Performance and Enhanced Efficiency Induced by Cold Plasma on SAPO-34 Membranes for CO2 and CH4 Mixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Membrane Synthesis
2.1.1. SAPO-34 Seed Synthesis
2.1.2. SAPO-34 Membrane Synthesis
2.1.3. Membrane Continuity
2.2. Plasma Membrane System Design
2.3. Membrane Characterization
3. Results and Discussion
3.1. CO2 and CH4 Permeance
3.2. Electrical Characterization
3.3. Effect on Morphology of SAPO-34 Membranes
3.4. Plausible Understanding of CO2/CH4 Plasma-Mediated Separations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sholl, D.S.; Lively, R.P. Seven chemical separations to change the world. Nature 2016, 532, 435–437. [Google Scholar] [CrossRef] [PubMed]
- Koros, W.J.; Fleming, G.K. Membrane-based gas separation. J. Membr. Sci. 1993, 83, 1–80. [Google Scholar] [CrossRef]
- Baker, R.W.; Low, B.T. Gas separation membrane materials: A perspective. Macromolecules 2014, 47, 6999–7013. [Google Scholar] [CrossRef]
- Scherer, G.W.; Celia, M.A.; Prevost, J.-H.; Bachu, S.; Bruant, R.; Duguid, A.; Fuller, R.; Gasda, S.E.; Radonjic, M.; Vichit-Vadakan, W. Leakage of CO2 through abandoned wells: Role of corrosion of cement. In Carbon Dioxide Capture for Storage in Deep Geologic Formations; Elsevier: Amsterdam, The Netherlands, 2015; Volume 2, pp. 827–848. [Google Scholar]
- Kermani, M.B.; Morshed, A. Carbon dioxide corrosion in oil and gas productiona compendium. Corrosion 2003, 59, 659–683. [Google Scholar] [CrossRef]
- Chakraborty, A.K.; Astarita, G.; Bischoff, K.B. CO2 absorption in aqueous solutions of hindered amines. Chem. Eng. Sci. 1986, 41, 997–1003. [Google Scholar] [CrossRef]
- Peters, L.; Hussain, A.; Follmann, M.; Melin, T.; Hägg, M.B. CO2 removal from natural gas by employing amine absorption and membrane technology—A technical and economical analysis. Chem. Eng. J. 2011, 172, 952–960. [Google Scholar] [CrossRef]
- Rufford, T.E.; Smart, S.; Watson, G.C.Y.; Graham, B.F.; Boxall, J.; Da Costa, J.C.D.; May, E.F. The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. J. Pet. Sci. Eng. 2012, 94, 123–154. [Google Scholar] [CrossRef]
- Carreon, M.A.; Li, S.; Falconer, J.L.; Noble, R.D. Alumina-supported SAPO-34 membranes for CO2/CH4 separation. J. Am. Chem. Soc. 2008, 130, 5412–5413. [Google Scholar] [CrossRef]
- Venna, S.R.; Carreon, M.A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J. Am. Chem. Soc. 2010, 132, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Martinek, J.G.; Falconer, J.L.; Noble, R.D.; Gardner, T.Q. High-pressure CO2/CH4 separation using SAPO-34 membranes. Ind. Eng. Chem. Res. 2005, 44, 3220–3228. [Google Scholar] [CrossRef]
- Li, S.; Falconer, J.L.; Noble, R.D. SAPO-34 membranes for CO2/CH4 separation. J. Membr. Sci. 2004, 241, 121–135. [Google Scholar] [CrossRef]
- Cavenati, S.; Grande, C.A.; Rodrigues, A.E. Separation of CH4/CO2/N2 mixtures by layered pressure swing adsorption for upgrade of natural gas. Chem. Eng. Sci. 2006, 61, 3893–3906. [Google Scholar] [CrossRef]
- Bhadra, S.J.; Farooq, S. Separation of methane–nitrogen mixture by pressure swing adsorption for natural gas upgrading. Ind. Eng. Chem. Res. 2011, 50, 14030–14045. [Google Scholar] [CrossRef]
- Yousef, A.M.; El-Maghlany, W.M.; Eldrainy, Y.A.; Attia, A. New approach for biogas purification using cryogenic separation and distillation process for CO2 capture. Energy 2018, 156, 328–351. [Google Scholar] [CrossRef]
- Maqsood, K.; Mullick, A.; Ali, A.; Kargupta, K.; Ganguly, S. Cryogenic carbon dioxide separation from natural gas: A review based on conventional and novel emerging technologies. Rev. Chem. Eng. 2014, 30, 453–477. [Google Scholar] [CrossRef]
- Zhao, B.; Sun, Y.; Yuan, Y.; Gao, J.; Wang, S.; Zhuo, Y.; Chen, C. Study on corrosion in CO2 chemical absorption process using amine solution. Energy Procedia 2011, 4, 93–100. [Google Scholar] [CrossRef]
- Flø, N.E.; Faramarzi, L.; Iversen, F.; Kleppe, E.R.; Graver, B.; Bryntesen, H.N.; Johnsen, K. Assessment of material selection for the CO2 absorption process with aqueous MEA solution based on results from corrosion monitoring at Technology Centre Mongstad. Int. J. Greenh. Gas Control 2019, 84, 91–110. [Google Scholar] [CrossRef]
- Yu, C.-H.; Huang, C.-H.; Tan, C.-S. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 2012, 12, 745–769. [Google Scholar] [CrossRef]
- Miandoab, E.S.; Mousavi, S.H.; Kentish, S.E.; Scholes, C.A. Xenon and Krypton separation by membranes at sub-ambient temperatures and its comparison with cryogenic distillation. Sep. Purif. Technol. 2021, 262, 118349. [Google Scholar] [CrossRef]
- Zhang, Y.; Sunarso, J.; Liu, S.; Wang, R. Current status and development of membranes for CO2/CH4 separation: A review. Int. J. Greenh. Gas Control 2013, 12, 84–107. [Google Scholar] [CrossRef]
- Lixiong, Z.; Mengdong, J.; Enze, M. Synthesis of SAPO-34/ceramic composite membranes. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1997; Volume 105, pp. 2211–2216. [Google Scholar]
- Poshusta, J.C.; Tuan, V.A.; Falconer, J.L.; Noble, R.D. Synthesis and permeation properties of SAPO-34 tubular membranes. Ind. Eng. Chem. Res. 1998, 37, 3924–3929. [Google Scholar] [CrossRef]
- Poshusta, J.C.; Tuan, V.A.; Pape, E.A.; Noble, R.D.; Falconer, J.L. Separation of light gas mixtures using SAPO-34 membranes. AIChE J. 2000, 46, 779–789. [Google Scholar] [CrossRef]
- Ranjan, R.; Tsapatsis, M. Microporous metal organic framework membrane on porous support using the seeded growth method. Chem. Mater. 2009, 21, 4920–4924. [Google Scholar] [CrossRef]
- Bux, H.; Liang, F.; Li, Y.; Cravillon, J.; Wiebcke, M.; Caro, J.r. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2009, 131, 16000–16001. [Google Scholar] [CrossRef]
- Song, Q.; Jiang, S.; Hasell, T.; Liu, M.; Sun, S.; Cheetham, A.K.; Sivaniah, E.; Cooper, A.I. Porous organic cage thin films and molecular-sieving membranes. Adv. Mater. 2016, 28, 2629–2637. [Google Scholar] [CrossRef] [PubMed]
- Lucero, J.M.; Carreon, M.A. Separation of light gases from xenon over porous organic cage membranes. ACS Appl. Mater. Interfaces 2020, 12, 32182–32188. [Google Scholar] [CrossRef]
- Yu, M.; Funke, H.H.; Noble, R.D.; Falconer, J.L. H2 separation using defect-free, inorganic composite membranes. J. Am. Chem. Soc. 2011, 133, 1748–1750. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Bao, Y.; Song, C.; Yang, W.; Liu, J.; Lin, L. Synthesis, characterization and single gas permeation properties of NaA zeolite membrane. J. Membr. Sci. 2005, 249, 51–64. [Google Scholar] [CrossRef]
- Kosinov, N.; Gascon, J.; Kapteijn, F.; Hensen, E.J.M. Recent developments in zeolite membranes for gas separation. J. Membr. Sci. 2016, 499, 65–79. [Google Scholar] [CrossRef]
- Tomita, T.; Nakayama, K.; Sakai, H. Gas separation characteristics of DDR type zeolite membrane. Microporous Mesoporous Mater. 2004, 68, 71–75. [Google Scholar] [CrossRef]
- Cui, Y.; Kita, H.; Okamoto, K.-i. Preparation and gas separation performance of zeolite T membrane. J. Mater. Chem. 2004, 14, 924–932. [Google Scholar] [CrossRef]
- Allison, T.C.; Singh, A.; Thorp, J. Upstream compression applications. In Compression Machinery for Oil and Gas; Elsevier: Amsterdam, The Netherlands, 2019; pp. 375–385. [Google Scholar]
- Cardoso, A.R.T.; Ambrosi, A.; Di Luccio, M.; Hotza, D. Membranes for separation of CO2/CH4 at harsh conditions. J. Nat. Gas Sci. Eng. 2022, 98, 104388. [Google Scholar]
- Mizushima, T.; Matsumoto, K.; Sugoh, J.-I.; Ohkita, H.; Kakuta, N. Tubular membrane-like catalyst for reactor with dielectric-barrier-discharge plasma and its performance in ammonia synthesis. Appl. Catal. A Gen. 2004, 265, 53–59. [Google Scholar] [CrossRef]
- Hayakawa, Y.; Miura, T.; Shizuya, K.; Wakazono, S.; Tokunaga, K.; Kambara, S. Hydrogen production system combined with a catalytic reactor and a plasma membrane reactor from ammonia. Int. J. Hydrogen Energy 2019, 44, 9987–9993. [Google Scholar] [CrossRef]
- Chen, H.; Mu, Y.; Hardacre, C.; Fan, X. Integration of membrane separation with nonthermal plasma catalysis: A proof-of-concept for CO2 capture and utilization. Ind. Eng. Chem. Res. 2020, 59, 8202–8211. [Google Scholar] [CrossRef]
- Neyts, E.C.; Ostrikov, K.; Sunkara, M.K.; Bogaerts, A. Plasma catalysis: Synergistic effects at the nanoscale. Chem. Rev. 2015, 115, 13408–13446. [Google Scholar] [CrossRef] [PubMed]
- Mangolini, L.; Thimsen, E.; Kortshagen, U. High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 2005, 5, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.; Wu, T.; Lucero, J.; Carreon, M.A.; Carreon, M.L. Nonthermal plasma synthesis of ammonia over Ni-MOF-74. ACS Sustain. Chem. Eng. 2018, 7, 377–383. [Google Scholar] [CrossRef]
- Gershman, S.; Fetsch, H.; Gorky, F.; Carreon, M.L. Identifying regimes during plasma catalytic ammonia synthesis. Plasma Chem. Plasma Process. 2022, 42, 731–757. [Google Scholar] [CrossRef]
- Rosa, V.; Cameli, F.; Stefanidis, G.D.; Van Geem, K.M. Integrating Materials in Non-Thermal Plasma Reactors: Challenges and Opportunities. Acc. Mater. Res. 2024. [Google Scholar] [CrossRef]
- Vertongen, R.; De Felice, G.; van den Bogaard, H.; Gallucci, F.; Bogaerts, A.; Li, S. Sorption-Enhanced Dry Reforming of Methane in a DBD Plasma Reactor for Single-Stage Carbon Capture and Utilization. ACS Sustain. Chem. Eng. 2024, 12, 10841–10853. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Yun, H.; Nair, S.; Jalan, B.; Mkhoyan, K.A. Mending cracks atom-by-atom in rutile TiO2 with electron beam radiolysis. Nat. Commun. 2023, 14, 6005. [Google Scholar] [CrossRef]
- Gorky, F.; Nguyen, H.M.; Krishnan, K.; Lucero, J.M.; Carreon, M.L.; Carreon, M.A. Plasma-induced desorption of methane and carbon dioxide over silico alumino phosphate zeolites. ACS Appl. Energy Mater. 2023, 6, 4380–4389. [Google Scholar] [CrossRef]
- Schiffer, Z.J.; Manthiram, K. Electrification and decarbonization of the chemical industry. Joule 2017, 1, 10–14. [Google Scholar] [CrossRef]
- Gallucci, F.; Paturzo, L.; Basile, A. An experimental study of CO2 hydrogenation into methanol involving a zeolite membrane reactor. Chem. Eng. Process. Process Intensif. 2004, 43, 1029–1036. [Google Scholar] [CrossRef]
- Gallucci, F.; Tosti, S.; Basile, A. Pd–Ag tubular membrane reactors for methane dry reforming: A reactive method for CO2 consumption and H2 production. J. Membr. Sci. 2008, 317, 96–105. [Google Scholar] [CrossRef]
- Al Moinee, A.; Rownaghi, A.A.; Rezaei, F. Challenges and Opportunities in Electrification of Adsorptive Separation Processes. ACS Energy Lett. 2024, 9, 1228–1248. [Google Scholar] [CrossRef]
- Rissman, J.; Bataille, C.; Masanet, E.; Aden, N.; Morrow Iii, W.R.; Zhou, N.; Elliott, N.; Dell, R.; Heeren, N.; Huckestein, B. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Appl. Energy 2020, 266, 114848. [Google Scholar] [CrossRef]
- Gorky, F.; Nguyen, H.M.; Lucero, J.M.; Guthrie, S.; Crawford, J.M.; Carreon, M.A.; Carreon, M.L. CC3 porous organic cage crystals and membranes for the non-thermal plasma catalytic ammonia synthesis. Chem. Eng. J. Adv. 2022, 11, 100340. [Google Scholar] [CrossRef]
- Veng, V.; Tabu, B.; Simasiku, E.; Landis, J.; Mack, J.H.; Carreon, M.; Trelles, J.P. Design and Characterization of a Membrane Dielectric-Barrier Discharge Reactor for Ammonia Synthesis. Plasma Chem. Plasma Process. 2023, 43, 1921–1940. [Google Scholar] [CrossRef]
- Zong, Z.; Elsaidi, S.K.; Thallapally, P.K.; Carreon, M.A. Highly permeable AlPO-18 membranes for N2/CH4 separation. Ind. Eng. Chem. Res. 2017, 56, 4113–4118. [Google Scholar] [CrossRef]
- Carreon, M.A. Molecular sieve membranes for N2/CH4 separation. J. Mater. Res. 2018, 33, 32–43. [Google Scholar] [CrossRef]
- Siegelman, R.L.; Kim, E.J.; Long, J.R. Porous materials for carbon dioxide separations. Nat. Mater. 2021, 20, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Sudik, A.C.; Millward, A.R.; Ockwig, N.W.; Côté, A.P.; Kim, J.; Yaghi, O.M. Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. J. Am. Chem. Soc. 2005, 127, 7110–7118. [Google Scholar] [CrossRef] [PubMed]
- Trickett, C.A.; Helal, A.; Al-Maythalony, B.A.; Yamani, Z.H.; Cordova, K.E.; Yaghi, O.M. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 17045. [Google Scholar] [CrossRef]
- Pera-Titus, M. Porous inorganic membranes for CO2 capture: Present and prospects. Chem. Rev. 2014, 114, 1413–1492. [Google Scholar] [CrossRef]
- Schultz, T.; Nagel, M.; Engenhorst, T.; Nymand-Andersen, A.; Kunze, E.; Stenner, P.; Lang, J.E. Electrifying chemistry: A company strategy perspective. Curr. Opin. Chem. Eng. 2023, 40, 100916. [Google Scholar] [CrossRef]
- Gorky, F.; Nambo, A.; Carreon, M.L. Cold plasma-Metal Organic Framework (MOF)-177 breathable system for atmospheric remediation. J. CO2 Util. 2021, 51, 101642. [Google Scholar] [CrossRef]
- Gorky, F.; Nambo, A.; Kessler, T.J.; Mack, J.H.; Carreon, M.L. CO2 and HDPE Upcycling: A Plasma Catalysis Alternative. Ind. Eng. Chem. Res. 2023, 62, 19571–19584. [Google Scholar] [CrossRef]
- Yadav, A.K.; Singh, P. A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 2015, 5, 67583–67609. [Google Scholar] [CrossRef]
- Gorky, F.; Nambo, A.; Carreon, M.A.; Carreon, M.L. Plasma catalytic conversion of nitrogen and hydrogen to ammonia over silico alumino phosphate (SAPO) zeolites. Plasma Chem. Plasma Process. 2023, 44, 1357–1368. [Google Scholar] [CrossRef]
- Gorky, F.; Lucero, J.M.; Crawford, J.M.; Blake, B.A.; Guthrie, S.R.; Carreon, M.A.; Carreon, M.L. Insights on cold plasma ammonia synthesis and decomposition using alkaline earth metal-based perovskites. Catal. Sci. Technol. 2021, 11, 5109–5118. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Gorky, F.; Guthrie, S.; Crawford, J.M.; Carreon, M.A.; Jasinski, J.B.; Carreon, M.L. Plasma catalytic non-oxidative methane conversion to hydrogen and value-added hydrocarbons on zeolite 13X. Energy Convers. Manag. 2023, 286, 117082. [Google Scholar] [CrossRef]
- Gorky, F.; Lucero, J.M.; Crawford, J.M.; Blake, B.; Carreon, M.A.; Carreon, M.L. Plasma-induced catalytic conversion of nitrogen and hydrogen to ammonia over zeolitic imidazolate frameworks ZIF-8 and ZIF-67. ACS Appl. Mater. Interfaces 2021, 13, 21338–21348. [Google Scholar] [CrossRef]
- Yu, M.; Noble, R.D.; Falconer, J.L. Zeolite membranes: Microstructure characterization and permeation mechanisms. Acc. Chem. Res. 2011, 44, 1196–1206. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.P.; Li, S.; Yang, Q.; Li, D.; Pantelides, S.T.; Lin, J. Engineering the crack structure and fracture behavior in monolayer MoS2 by selective creation of point defects. Adv. Sci. 2022, 9, 2200700. [Google Scholar] [CrossRef]
- Park, C.H.; Lee, S.Y.; Hwang, D.S.; Shin, D.W.; Cho, D.H.; Lee, K.H.; Kim, T.-W.; Kim, T.-W.; Lee, M.; Kim, D.-S. Nanocrack-regulated self-humidifying membranes. Nature 2016, 532, 480–483. [Google Scholar] [CrossRef]
- Wang, S.; Agirrezabal-Telleria, I.; Bhan, A.; Simonetti, D.; Takanabe, K.; Iglesia, E. Catalytic routes to fuels from C 1 and oxygenate molecules. Faraday Discuss. 2017, 197, 9–39. [Google Scholar] [CrossRef]
- Horn, R.; Schlögl, R. Methane activation by heterogeneous catalysis. Catal. Lett. 2015, 145, 23–39. [Google Scholar] [CrossRef]
- Sastre, G.; Lewis, D.W.; Catlow, C.R.A. Modeling of silicon substitution in SAPO-5 and SAPO-34 molecular sieves. J. Phys. Chem. B 1997, 101, 5249–5262. [Google Scholar] [CrossRef]
- Miller, T.M. Atomic and molecular polarizabilities. CRC Handb. Chem. Phys. 2000, 77, 193–202. [Google Scholar]
- Johnson, R.D., III. NIST 101. Computational Chemistry Comparison and Benchmark Database. 1999. Available online: https://cccbdb.nist.gov/elecaff2x.asp?casno=124389 (accessed on 21 July 2024).
- Buckingham, A.D. Molecular quadrupole moments. Q. Rev. Chem. Soc. 1959, 13, 183–214. [Google Scholar] [CrossRef]
- Prausnitz, J.M.; Lichtenthaler, R.N.; De Azevedo, E.G. Molecular Thermodynamics of Fluid-Phase Equilibria; Pearson Education: London, UK, 1998. [Google Scholar]
- Zubkov, S.A.; Kustov, L.M.; Kazansky, V.B.; Girnus, I.; Fricke, R. Investigation of hydroxyl groups in crystalline silicoaluminophosphate SAPO-34 by diffuse reflectance infrared spectroscopy. J. Chem. Soc. Faraday Trans. 1991, 87, 897–900. [Google Scholar] [CrossRef]
- Jeanvoine, Y.; Ángyán, J.G.; Kresse, G.; Hafner, J. Brønsted acid sites in HSAPO-34 and chabazite: An ab initio structural study. J. Phys. Chem. B 1998, 102, 5573–5580. [Google Scholar] [CrossRef]
- Venna, S.R.; Carreon, M.A. Amino-functionalized SAPO-34 membranes for CO2/CH4 and CO2/N2 separation. Langmuir 2011, 27, 2888–2894. [Google Scholar] [CrossRef]
- Li, S.; Carreon, M.A.; Zhang, Y.; Funke, H.H.; Noble, R.D.; Falconer, J.L. Scale-up of SAPO-34 membranes for CO2/CH4 separation. J. Membr. Sci. 2010, 352, 7–13. [Google Scholar] [CrossRef]
Operation | Feed Ratio | CO2 Permeance | CH4 Permeance | Selectivity (α) | Permeate Pressure | Separation Index |
---|---|---|---|---|---|---|
CH4:CO2 | (mol)/(m2·s·Pa) | (mol)/(m2·s·Pa) | CO2/CH4 | Pascal | π | |
No Plasma | 92:8 | 1.3 × 10−11 | 1.7 × 10−10 | 0.08 | 1378 | −1.6 × 10−8 |
No Plasma | 50:50 | 1.1 × 10−10 | 9.0 × 10−11 | 1.25 | 1378 | 3.9 × 10−8 |
Plasma | 92:8 | 1.4 × 10−11 | 1.9 × 10−10 | 0.07 | 1378 | −1.8 × 10−8 |
Plasma | 50:50 | 1.0 × 10−10 | 7.8 × 10−11 | 1.29 | 1378 | 3.9 × 10−8 |
Pulsed Plasma | 92:8 | 1.6 × 10−11 | 1.3 × 10−10 | 0.12 | 1378 | −1.9 × 10−8 |
Pulsed Plasma | 50:50 | 1.2 × 10−10 | 6.6 × 10−11 | 1.81 | 1378 | 1.3 × 10−7 |
Membrane | Average Crystal Size | Average Thickness (92:8 CH4:CO2) | Average Thickness (50:50 CH4:CO2) | |
---|---|---|---|---|
μm | μm | μm | ||
SAPO-34 Fresh | 5.3 ± 2.1 | 5.8 ± 1.2 | 2.4 ± 1.8 | |
SAPO-34 Plasma | 9.7 ± 2.1 | 2.7 ± 1.8 | 4.7 ± 1.9 | 3.3 ± 0.9 |
SAPO-34 Pulsed Plasma | 3.7 ± 1.5 | 5.2 ± 1.3 | 4.6 ± 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorky, F.; Storr, V.; Jones, G.; Nambo, A.; Jasinski, J.B.; Carreon, M.L. Performance and Enhanced Efficiency Induced by Cold Plasma on SAPO-34 Membranes for CO2 and CH4 Mixtures. Membranes 2024, 14, 178. https://doi.org/10.3390/membranes14080178
Gorky F, Storr V, Jones G, Nambo A, Jasinski JB, Carreon ML. Performance and Enhanced Efficiency Induced by Cold Plasma on SAPO-34 Membranes for CO2 and CH4 Mixtures. Membranes. 2024; 14(8):178. https://doi.org/10.3390/membranes14080178
Chicago/Turabian StyleGorky, Fnu, Vashanti Storr, Grace Jones, Apolo Nambo, Jacek B. Jasinski, and Maria L. Carreon. 2024. "Performance and Enhanced Efficiency Induced by Cold Plasma on SAPO-34 Membranes for CO2 and CH4 Mixtures" Membranes 14, no. 8: 178. https://doi.org/10.3390/membranes14080178
APA StyleGorky, F., Storr, V., Jones, G., Nambo, A., Jasinski, J. B., & Carreon, M. L. (2024). Performance and Enhanced Efficiency Induced by Cold Plasma on SAPO-34 Membranes for CO2 and CH4 Mixtures. Membranes, 14(8), 178. https://doi.org/10.3390/membranes14080178