Mitigating Wetting and Scaling in Air Gap Membrane Distillation Crystallization via SiO2 Seeding
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Seeding Materials and Experimental Procedure
- Optimizing AGMDCr process (PP and PTFE): A comparative analysis was performed between the unseeded process and a process seeded with a fixed SiO2 concentration of 0.1 g L−1. Key performance indicators, including permeate flux stability, membrane wetting and scaling behavior, and overall water recovery, were evaluated to determine the effect of seeding.
- Seeding concentration series (PP and PTFE): SiO2 concentrations of 0, 0.1, 0.3, and 0.6 g L−1 were tested to assess effects on permeate flux stability, wetting behavior, and product crystal size distribution (CSD).
- Seed-size series (PTFE only): At a fixed SiO2 concentration of 0.1 g L−1, the effect of seed particle size was evaluated using three distinct fractions: 30–60 µm, 75–125 µm, and 210–300 µm. The analysis focused on the resulting changes in the CSD.
- Hydrodynamic series (PTFE only): At fixed SiO2 concentration of 0.1 g L−1 (30–60 µm), Reynolds numbers (Re) of 3366, 3927, and 4488 (transition to turbulent internal flow) were imposed by adjusting the feed flow rate , while keeping the other parameters constant. For circular-tube flow, the Re number was estimated by
2.3. Performance Evaluation
2.4. Crystal Sampling and Analysis
2.5. Post-Run Membrane Surface Morphology
3. Results and Discussion
3.1. Optimizing AGMDCr Process
3.2. Seeding Concentration Series and Crystal Size Distribution (CSD)
3.3. Seed-Size Series and CSD
3.4. Hydrodynamic Regime Effects at Fixed Seeding
3.5. Post-Run Membrane Surface Morphology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGMDCr | Air gap membrane distillation crystallization |
CP | Concentration polarization |
CSD | Crystal size distribution |
MD | Membrane distillation |
MDCr | Membrane distillation crystallization |
PP | Polypropylene |
PTFE | Polytetrafluoroethylene |
Re | Reynolds number |
TP | Temperature polarization |
ZLD | Zero-liquid-discharge |
References
- Lim, Y.J.; Goh, K.; Kurihara, M.; Wang, R. Seawater desalination by reverse osmosis: Current development and future challenges in membrane fabrication—A review. J. Membr. Sci. 2021, 629, 119292. [Google Scholar] [CrossRef]
- Dhakal, N.; Salinas-Rodriguez, S.G.; Hamdani, J.; Abushaban, A.; Sawalha, H.; Schippers, J.C.; Kennedy, M.D. Is Desalination a Solution to Freshwater Scarcity in Developing Countries? Membranes 2022, 12, 381. [Google Scholar] [CrossRef] [PubMed]
- Ai, C.; Zhao, L.; Han, M.; Liu, S.; Wang, Z. Mitigating water imbalance between coastal and inland areas through seawater desalination within China. J. Clean. Prod. 2022, 371, 133418. [Google Scholar] [CrossRef]
- Jones, E.; Qadir, M.; van Vliet, M.T.H.; Smakhtin, V.; Kang, S.-M. The state of desalination and brine production: A global outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef] [PubMed]
- Meneses, M.; Pasqualino, J.C.; Céspedes-Sánchez, R.; Castells, F. Alternatives for Reducing the Environmental Impact of the Main Residue From a Desalination Plant. J. Ind. Ecol. 2010, 14, 512–527. [Google Scholar] [CrossRef]
- Gacia, E.; Invers, O.; Manzanera, M.; Ballesteros, E.; Romero, J. Impact of the brine from a desalination plant on a shallow seagrass (Posidonia oceanica) meadow. Estuar. Coast. Shelf Sci. 2007, 72, 579–590. [Google Scholar] [CrossRef]
- Wan Osman, W.N.A.; Mat Nawi, N.I.; Samsuri, S.; Bilad, M.R.; Wibisono, Y.; Hernández Yáñez, E.; Md Saad, J. A Review on Recent Progress in Membrane Distillation Crystallization. ChemBioEng Rev. 2022, 9, 93–109. [Google Scholar] [CrossRef]
- Curcio, E.; Drioli, E. Membrane Distillation and Related Operations—A Review. Sep. Purif. Rev. 2005, 34, 35–86. [Google Scholar] [CrossRef]
- Jawed, A.S.; Nassar, L.; Hegab, H.M.; van der Merwe, R.; Al Marzooqi, F.; Banat, F.; Hasan, S.W. Recent developments in solar-powered membrane distillation for sustainable desalination. Heliyon 2024, 10, e31656. [Google Scholar] [CrossRef]
- Moreira, V.R.; Raad, J.V.; Lazarini, J.X.; Santos, L.V.; Amaral, M.C. Recent progress in membrane distillation configurations powered by renewable energy sources and waste heat. J. Water Process Eng. 2023, 53, 103816. [Google Scholar] [CrossRef]
- Ngo, M.T.T.; Bui, X.-T.; Vo, T.-K.-Q.; Doan, P.V.M.; Nguyen, H.N.M.; Nguyen, T.H.; Ha, T.-L.; Nguyen, H.-V.; Vo, T.-D.-H. Mitigation of Thermal Energy in Membrane Distillation for Environmental Sustainability. Curr. Pollut. Rep. 2023, 9, 91–109. [Google Scholar] [CrossRef]
- Chimanlal, I.; Nthunya, L.N.; Quist-Jensen, C.; Richards, H. Membrane distillation crystallization for water and mineral recovery: The occurrence of fouling and its control during wastewater treatment. Front. Chem. Eng. 2022, 4, 1066027. [Google Scholar] [CrossRef]
- Tong, T.; Elimelech, M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. Environ. Sci. Technol. 2016, 50, 6846–6855. [Google Scholar] [CrossRef] [PubMed]
- Al-Sairfi, H.; Koshuriyan, M.; Ahmed, M. Membrane distillation of saline feeds and produced water: A comparative study of an air-gap and vacuum-driven modules. Desalination Water Treat. 2024, 317, 100145. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Khalil, A.; Hilal, N. Emerging desalination technologies: Current status, challenges and future trends. Desalination 2021, 517, 115183. [Google Scholar] [CrossRef]
- Ouda, A.; Fernández, Y.B.; McAdam, E. Modifying supersaturation rate with membrane area to volume ratio: Scaling reduction and improved crystal growth control in membrane distillation crystallisation. J. Membr. Sci. 2023, 683, 121838. [Google Scholar] [CrossRef]
- Jiang, X.; Tuo, L.; Lu, D.; Hou, B.; Chen, W.; He, G. Progress in membrane distillation crystallization: Process models, crystallization control and innovative applications. Front. Chem. Sci. Eng. 2017, 11, 647–662. [Google Scholar] [CrossRef]
- Qu, M.; You, S.; Wang, L. Insights into nucleation and growth kinetics in seeded vacuum membrane distillation crystallization. J. Membr. Sci. 2021, 620, 118813. [Google Scholar] [CrossRef]
- Shang, C.; Xia, J.; Sun, L.; Lipscomb, G.G.; Zhang, S. Concentration polarization on surface patterned membranes. AIChE J. 2022, 68, e17832. [Google Scholar] [CrossRef]
- Seo, J.; Kim, Y.M.; Kim, J.H. Spacer optimization strategy for direct contact membrane distillation: Shapes, configurations, diameters, and numbers of spacer filaments. Desalination 2017, 417, 9–18. [Google Scholar] [CrossRef]
- Zou, T.; Kang, G.; Zhou, M.; Li, M.; Cao, Y. Submerged vacuum membrane distillation crystallization (S-VMDC) with turbulent intensification for the concentration of NaCl solution. Sep. Purif. Technol. 2019, 211, 151–161. [Google Scholar] [CrossRef]
- Chang, Y.S.; Ahmad, A.L.; Leo, C.P.; Derek, C.J.C.; Ooi, B.S. Air bubbling assisted solar-driven submerged vacuum membrane distillation for aquaculture seawater desalination. J. Environ. Chem. Eng. 2022, 10, 107088. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Guo, F. Performance enhancement for membrane distillation by introducing insoluble particle fillers in the feed. Desalination 2023, 558, 116624. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, Q.; Yu, S.; Ji, X.; Ning, R.; Xu, Y.; Li, P. Integration of seeding-induced crystallization with microbubble aeration for membrane fouling and wetting control in vacuum membrane distillation. Desalination 2024, 581, 117555. [Google Scholar] [CrossRef]
- Yan, Z.; Lu, Z.; Chen, X.; Fan, G.; Qu, F.; Pang, H.; Liang, H. Integration of seeding- and heating-induced crystallization with membrane distillation for membrane gypsum scaling and wetting control. Desalination 2021, 511, 115115. [Google Scholar] [CrossRef]
- Flatscher, S.; Hell, F.; Hlawitschka, M.W.; Lahnsteiner, J. Seeded membrane distillation crystallization for hypersaline brine treatment. Water Reuse 2024, 14, 16–29. [Google Scholar] [CrossRef]
- Shin, Y.; Choi, J.; Choi, Y.; Sohn, J.; Lee, S.; Koo, J.; Choi, J. Control of CaSO4 scale formation in membrane distillation by seeded crystallization and in-line filtration. Desalination Water Treat. 2016, 57, 24654–24661. [Google Scholar] [CrossRef]
- Zhang, F.; Shan, B.; Wang, Y.; Zhu, Z.; Yu, Z.-Q.; Ma, C.Y. Progress and Opportunities for Utilizing Seeding Techniques in Crystallization Processes. Org. Process Res. Dev. 2021, 25, 1496–1511. [Google Scholar] [CrossRef]
- Gryta, M. The application of polypropylene membranes for production of fresh water from brines by membrane distillation. Chem. Papers 2017, 71, 775–784. [Google Scholar] [CrossRef]
- Bouchrit, R.; Boubakri, A.; Mosbahi, T.; Hafiane, A.; Bouguecha, S.A.-T. Membrane crystallization for mineral recovery from saline solution: Study case Na2SO4 crystals. Desalination 2017, 412, 1–12. [Google Scholar] [CrossRef]
- He, Y.; Gao, Z.; Zhang, T.; Sun, J.; Ma, Y.; Tian, N.; Gong, J. Seeding Techniques and Optimization of Solution Crystallization Processes. Org. Process Res. Dev. 2020, 24, 1839–1849. [Google Scholar] [CrossRef]
- Loï Mi Lung-Somarriba, B.; Moscosa-Santillan, M.; Porte, C.; Delacroix, A. Effect of seeded surface area on crystal size distribution in glycine batch cooling crystallization: A seeding methodology. J. Cryst. Growth 2004, 270, 624–632. [Google Scholar] [CrossRef]
Properties | Units | PTFE | PP |
---|---|---|---|
Inner diameter | mm | 8 | 5.5 |
Outer diameter | mm | 10 | 8.8 |
Wall thickness | mm | 1 | 1.55 |
Pore size | mm | 0.1–0.2 | 0.2 |
Length | m | 1 | 1 |
Membrane area | m2 | 0.025 | 0.017 |
Porosity | % | 70–80 | 73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flatscher, S.; Hlawitschka, M.W.; Samhaber, W.M.; Hell, F.; Lahnsteiner, J. Mitigating Wetting and Scaling in Air Gap Membrane Distillation Crystallization via SiO2 Seeding. Membranes 2025, 15, 321. https://doi.org/10.3390/membranes15100321
Flatscher S, Hlawitschka MW, Samhaber WM, Hell F, Lahnsteiner J. Mitigating Wetting and Scaling in Air Gap Membrane Distillation Crystallization via SiO2 Seeding. Membranes. 2025; 15(10):321. https://doi.org/10.3390/membranes15100321
Chicago/Turabian StyleFlatscher, Stefanie, Mark W. Hlawitschka, Wolfgang M. Samhaber, Florian Hell, and Josef Lahnsteiner. 2025. "Mitigating Wetting and Scaling in Air Gap Membrane Distillation Crystallization via SiO2 Seeding" Membranes 15, no. 10: 321. https://doi.org/10.3390/membranes15100321
APA StyleFlatscher, S., Hlawitschka, M. W., Samhaber, W. M., Hell, F., & Lahnsteiner, J. (2025). Mitigating Wetting and Scaling in Air Gap Membrane Distillation Crystallization via SiO2 Seeding. Membranes, 15(10), 321. https://doi.org/10.3390/membranes15100321