Gray Water Reclamation. Environ. Sci. Pollut. Res. 2021, 28, 34042–34050. [Google Scholar] [CrossRef] [PubMed]
- Seibel, F.I.I.; Giubel, G.O.M.G.; Brião, V.B.; Shabani, M.; Pontié, M. End-of-Life Reverse Osmosis Membranes: Recycle Procedure and Its Applications for the Treatment of Brackish and Surface Water. J. Appl. Res. Water Wastewater 2021, 8, 77–87. [Google Scholar] [CrossRef]
- Somrani, A.; Mohamed, Z.; Abohelal, K.; Larhrib, S.; Ghaffour, N.; Pontié, M. Transforming End-of-Life SWRO Desalination Membranes into Nanofiltration Membranes for the Treatment of Brackish Water and Wastewater. Sci. Rep. 2025, 15, 4557. [Google Scholar] [CrossRef]
- Raval, H.D.; Chauhan, V.R.; Raval, A.H.; Mishra, S. Rejuvenation of Discarded RO Membrane for New Applications. Desalin. Water Treat. 2012, 48, 349–359. [Google Scholar] [CrossRef]
- Sabio, B.Z.; Pacheco, R.G.; Pàrraga, P.V.; Bernades, I.A.; Sales, H.M.; Blandin, G. Gravity-Driven Ultrafiltration and Nanofiltration Recycled Membranes for Tertiary Treatment of Urban Wastewater. J. Water Process Eng. 2024, 63, 105545. [Google Scholar] [CrossRef]
- García-Pacheco, R.; Li, Q.; Comas, J.; Taylor, R.A.; Le-Clech, P. Novel Housing Designs for Nanofiltration and Ultrafiltration Gravity-Driven Recycled Membrane-Based Systems. Sci. Total Environ. 2021, 767, 144181. [Google Scholar] [CrossRef] [PubMed]
- Molina, S.; Landaburu-Aguirre, J.; Rodríguez-Sáez, L.; García-Pacheco, R.; de la Campa, J.G.; García-Calvo, E. Effect of Sodium Hypochlorite Exposure on Polysulfone Recycled UF Membranes and Their Surface Characterization. Polym. Degrad. Stab. 2018, 150, 46–56. [Google Scholar] [CrossRef]
- Sanchez, L.; Lesage, G.; Demiral, Y.O.; Rodriguez-Roda, I.; Heran, M.; Blandin, G. Revealing the Role of Supernatant and Granular Sludge Fractions on Granular Anaerobic Membrane Bioreactor Fouling. J. Water Process Eng. 2022, 49, 103168. [Google Scholar] [CrossRef]
- Zappulla-Sabio, B.; Jaurrieta, L.; Gernjak, W.; Balakrishnan, H.; Dumée, L.F.; Monclús, H.; Blandin, G. Membrane Recycling: Exploring Ozone as a Viable Alternative to Chlorine for Polymeric Membrane Transformation. ACS EST Eng. 2025. [Google Scholar] [CrossRef]
- n1x Nicolassaganias/Flapp 2025. Available online: https://github.com/nicolassaganias/flapp (accessed on 29 July 2025).
- Zappulla-Sabio, B.; Le-Clech, P.; Dumée, L.F.; Balakrishnan, H.K.; Monclús, H.; Blandin, G. The Hidden Challenge of Membrane Recycling: How Drying Affects Membrane Layers? J. Water Process Eng. 2025, 76, 108110. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Nghiem, L.D. Nanofiltration Bioreactors. In Nanofiltration; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 691–705. ISBN 978-3-527-82498-4. [Google Scholar]
- Blandin, G.; Gautier, C.; Sauchelli Toran, M.; Monclús, H.; Rodriguez-Roda, I.; Comas, J. Retrofitting Membrane Bioreactor (MBR) into Osmotic Membrane Bioreactor (OMBR): A Pilot Scale Study. Chem. Eng. J. 2018, 339, 268–277. [Google Scholar] [CrossRef]
- Holloway, R.W.; Wait, A.S.; Fernandes da Silva, A.; Herron, J.; Schutter, M.D.; Lampi, K.; Cath, T.Y. Long-Term Pilot Scale Investigation of Novel Hybrid Ultrafiltration-Osmotic Membrane Bioreactors. Desalination 2015, 363, 64–74. [Google Scholar] [CrossRef]
- Holloway, R.W.; Achilli, A.; Cath, T.Y. The Osmotic Membrane Bioreactor: A Critical Review. Environ. Sci. Water Res. Technol. 2015, 1, 581–605. [Google Scholar] [CrossRef]









| Initial Membrane | Concentration (ppm) | Time (h) | Dose (ppm·h) | Final Membrane | Permeability (LMH/bar) | Salt Rejection (%) | Ref. |
|---|---|---|---|---|---|---|---|
| RO | - | 2–5 | 220,000–550,000 | UF | 50.4 | 11.6 | [25] |
| RO | 75,000 | 4 | 300,000 | UF | 79.1 | 16.7 | [26] |
| RO | 13,000 | 18.5 | 240,500 | UF | 51 | 0 | [27] |
| New BW30 | 125,000 | 2.4 | 300,000 | UF | 59 | <1 | [28] |
| EoL BW | 125,000 | 2.4 | 300,000 | UF | 115 | <1 | |
| EoL BW | 125,000 | 2.4 | 300,000 | NF | 9 | <1 | |
| EoL BW30 | 124 | 242 | 30,008 | NF | 40.6 | 1.7 | [24] |
| EoL BW | 124 | 242 | 30,008 | NF | 37.4 | 1.5 | |
| EoL SW30 | 124 | 242 | 30,008 | NF | 33.8 | 4.6 | |
| EoL SW | 124 | 242 | 30,008 | NF | 11 | 3.6 | |
| EoL BW30 | 55,000 | 5.4 | 297,000 | UF | 116.7 | 12.6 | [29] |
| EoL BW | 6000 | 50 | 300,000 | UF | 86.1 | - | [30] |
| EoL BW | 6000 | 5 | 30,000 | NF | 14 | - | |
| EoL BW30 | 6000 | 50 | 300,000 | UF | 59.6 | - | |
| EoL BW30 | 6000 | 5 | 30,000 | NF | 5.8 | - | |
| RO | 4000 | 13 | 52,000 | NF | 80 | 25.5 | [31] |
| Week | ||||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 3 MF | ||||||
| 2 MF + 1 UF | ||||||
| 1 MF + 2 UF | ||||||
| 3 UF | ||||||
| 2 MF + 1 NF | ||||||
| 1 MF + 1 NF | ||||||
| 3 NF | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torras, O.M.; Raval, H.D.; Zappulla-Sabio, B.; Rodriguez-Roda, I.; Monclús, H.; Blandin, G. Evaluation of End-of-Life Reverse Osmotic Membrane for High-Retention Anaerobic Membrane Bioreactor. Membranes 2025, 15, 323. https://doi.org/10.3390/membranes15110323
Torras OM, Raval HD, Zappulla-Sabio B, Rodriguez-Roda I, Monclús H, Blandin G. Evaluation of End-of-Life Reverse Osmotic Membrane for High-Retention Anaerobic Membrane Bioreactor. Membranes. 2025; 15(11):323. https://doi.org/10.3390/membranes15110323
Chicago/Turabian StyleTorras, Oriol Morató, Hiren D. Raval, Bianca Zappulla-Sabio, Ignasi Rodriguez-Roda, Hèctor Monclús, and Gaetan Blandin. 2025. "Evaluation of End-of-Life Reverse Osmotic Membrane for High-Retention Anaerobic Membrane Bioreactor" Membranes 15, no. 11: 323. https://doi.org/10.3390/membranes15110323
APA StyleTorras, O. M., Raval, H. D., Zappulla-Sabio, B., Rodriguez-Roda, I., Monclús, H., & Blandin, G. (2025). Evaluation of End-of-Life Reverse Osmotic Membrane for High-Retention Anaerobic Membrane Bioreactor. Membranes, 15(11), 323. https://doi.org/10.3390/membranes15110323

