Coupling Low-Frequency Ultrasound to a Crossflow Microfiltration Pilot: Effect of Ultrasonic Pulse Application on Sono-Microfiltration of Jackfruit Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Raw Material Preparation
2.3. LFUS Coupling to the MF Pilot
2.3.1. Membrane Washing and Preparation of the Sono-Microfiltration Equipment
2.3.2. Membrane Integrity
2.3.3. Permeate Flux (Jp)
2.3.4. Volumetric Reduction Ratio (VRR)
2.3.5. Membrane Fouling and Loss of Permeability
2.3.6. Hermia Model
2.4. Selection of an Ultrasonic Probe Based on the Distance of the Energy Emitted at Different Amplitudes in the SMF Pilot
2.5. Application of Ultrasonic Pulses in Corrective Mode with the Selected Ultrasonic Probe to Recover the Permeability of the Filtration Membrane
2.6. Preventive Ultrasonic Pulse Application on Process Time Reduction in the SMF Pilot and Control Parameters
Ultrasonic Energy USE Generated during Sono-Microfiltration
2.7. Evaluation of Physicochemical Properties and Phenolic Compounds of Sono-Microfiltered Jackfruit Juice
2.7.1. pH, TA, and TSS Determination
2.7.2. Total Reducing Sugars Determination (TRS)
2.7.3. Moisture and Dry Matter Determination
2.7.4. Viscosity Determination
2.7.5. Turbidity Determination
2.7.6. Total Soluble Phenols (TSP)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Selection of an Ultrasonic Probe Based on the Dissipation of the Energy Emitted at Different Amplitudes in the SMF Pilot
3.2. Application of Ultrasonic Pulses in Corrective Mode to Recover the Permeability of the Filtration Membrane
3.3. Effect of Preventive Ultrasonic Pulses on the Reduction of Process Time in the SMF Pilot
- Lower amplitude—higher pulse ON (30% amplitude—1 min ON)
- Lower amplitude—higher OFF pulse (30% amplitude—5 min OFF)
- Higher pulse ON—higher pulse OFF (1 min ON—5 min OFF)
3.4. Effect of SMF on the Physicochemical Properties and Phenolic Compounds of Microfiltered Jackfruit Juice
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MF | Microfiltration |
LFUS | Low-frequency ultrasound |
US | Ultrasound |
USI | Ultrasound intensity |
USE | Ultrasound energy |
SMF | Sono-Microfiltration |
JP | Jackfruit pulp |
JJ | Jackfruit juice |
HJP | Hydrolyzed jackfruit pulp |
IJJF | Initial jackfruit juice |
CJJ | Clarified jackfruit juice |
RJJ | Retained jackfruit juice |
VRR | Volumetric reduction ratio |
TMP | Transmembrane pressure (bar) |
Jp | Permeate flux (L·h−1·m−2) |
U | Crossflow velocity in membrane channels (m·s−1) |
TSS | Total soluble solids (°Brix) |
TA | Titratable acidity (g·kg−1) |
NTU | Nephelometric Turbidity Units |
TSP | Total soluble phenols |
GAE | Gallic acid equivalent |
Appendix A
Appendix B
References
- Schnabel, L.; Kesse-Guyot, E.; Allès, B.; Touvier, M.; Srour, B.; Hercberg, S.; Buscail, C.; Julia, C. Association between Ultraprocessed Food Consumption and Risk of Mortality among Middle-aged Adults in France. JAMA Intern. Med. 2019, 179, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Szwacka-Mokrzycka, J.; Kociszewski, M. Directions of Functional Food Market Development in Light of New Consumer Trends. Acta Sci. Pol. Oeconomia 2019, 18, 103–111. [Google Scholar] [CrossRef]
- Di Corcia, S.; Dhuique-Mayer, C.; Dornier, M. Concentrates from citrus juice obtained by crossflow microfiltration: Guidance of the process considering carotenoid bioaccessibility. Innov. Food Sci. Emerg. Technol. 2020, 66, 102526. [Google Scholar] [CrossRef]
- Morelli, R.; Conidi, C.; Tundis, R.; Loizzo, M.R.; D’avella, M.; Timpone, R.; Cassano, A. Production of High-Quality Red Fruit Juices by Athermal Membrane Processes. Molecules 2022, 27, 7435. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, C.; Saxena, V.K.; Dutta, S. Fruit juice processing using membrane technology: A review. Innov. Food Sci. Emerg. Technol. 2017, 43, 136–153. [Google Scholar] [CrossRef]
- Pradhan, M.; Johir, M.A.H.; Kandasamy, J.; Ratnaweera, H.; Vigneswaran, S. Effects of Viscosity on Submerged Membrane Microfiltration Systems. Membranes 2022, 12, 780. [Google Scholar] [CrossRef]
- Perreault, V.; Gouin, N.; Bérubé, A.; Villeneuve, W.; Pouliot, Y.; Doyen, A. Effect of pectinolytic enzyme pretreatment on the clarification of cranberry juice by ultrafiltration. Membranes 2021, 11, 55. [Google Scholar] [CrossRef]
- Terán Hilares, R.; Singh, I.; Tejada Meza, K.; Colina Andrade, G.J.; Pacheco Tanaka, D.A. Alternative methods for cleaning membranes in water and wastewater treatment. Water Environ. Res. 2022, 94, e10708. [Google Scholar] [CrossRef]
- Wang, T.; Wang, N.; Li, N.; Ji, X.; Zhang, H.; Yu, D.; Wang, L. Effect of high-intensity ultrasound on the physicochemical properties, microstructure, and stability of soy protein isolate-pectin emulsion. Ultrason. Sonochem. 2021, 82, 105871. [Google Scholar] [CrossRef]
- Chavan, P.; Sharma, P.; Sharma, S.R.; Mittal, T.C.; Jaiswal, A.K. Application of High-Intensity Ultrasound to Improve Food Processing Efficiency: A Review. Foods 2022, 11, 122. [Google Scholar] [CrossRef]
- Hasan, M.R.; Che Abdullah, C.A.; Nor Afizah, M.; Mohd Ghazali, M.S.; Noranizan, M.A. Efficacy of ultrasonic cleaning on cockle shells. J. Food Eng. 2023, 352, 111523. [Google Scholar] [CrossRef]
- Tzanakis, I.; Lebon, G.S.B.; Eskin, D.G.; Pericleous, K.A. Characterizing the cavitation development and acoustic spectrum in various liquids. Ultrason. Sonochem. 2017, 34, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Rosales Pérez, A.; Esquivel Escalante, K. The Evolution of Sonochemistry: From the Beginnings to Novel Applications. Chempluschem 2024, 89, e202300660. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Young, S. Strategies for Mitigating MBR Membrane Biofouling. J. Environ. Inform. Lett. 2022, 8, 70–78. [Google Scholar] [CrossRef]
- Shaik, L.; Chakraborty, S. Nonthermal pasteurization of pineapple juice: A review on the potential of achieving microbial safety and enzymatic stability. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4716–4737. [Google Scholar] [CrossRef] [PubMed]
- Navarrete-Solis, A. Study of the effect of ultrasound coupled to a tangential filtration pilot on the clarification of jackfruit juice (Artocarpus heterophyllus L.). Ph.D. Dissertation, Université Grenoble Alpes, Tecnológico nacional de México, Mexico City, Mexico, 2019. Available online: https://tel.archives-ouvertes.fr/tel-02512108/ (accessed on 15 June 2024).
- Bayevsky, M. Systems and Methods for Ultrasonic Cleaning of Cross-Flow Membrane Filters. U.S. Patent US 2004OO16699A1, 2004. Volume 1. [Google Scholar]
- Hengl, N.; Pignon, F.; Gondrexon, N.; Baup, S.; Yao, J.I. Liquid Filtration Device Comprising an Ultrasound Emission Module. U.S. Patent US20220401887A1, 2019. Volume 1. [Google Scholar]
- Vadoothker, A.R. Ultrasound-Assited Filtration System. U.S. Patent USOO6221255B1, 2001. Volume 1. [Google Scholar]
- Whitaker, S. Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Porous Media 1986, 1, 3–25. [Google Scholar] [CrossRef]
- Dahdouh, L.; Wisniewski, C.; Kapitan-Gnimdu, A.; Servent, A.; Dornier, M.; Delalonde, M. Identification of relevant physicochemical characteristics for predicting fruit juices filterability. Sep. Purif. Technol. 2015, 141, 59–67. [Google Scholar] [CrossRef]
- Vaillant, F.; Pérez, A.M.; Acosta, O.; Dornier, M. Turbidity of pulpy fruit juice: A key factor for predicting cross-flow microfiltration performance. J. Memb. Sci. 2008, 325, 404–412. [Google Scholar] [CrossRef]
- Hermia, J. Constant Pressure Blocking Filtration Laws—Application To Power-law Non-newtonian Fluids. Inst. Chem. Eng. Trans. 1982, 60, 183–187. [Google Scholar]
- Pereira, G.L.D.; Cardozo-Filho, L.; Jegatheesan, V.; Guirardello, R. Generalization and Expansion of the Hermia Model for a Better Understanding of Membrane Fouling. Membranes 2023, 13, 290. [Google Scholar] [CrossRef]
- Juárez-Trujillo, N.; González-Avila, C.; Beristain-Guevara, C.I.; Mendoza-López, M.R.; Pascual-Pineda, L.A.; Jiménez-Fernández, M. Nutritional, physicochemical and antioxidant properties of sprouted and fermented beverages made from Phalaris canariensis seed. Int. J. Food Sci. Technol. 2023, 58, 5299–5310. [Google Scholar] [CrossRef]
- Aghapour Aktij, S.; Taghipour, A.; Rahimpour, A.; Mollahosseini, A.; Tiraferri, A. A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes. Ultrasonics 2020, 108, 106228. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, S.H.M.C.; Silva, E.K.; Guimarães, J.T.; Freitas, M.Q.; Meireles, M.A.A.; Cruz, A.G. High-intensity ultrasound energy density: How different modes of application influence the quality parameters of a dairy beverage. Ultrason. Sonochem. 2020, 63, 104928. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Tal, G.; Hankins, N.P.; Gitis, V. Fouling and cleaning of ultrafiltration membranes: A review. J. Water Process Eng. 2014, 1, 121–138. [Google Scholar] [CrossRef]
- Huang, B.; Zhao, K.; Zhang, Z.; Liu, F.; Hu, H.; Pan, S. Changes on the rheological properties of pectin-enriched mango nectar by high intensity ultrasound. LWT Food Sci. Technol. 2018, 91, 414–422. [Google Scholar] [CrossRef]
- Chen, L.; Chen, L.; Zhu, K.; Bi, X.; Xing, Y.; Che, Z. The effect of high-power ultrasound on the rheological properties of strawberry pulp. Ultrason. Sonochem. 2020, 67, 105144. [Google Scholar] [CrossRef]
- El Rayess, Y.; Albasi, C.; Bacchin, P.; Taillandier, P.; Raynal, J.; Mietton-Peuchot, M.; Devatine, A. Cross-flow microfiltration applied to oenology: A review. J. Memb. Sci. 2011, 382, 1–19. [Google Scholar] [CrossRef]
- Jang, H.; Kang, S.; Kim, J. Identification of Membrane Fouling with Greywater Filtration by Porous Membranes: Combined Effect of Membrane Pore Size and Applied Pressure. Membranes 2024, 14, 46. [Google Scholar] [CrossRef]
- Urošević, T.; Povrenović, D.; Vukosavljević, P.; Urošević, I.; Stevanović, S. Recent developments in microfiltration and ultrafiltration of fruit juices. Food Bioprod. Process 2017, 106, 147–161. [Google Scholar] [CrossRef]
- Hammad, I.; Dornier, M.; Lebrun, M.; Maraval, I.; Poucheret, P.; Dhuique-Mayer, C. Impact of crossflow microfiltration on aroma and sensory profiles of a potential functional citrus-based food. J. Sci. Food Agric. 2022, 102, 5768–5777. [Google Scholar] [CrossRef]
- Vaillant, F.; Millan, A.; Dornier, M.; Decloux, M.; Reynes, M. Strategy for economical optimization of the clarification of pulpy fruit juices using crossflow microfiltration. J. Food Eng. 2001, 48, 83–90. [Google Scholar] [CrossRef]
- Swami, S.B.; Thakor, N.J.; Wagh, S.S. Effect of temperature on viscosity of kokum, karonda, mango pulp and cashew apple syrup. Agric. Eng. Int. CIGR J. 2013, 15, 281–287. [Google Scholar]
- Costa, M.G.M.; Fonteles, T.V.; de Jesus, A.L.T.; Almeida, F.D.L.; de Miranda, M.R.A.; Fernandes, F.A.N.; Rodrigues, S. High-Intensity Ultrasound Processing of Pineapple Juice. Food Bioprocess. Technol. 2013, 6, 997–1006. [Google Scholar] [CrossRef]
- Salehi, F. Physicochemical characteristics and rheological behaviour of some fruit juices and their concentrates. J. Food Meas. Charact. 2020, 14, 2472–2488. [Google Scholar] [CrossRef]
- Lamminen, M.O.; Walker, H.W.; Weavers, L.K. Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. J. Memb. Sci. 2004, 237, 213–223. [Google Scholar] [CrossRef]
- Yusaf, T.; Al-Juboori, R.A. Alternative methods of microorganism disruption for agricultural applications. Appl. Energy 2014, 114, 909–923. [Google Scholar] [CrossRef]
- Chen, D. Ultrasonic control of ceramic membrane fouling caused by natural organic matter and silica particles. J. Membr. Sci. 2005, 276, 135–144. [Google Scholar] [CrossRef]
- Chen, D.; Weavers, L.K.; Walker, H.W. Ultrasonic control of ceramic membrane fouling by particles: Effect of ultrasonic factors. Ultrason. Sonochem. 2006, 13, 379–387. [Google Scholar] [CrossRef]
- Cakl, J.; Bauer, I.; Doleček, P.; Mikulášek, P. Effects of backflushing conditions on permeate flux in membrane crossflow microfiltration of oil emulsion. Desalination 2000, 127, 189–198. [Google Scholar] [CrossRef]
- Maskooki, A.; Kobayashi, T.; Mortazavi, S.A.; Maskooki, A. Effect of low frequencies and mixed wave of ultrasound and EDTA on flux recovery and cleaning of microfiltration membranes. Sep. Purif. Technol. 2008, 59, 67–73. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kobayashi, T.; Hosaka, Y.; Fujii, N. Ultrasound-enhanced membrane-cleaning processes applied water treatments: Influence of sonic frequency on filtration treatments. Ultrasonics 2003, 41, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaran, S.; Kentish, S.E.; Ashokkumar, M.; Stevens, G.W. Mechanisms for the ultrasonic enhancement of dairy whey ultrafiltration. J. Memb. Sci. 2005, 258, 106–114. [Google Scholar] [CrossRef]
- Mores, W.D.; Davis, R.H. Direct observation of membrane cleaning via rapid backpulsing. Desalination 2002, 146, 135–140. [Google Scholar] [CrossRef]
- Mohammadi, T.; Madaeni, S.S.; Moghadam, M.K. Investigation of membrane fouling. Desalination 2003, 153, 155–160. [Google Scholar] [CrossRef]
- Park, J.Y.; Lee, H.C.; Cho, J.H. Effect of Water-Back-Flushing Time and Period in Advanced Water Treatment System by Ceramic Microfiltration. 2008. Available online: https://db.koreascholar.com/Article/Detail/244601 (accessed on 11 August 2024).
- Ranasinghe, R.A.S.N.; Maduwanthi, S.D.T.; Marapana, R.A.U.J. Nutritional and Health Benefits of Jackfruit (Artocarpus heterophyllus Lam.): A Review. Int. J. Food Sci. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Goswami, C.; Chacrabati, R. Jackfruit (Artocarpus heterophylus). In Nutritional Composition of Fruit Cultivars; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 317–335. [Google Scholar] [CrossRef]
- Galvez, L.; Dizon, E. Physico-chemical and funtional properties of two jackfruit (Artocarpus heterophyllus Lam.) varieties in Eastern Visayas, Philippines. Ann. Trop. Res. 2017, 392, 100–106. [Google Scholar] [CrossRef]
- Navarrete-Solis, A.; Hengl, N.; Ragazzo-Sánchez, J.A.; Baup, S.; Calderón-Santoyo, M.; Pignon, F.; López-García, U.M.; Ortiz-Basurto, R.I. Rheological and physicochemical stability of hydrolyzed jackfruit juice (Artocarpus heterophyllus L.) processed by spray drying. J. Food Sci. Technol. 2020, 57, 663–672. [Google Scholar] [CrossRef]
- Souza, M.A.; Bonomo, R.C.F.; Fontan, R.C.I.; Minim, L.A.; Coimbra, J.S.D.R. Thermophysical properties of jackfruit pulp affected by changes in moisture content and temperature. J. Food Process Eng. 2011, 34, 580–592. [Google Scholar] [CrossRef]
- Aseef, R.M.; Manikandan, K.; Kavino, M.; Vijayakumar, R.M.; Ganesan, N.M. Biochemical evaluation of local genotypes of jackfruit (Artocarpus heterophyllus Lam.) in Pudukkotai District. J. Pharmacogn. Phytochem. 2017, 6, 2533–2536. [Google Scholar]
- Pebbuli, A.; Bauri, F.K. Assessment of Different Quality Characters of Twenty Jackfruit Genotypes under New Alluvial Zone of West Bengal. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2621–2626. [Google Scholar] [CrossRef]
- Fernández García, L.; Riera Rodríguez, F.A. Combination of microfiltration and heat treatment for ESL milk production: Impact on shelf life. J. Food Eng. 2014, 128, 1–9. [Google Scholar] [CrossRef]
- Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Granados, M.; Farran, A.; Cortina, J.L.; Saurina, J.; Valderrama, C. Recovery of Natural Polyphenols from Spinach and Orange By-Products by Pressure-Driven Membrane Processes. Membranes 2022, 12, 669. [Google Scholar] [CrossRef] [PubMed]
- M’hiri, N.; Ioannou, I.; Mihoubi Boudhrioua, N.; Ghoul, M. Effect of different operating conditions on the extraction of phenolic compounds in orange peel. Food Bioprod. Process 2015, 96, 161–170. [Google Scholar] [CrossRef]
- Abreu-Naranjo, R.; Arteaga-Crespo, Y.; Bravo-Sánchez, L.R.; Pérez-Quintana, M.L.; García-Quintana, Y. Optimizaciòn de extraíbles totales a partir de corteza de Maytenus macrocarpa asistida por ultrasonido mediante metodología de superficie de respuesta. Afinidad 2020, 77, 118–124. [Google Scholar]
- Madrona, G.S.; Terra, N.M.; Filho, U.C.; Magalhães, F.D.S.; Cardoso, V.L.; Reis, M.H.M. Purification of phenolic compounds from genipap (Genipa americana L.) extract by the ultrasound assisted ultrafiltration process. Acta Sci. Technol. 2019, 41, 35571. [Google Scholar] [CrossRef]
- Cisse, M.; Vaillant, F.; Perez, A.; Dornier, M.; Reynes, M. The quality of orange juice processed by coupling crossf low microfiltration and osmotic evaporation. Int. J. Food Sci. Technol. 2005, 40, 105–116. [Google Scholar] [CrossRef]
Treatment | Operating Conditions in SMF Pilot |
---|---|
SMF1 | 0.2 min ON—1 min OFF—40% amplitude LFUS |
SMF2 | 1 min ON—1 min OFF—30% amplitude LFUS |
SMF3 | 0.2 min ON—5 min OFF—30% amplitude LFUS |
SMF4 | 1 min ON—5 min OFF—40% amplitude LFUS |
Amplitude LFUS (%) | Power (W) | Energy Irradiation Distance (cm) | USI (W·cm2) | |||
---|---|---|---|---|---|---|
1.27 cm | 2.54 cm | 1.27 cm | 2.54 cm | 1.27 cm | 2.54 cm | |
20 | 57.0 ± 0.7 aB | 42.2 ± 1.0 aA | 9.5 ± 0.7 aA | 8.0 ± 0.1 aA | 45.2 ± 0.6 aB | 9.4 ± 0.2 aA |
40 | 75.5 ± 4.2 bB | 66.7 ± 1.0 bB | 18.2 ± 0.3 bB | 10.0 ± 0.1 aA | 59.9 ± 3.4 bB | 14.8 ± 0.1 bA |
60 | 86.5 ± 0.9 cA | 95.7 ± 0.3 cB | 20.0 ± 0.1 bA | 19.5 ± 0.7 bA | 68.6 ± 0.1 cB | 21.3 ± 0.1 cA |
80 | 128.7 ± 1.7 dA | 129.5 ± 1.4 dA | 20.0 ± 0.1 bA | 20.0 ± 0.1 bA | 102.2 ± 1.4 dB | 28.8 ± 0.3 dA |
100 | 159.5 ± 1.4 eA | 160.0 ± 3.5 eA | 20.0 ± 0.1 bA | 20.0 ± 0.1 bA | 126.6 ± 1.1 eB | 35.6 ± 0.8 eA |
SMF Process | Correlation Coefficients (R2) | |||
---|---|---|---|---|
CB | IB | SB | CF | |
MF | 0.5385 | 0.6945 | 0.6218 | 0.7775 |
SMF1 | 0.7189 | 0.9147 | 0.8424 | 0.9577 |
SMF2 | 0.8101 | 0.9798 | 0.9157 | 0.9884 |
SMF3 | 0.6934 | 0.9202 | 0.8250 | 0.9915 |
SMF4 | 0.7255 | 0.9413 | 0.8593 | 0.9797 |
Treatment | Moisture (%)WB | pH | TA (%)WB | TRS (g·kg−1)WB | |
---|---|---|---|---|---|
Jackfruit pulp | 77.46 ± 2.9 b | 5.0 ± 0.1 a | 0.25 ± 0.03 d | 15.50 ± 1.0 c | |
Feeding initial jackfruit juice (1:2 pulp/water ratio) | 88.6 ± 0.6 b | 4.7 ± 0.1 a | 0.20 ± 0.01 c | 12.7 ± 0.2 b | |
Retained jackfruit juice | MF | 89.3 ± 0.3 b | 4.7 ± 0.1 a | 0.20 ± 0.01 c | 12.6 ± 0.1 b |
SMF1 | 89.0 ± 0.7 b | 4.7 ± 0.1 a | 0.21 ± 0.01 c | 12.8 ± 0.1 b | |
SMF 2 | 87.5 ± 0.2 b | 4.7 ± 0.1 a | 0.22 ± 0.01 c | 12.8 ± 0.1 b | |
SMF 3 | 85.4 ± 1.6 b | 4.7 ± 0.1 a | 0.20 ± 0.01 c | 12.4 ± 0.1 b | |
SMF 4 | 87.8 ± 0.7 b | 4.7 ± 0.1 a | 0.22 ± 0.01 c | 12.6 ± 0.2 b | |
Clarified jackfruit juice | MF | 91.6 ± 0.5 a | 4.7 ± 0.1 a | 0.14 ± 0.01 a | 11.7 ± 0.1 b |
SMF 1 | 91.9 ± 0.6 a | 4.7 ± 0.1 a | 0.16 ± 0.03 b | 10.8 ± 0.1 a | |
SMF 2 | 92.7 ± 0.6 a | 4.7 ± 0.1 a | 0.17 ± 0.01 b | 10.9 ± 0.2 a | |
SMF 3 | 91.6 ± 0.5 a | 4.7 ± 0.1 a | 0.17 ± 0.01 b | 10.9 ± 0.1 a | |
SMF 4 | 90.5 ± 0.6 a | 4.7 ± 0.1 a | 0.17 ± 0.01 b | 11.5 ± 0.2 b |
Operating Conditions | USE (J·L−1) |
---|---|
SMF1 | 5170 ± 110 |
SMF2 | 8440 ± 70 |
SMF3 | 870 ± 90 |
SMF4 | 4580 ± 110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miramontes-Escobar, H.A.; Hengl, N.; Dornier, M.; Montalvo-González, E.; Chacón-López, M.A.; Achir, N.; Vaillant, F.; Ortiz-Basurto, R.I. Coupling Low-Frequency Ultrasound to a Crossflow Microfiltration Pilot: Effect of Ultrasonic Pulse Application on Sono-Microfiltration of Jackfruit Juice. Membranes 2024, 14, 192. https://doi.org/10.3390/membranes14090192
Miramontes-Escobar HA, Hengl N, Dornier M, Montalvo-González E, Chacón-López MA, Achir N, Vaillant F, Ortiz-Basurto RI. Coupling Low-Frequency Ultrasound to a Crossflow Microfiltration Pilot: Effect of Ultrasonic Pulse Application on Sono-Microfiltration of Jackfruit Juice. Membranes. 2024; 14(9):192. https://doi.org/10.3390/membranes14090192
Chicago/Turabian StyleMiramontes-Escobar, Herenia Adilene, Nicolas Hengl, Manuel Dornier, Efigenia Montalvo-González, Martina Alejandra Chacón-López, Nawel Achir, Fabrice Vaillant, and Rosa Isela Ortiz-Basurto. 2024. "Coupling Low-Frequency Ultrasound to a Crossflow Microfiltration Pilot: Effect of Ultrasonic Pulse Application on Sono-Microfiltration of Jackfruit Juice" Membranes 14, no. 9: 192. https://doi.org/10.3390/membranes14090192
APA StyleMiramontes-Escobar, H. A., Hengl, N., Dornier, M., Montalvo-González, E., Chacón-López, M. A., Achir, N., Vaillant, F., & Ortiz-Basurto, R. I. (2024). Coupling Low-Frequency Ultrasound to a Crossflow Microfiltration Pilot: Effect of Ultrasonic Pulse Application on Sono-Microfiltration of Jackfruit Juice. Membranes, 14(9), 192. https://doi.org/10.3390/membranes14090192