Removal of Micropollutants in Water Reclamation by Membrane Filtration: Impact of Pretreatments and Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Filtration Experiments
2.3. Coagulation–Flocculation and Adsorption Pretreatments
2.3.1. Coagulation–Flocculation
2.3.2. Adsorption onto PAC
2.4. Membrane Adsorption Isotherms
2.5. Analytical Methods
3. Results and Discussion
3.1. Adsorption of OMPs on a UF Membrane
3.2. Coagulation–Flocculation and PAC Adsorption Pretreatments
3.3. Filtration Experiments
3.3.1. Permeate Flux and Analysis of Resistance in Series
3.3.2. Rejection of Micropollutants
3.3.3. Quality of the Reclaimed Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global Threats to Human Water Security and River Biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Zia, H.; Harris, N.R.; Merrett, G.V.; Rivers, M.; Coles, N. The Impact of Agricultural Activities on Water Quality: A Case for Collaborative Catchment-Scale Management Using Integrated Wireless Sensor Networks. Comput. Electron. Agric. 2013, 96, 126–138. [Google Scholar] [CrossRef]
- Liu, X.Y.; Chen, Y.B.; Fu, J.; Zhu, X.; Lv, L.Y.; Sun, L.; Zhang, G.M.; Ren, Z.J. A Review of Combined Fouling on High-Pressure Membranes in Municipal Wastewater Reuse: Behaviors, Mechanisms, and Pretreatment Mitigation Strategies. Chem. Eng. J. 2024, 485, 150135. [Google Scholar] [CrossRef]
- González, O.; Bayarri, B.; Aceña, J.; Pérez, S.; Barceló, D. Treatment Technologies for Wastewater Reuse: Fate of Contaminants of Emerging Concern. In Advanced Treatment Technologies for Urban Wastewater Reuse. The Handbook of Environmental Chemistry; Fatta-Kassinos, D., Dionysiou, D.D., Kümmerer, K., Eds.; Springer: Cham, Switzerland, 2015; Volume 45, pp. 5–37. [Google Scholar]
- Iancu, V.-I.; Chiriac, L.-F.; Paun, I.; Pirvu, F.; Dinu, C.; Kim, L.; Florentina Pascu, L.; Niculescu, M. Occurrence and Distribution of Azole Antifungal Agents in Eight Urban Romanian Waste Water Treatment Plants. Sci. Total Environ. 2024, 920, 170898. [Google Scholar] [CrossRef] [PubMed]
- Archer, E.; Petrie, B.; Kasprzyk-Hordern, B.; Wolfaardt, G.M. The Fate of Pharmaceuticals and Personal Care Products (PPCPs), Endocrine Disrupting Contaminants (EDCs), Metabolites and Illicit Drugs in a WWTW and Environmental Waters. Chemosphere 2017, 174, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Hollender, J.; Zimmermann, S.G.; Koepke, S.; Krauss, M.; Mcardell, C.S.; Ort, C.; Singer, H.; von Gunten, U.; Siegrist, H. Elimination of Organic Micropollutants in a Municipal Wastewater Treatment Plant Upgraded with a Full-Scale Post-Ozonation Followed by Sand Filtration. Environ. Sci. Technol. 2009, 43, 7862–7869. [Google Scholar] [CrossRef] [PubMed]
- Khanzada, N.K.; Farid, M.U.; Kharraz, J.A.; Choi, J.; Tang, C.Y.; Nghiem, L.D.; Jang, A.; An, A.K. Removal of Organic Micropollutants Using Advanced Membrane-Based Water and Wastewater Treatment: A Review. J. Memb. Sci. 2020, 598, 117672. [Google Scholar] [CrossRef]
- Tong, X.; Mohapatra, S.; Zhang, J.; Tran, N.H.; You, L.; He, Y.; Gin, K.Y.H. Source, Fate, Transport and Modelling of Selected Emerging Contaminants in the Aquatic Environment: Current Status and Future Perspectives. Water Res. 2022, 217, 118418. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.H. Occurrence and Fate of Emerging Contaminants in Municipal Wastewater Treatment Plants from Different Geographical Regions-a Review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
- Assress, H.A.; Nyoni, H.; Mamba, B.B.; Msagati, T.A.M. Occurrence and Risk Assessment of Azole Antifungal Drugs in Water and Wastewater. Ecotoxicol. Env. Saf. 2020, 187, 109868. [Google Scholar] [CrossRef]
- Böger, B.; Surek, M.; Vilhena, R.d.O.; Fachi, M.M.; Junkert, A.M.; Santos, J.M.; Domingos, E.L.; Cobre, A.d.F.; Momade, D.R.; Pontarolo, R. Occurrence of Antibiotics and Antibiotic Resistant Bacteria in Subtropical Urban Rivers in Brazil. J. Hazard. Mater. 2021, 402, 123448. [Google Scholar] [CrossRef]
- Ameta, S.C. Chapter 1—Introduction. In Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology; Ameta, S.C., Ameta, R., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 1–12. ISBN 9780128105252. [Google Scholar]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment—A Critical Review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Hube, S.; Eskafi, M.; Hrafnkelsdóttir, K.F.; Bjarnadóttir, B.; Bjarnadóttir, M.Á.; Axelsdóttir, S.; Wu, B. Direct Membrane Filtration for Wastewater Treatment and Resource Recovery: A Review. Sci. Total Environ. 2020, 710, 136375. [Google Scholar] [CrossRef]
- Licona, K.P.M.; Geaquinto, L.R.d.O.; Nicolini, J.V.; Figueiredo, N.G.; Chiapetta, S.C.; Habert, A.C.; Yokoyama, L. Assessing Potential of Nanofiltration and Reverse Osmosis for Removal of Toxic Pharmaceuticals from Water. J. Water Process Eng. 2018, 25, 195–204. [Google Scholar] [CrossRef]
- Dagher, G.; Saab, G.; Martin, A.; Couturier, G.; Candido, P.; Moulin, L.; Croué, J.P.; Teychene, B. Understanding and Predicting the Adsorption and Rejection of Pesticides and Metabolites by Hollow Fiber Nanofiltration Membranes. Sep. Purif. Technol. 2024, 330, 125323. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, W.; Zhu, H.; Wei, D.; He, F.; Wang, D.; Du, B.; Wei, Q. Effect of Turbidity on Micropollutant Removal and Membrane Fouling by MIEX/Ultrafiltration Hybrid Process. Chemosphere 2019, 216, 488–498. [Google Scholar] [CrossRef]
- Acero, J.L.; Benitez, F.J.; Teva, F.; Leal, A.I. Retention of Emerging Micropollutants from UP Water and a Municipal Secondary Effluent by Ultrafiltration and Nanofiltration. Chem. Eng. J. 2010, 163, 264–272. [Google Scholar] [CrossRef]
- Yoon, Y.; Westerhoff, P.; Snyder, S.A.; Wert, E.C.; Yoon, J. Removal of Endocrine Disrupting Compounds and Pharmaceuticals by Nanofiltration and Ultrafiltration Membranes. Desalination 2007, 202, 16–23. [Google Scholar] [CrossRef]
- Bogunović, M.; Ivančev-Tumbas, I.; Česen, M.; Sekulić, T.D.; Prodanović, J.; Tubić, A.; Heath, D.; Heath, E. Removal of Selected Emerging Micropollutants from Wastewater Treatment Plant Effluent by Advanced Non-Oxidative Treatment—A Lab-Scale Case Study from Serbia. Sci. Total Environ. 2021, 765, 142764. [Google Scholar] [CrossRef]
- Echevarría, C.; Valderrama, C.; Cortina, J.L.; Martín, I.; Arnaldos, M.; Bernat, X.; De la Cal, A.; Boleda, M.R.; Vega, A.; Teuler, A.; et al. Hybrid Sorption and Pressure-Driven Membrane Technologies for Organic Micropollutants Removal in Advanced Water Reclamation: A Techno-Economic Assessment. J. Clean. Prod. 2020, 273, 123108. [Google Scholar] [CrossRef]
- Löwenberg, J.; Zenker, A.; Baggenstos, M.; Koch, G.; Kazner, C.; Wintgens, T. Comparison of Two PAC/UF Processes for the Removal of Micropollutants from Wastewater Treatment Plant Effluent: Process Performance and Removal Efficiency. Water Res. 2014, 56, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yue, Q.; Li, R.; Bu, F.; Shen, X.; Gao, B. Optimization of Coagulation Pre-Treatment for Alleviating Ultrafiltration Membrane Fouling: The Role of Floc Properties on Al Species. Chemosphere 2018, 200, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Hou, C.; Li, P.; Luo, C.; Zhu, X.; Wu, D.; Zhang, X.; Liang, H. The Role of PAC Adsorption-Catalytic Oxidation in the Ultrafiltration Performance for Treating Natural Water: Efficiency Improvement, Fouling Mitigation and Mechanisms. Chemosphere 2021, 284, 131561. [Google Scholar] [CrossRef] [PubMed]
- Sheng, C.; Nnanna, A.G.A.; Liu, Y.; Vargo, J.D. Removal of Trace Pharmaceuticals from Water Using Coagulation and Powdered Activated Carbon as Pretreatment to Ultrafiltration Membrane System. Sci. Total Environ. 2016, 550, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Vona, A.; di Martino, F.; Garcia-Ivars, J.; Picó, Y.; Mendoza-Roca, J.A.; Iborra-Clar, M.I. Comparison of Different Removal Techniques for Selected Pharmaceuticals. J. Water Process Eng. 2015, 5, 48–57. [Google Scholar] [CrossRef]
- Aranda, F.L.; Rivas, B.L. Removal of Amoxicillin through Different Methods, Emphasizing Removal by Biopolymers and Its Derivates. An Overview. J. Chil. Chem. Soc. 2022, 67, 5643–5655. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An International Database for Pesticide Risk Assessments and Management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Acero, J.L.; Benitez, F.J.; Real, F.J.; Teva, F. Coupling of Adsorption, Coagulation, and Ultrafiltration Processes for the Removal of Emerging Contaminants in a Secondary Effluent. Chem. Eng. J. 2012, 210, 1–8. [Google Scholar] [CrossRef]
- Benítez, F.J.; Acero, J.L.; Leal, A.I.; González, M. The Use of Ultrafiltration and Nanofiltration Membranes for the Purification of Cork Processing Wastewater. J. Hazard. Mater. 2009, 162, 1438–1445. [Google Scholar] [CrossRef]
- Aldana, J.C.; Acero, J.L.; Álvarez, P.M. Membrane Filtration, Activated Sludge and Solar Photocatalytic Technologies for the Effective Treatment of Table Olive Processing Wastewater. J. Environ. Chem. Eng. 2021, 9, 105743. [Google Scholar] [CrossRef]
- Huang, Z.; Gong, B.; Huang, C.P.; Pan, S.Y.; Wu, P.; Dang, Z.; Chiang, P.C. Performance Evaluation of Integrated Adsorption-Nanofiltration System for Emerging Compounds Removal: Exemplified by Caffeine, Diclofenac and Octylphenol. J. Environ. Manag. 2019, 231, 121–128. [Google Scholar] [CrossRef]
- El Jery, A.; Alawamleh, H.S.K.; Sami, M.H.; Abbas, H.A.; Sammen, S.S.; Ahsan, A.; Imteaz, M.A.; Shanableh, A.; Shafiquzzaman, M.; Osman, H.; et al. Isotherms, Kinetics and Thermodynamic Mechanism of Methylene Blue Dye Adsorption on Synthesized Activated Carbon. Sci. Rep. 2024, 14, 970. [Google Scholar] [CrossRef]
- UNE-EN ISO 9308-1:2001; Water quality—Detection and enumeration of Escherichia coli and coliform bacteria—Part 1: Membrane filtration method. Spanish Association for Standardization (UNE): Madrid, Spain, 2001.
- UNE-EN ISO 11731:2017; Water quality—Enumeration of Legionella. Spanish Association for Standardization (UNE): Madrid, Spain, 2017.
- Arsuaga, J.M.; López-Muñoz, M.J.; Sotto, A. Correlation between Retention and Adsorption of Phenolic Compounds in Nanofiltration Membranes. Desalination 2010, 250, 829–832. [Google Scholar] [CrossRef]
- Huang, B.C.; Guan, Y.F.; Chen, W.; Yu, H.Q. Membrane Fouling Characteristics and Mitigation in a Coagulation-Assisted Microfiltration Process for Municipal Wastewater Pretreatment. Water Res. 2017, 123, 216–223. [Google Scholar] [CrossRef]
- Gidstedt, S.; Betsholtz, A.; Falås, P.; Cimbritz, M.; Davidsson, Å.; Micolucci, F.; Svahn, O. A Comparison of Adsorption of Organic Micropollutants onto Activated Carbon Following Chemically Enhanced Primary Treatment with Microsieving, Direct Membrane Filtration and Tertiary Treatment of Municipal Wastewater. Sci. Total Environ. 2022, 811, 152225. [Google Scholar] [CrossRef]
- Gong, H.; Jin, Z.; Wang, Q.; Zuo, J.; Wu, J.; Wang, K. Effects of Adsorbent Cake Layer on Membrane Fouling during Hybrid Coagulation/Adsorption Microfiltration for Sewage Organic Recovery. Chem. Eng. J. 2017, 317, 751–757. [Google Scholar] [CrossRef]
- Hu, J.; Shang, R.; Heijman, B.; Rietveld, L. Influence of Activated Carbon Preloading by EfOM Fractions from Treated Wastewater on Adsorption of Pharmaceutically Active Compounds. Chemosphere 2016, 150, 49–56. [Google Scholar] [CrossRef]
- Nam, S.W.; Jo, B.I.; Yoon, Y.; Zoh, K.D. Occurrence and Removal of Selected Micropollutants in a Water Treatment Plant. Chemosphere 2014, 95, 156–165. [Google Scholar] [CrossRef]
- Sotto, A.; Arsuaga, J.M.; Van der Bruggen, B. Sorption of Phenolic Compounds on NF/RO Membrane Surfaces: Influence on Membrane Performance. Desalination 2013, 309, 64–73. [Google Scholar] [CrossRef]
- Garcia-Ivars, J.; Martella, L.; Massella, M.; Carbonell-Alcaina, C.; Alcaina-Miranda, M.I.; Iborra-Clar, M.I. Nanofiltration as Tertiary Treatment Method for Removing Trace Pharmaceutically Active Compounds in Wastewater from Wastewater Treatment Plants. Water Res 2017, 125, 360–373. [Google Scholar] [CrossRef] [PubMed]
- Ozbey-Unal, B.; Balcik-Canbolat, C.; Dizge, N.; Keskinler, B. Treatability Studies on Optimizing Coagulant Type and Dosage in Combined Coagulation/Membrane Processes for Table Olive Processing Wastewater. J. Water Process Eng. 2018, 26, 301–307. [Google Scholar] [CrossRef]
- Qalyoubi, L.; Al-Othman, A.; Al-Asheh, S. Removal of Ciprofloxacin Antibiotic Pollutants from Wastewater Using Nano-Composite Adsorptive Membranes. Environ. Res. 2022, 215, 114182. [Google Scholar] [CrossRef] [PubMed]
- Acero, J.L.; Benítez, F.J.; Leal, A.I.; Real, F.J.; Teva, F. Membrane Filtration Technologies Applied to Municipal Secondary Effluents for Potential Reuse. J. Hazard Mater. 2010, 177, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lin, H.; Armutlulu, A.; Xie, R.; Zhang, Y.; Meng, X. Hydroxylamine-Assisted Catalytic Degradation of Ciprofloxacin in Ferrate/Persulfate System. Chem. Eng. J. 2019, 360, 612–620. [Google Scholar] [CrossRef]
- Azaïs, A.; Mendret, J.; Petit, E.; Brosillon, S. Evidence of Solute-Solute Interactions and Cake Enhanced Concentration Polarization during Removal of Pharmaceuticals from Urban Wastewater by Nanofiltration. Water Res. 2016, 104, 156–167. [Google Scholar] [CrossRef]
- Yang, J.; Monnot, M.; Eljaddi, T.; Ercolei, L.; Simonian, L.; Moulin, P. Ultrafiltration as Tertiary Treatment for Municipal Wastewater Reuse. Sep. Purif Technol. 2021, 272, 118921. [Google Scholar] [CrossRef]
Membrane | Material | MWCO, Da | pH | Contact Angle, ° [20] |
---|---|---|---|---|
PT | PES | 5000 | 2–11 | 52.8 ± 2 |
HL | TF | 150–300 | 3–9 | 30 ± 3 |
OMP | Molecular Formula | Molecular Structure | MW (g·mol−1) | pKa | log Kow | log D (pH = 7.4) | Molar Volume (cm3) |
---|---|---|---|---|---|---|---|
Amoxicillin (AMX) | C16H19N3O5S | 365.40 | 2.7; 7.2; 9.6 [29] | 0.61 | −2.72 | 236.2 | |
Trimethoprim (TMP) | C14H18N4O3 | 290.32 | 7.12 [30] | 0.79 | 1.00 | 231.8 | |
Desvenlafaxine (DVF) | C16H25NO2 | 263.38 | 8.87; 10.1 | 2.26 | 0.89 | 236.1 | |
Ciprofloxacin (CFX) | C17H18FN3O3 | 331.34 | 6.09; 8.62 | 0.65 | −2.23 | 226.7 | |
Fluconazole (FLZ) | C13H12F2N6O | 306.27 | 2.56; 2.94; 11.01 | 0.50 | 0.70 | 205.2 | |
Sulfamethoxazole (SMX) | C10H11N3O3S | 253.28 | 1.97; 6.16 | 0.89 | −0.56 | 173.1 | |
Imazalil (IMZ) | C14H14Cl2N2O | 297.20 | 6.53 | 3.58 | 3.94 | 240.7 | |
Prochloraz (PCZ) | C15H16Cl3N3O2 | 376.70 | 3.8 | 3.98 | 4.08 | 274.2 | |
Tebuconazole (TBZ) | C16H22ClN3O | 307.82 | 2.3 | 3.58 | 3.74 | 268.1 | |
Penconazole (PNZ) | C13H15Cl2N3 | 284.18 | 2.8 | 3.66 | 3.88 | 222.8 | |
Dimoxystrobin (DTB) | C19H22N2O3 | 326.40 | - | 5.08 | 4.20 | 297.6 |
Parameter | SE1 | SE2 |
---|---|---|
pH | 8.06 | 8.19 |
Electric conductivity (EC) (μS·cm−1) | 804 | 831 |
Turbidity (NTU) | 0.73 | 0.72 |
COD (mg·L−1) | 31 | 15 |
DOC (mg·L−1) | 10.49 | 5.21 |
Absorbance (254 nm) | 0.209 | 0.117 |
Total N (mg·L−1) | 3.0 | 0.9 |
Total P (mg·L−1) | 0.31 | 0.82 |
Total coliforms (CFU·100 mL−1) | 296 | 210 |
E. coli (CFU·100 mL−1) | 186 | 138 |
Legionella spp. (CFU·L−1) | ND | ND |
Pollutant | Freundlich Model | Langmuir Model | ||||
---|---|---|---|---|---|---|
Kf (µg·g−1·(L·µg−1)1/n) | n | R2 | qm (µg·g−1) | KL·103 (L·µg−1) | R2 | |
IMZ | 109.3 | 2.24 | 0.910 | 1168 | 38.5 | 0.982 |
PCZ | 134.3 | 1.27 | 0.893 | 19,940 | 4.06 | 0.930 |
TBZ | 42.4 | 1.47 | 0.991 | 3311 | 4.66 | 0.992 |
PNZ | 53.9 | 1.35 | 0.884 | 6221 | 4.19 | 0.979 |
DTB | 128.4 | 1.72 | 0.951 | 4884 | 7.93 | 0.981 |
Expt. | pH | EC (µS·cm−1) | Turbidity (NTU) | COD (mg·L−1) | DOC (mg·L−1) | Absorbance (254 nm) | Total N (mg·L−1) | Total P (mg·L−1) |
---|---|---|---|---|---|---|---|---|
SE1 | 8.06 | 804 | 0.73 | 31 | 10.49 | 0.209 | 3.0 | 0.31 |
SE1-CF | 7.32 | 972 | 1.10 | 26 | 8.37 | 0.169 | 3.3 | 0.10 |
SE1-PAC | 8.07 | 890 | 2.39 | 21 | 7.13 | 0.120 | 2.7 | 0.22 |
Total Coliforms (CFU·100 mL−1) | E. coli (CFU·100 mL−1) | Legionella spp. (CFU·L−1) | ||||||
SE1 | 296 | 186 | ND | |||||
SE1-CF | 87 | 4 | ND | |||||
SE1-PAC | 223 | 154 | ND |
Expt. | Membrane | TP (bar) | pH | Jw1 (L/(h·m2)) | Jvss (L/(h·m2)) | Jvss/Jw1 | Jw2/Jw1 |
---|---|---|---|---|---|---|---|
UP water | |||||||
UF1 | PT | 3 | 7.00 | 61.5 | 54.0 | 0.88 | 0.94 |
UF2 | PT | 3 | 8.00 | 62.1 | 54.1 | 0.87 | 0.90 |
NF1 | HL | 12 | 7.00 | 90.0 | 77.3 | 0.86 | 0.99 |
NF2 | HL | 12 | 8.00 | 102.9 | 87.4 | 0.85 | 0.99 |
SE1 | |||||||
UF | PT | 3 | 8.06 | 60.5 | 51.8 | 0.86 | 0.90 |
NF | HL | 12 | 8.06 | 90.7 | 69.4 | 0.77 | 0.95 |
CF/UF | PT | 3 | 7.32 | 74.6 | 68.8 | 0.94 | 0.97 |
PAC/UF | PT | 3 | 8.07 | 72.7 | 67.1 | 0.92 | 0.98 |
SE2 | |||||||
UF | PT | 3 | 8.19 | 63.9 | 55.1 | 0.86 | 0.94 |
NF | HL | 12 | 8.19 | 97.2 | 80.1 | 0.82 | 0.99 |
Expt. | Rt·10−12 (m−1) | Rm·10−12 (m−1) | Rf·10−12 (m−1) | Ref·10−12 (m−1) | Rif·10−12 (m−1) | Rf/Rt (%) |
---|---|---|---|---|---|---|
UP water | ||||||
UF1 | 20.1 | 17.5 | 2.51 | 1.34 | 1.17 | 12.5 |
UF2 | 19.9 | 17.3 | 2.57 | 1.37 | 1.20 | 12.9 |
NF1 | 55.7 | 47.9 | 7.87 | 6.71 | 1.16 | 14.1 |
NF2 | 49.3 | 41.9 | 7.39 | 6.50 | 0.89 | 15.0 |
SE1 | ||||||
UF | 20.8 | 17.8 | 2.99 | 1.07 | 1.91 | 14.4 |
NF | 62.0 | 47.5 | 14.5 | 11.8 | 2.73 | 23.4 |
CF/UF | 15.7 | 14.4 | 1.22 | 0.76 | 0.46 | 7.8 |
PAC/UF | 16.0 | 14.8 | 1.24 | 0.89 | 0.35 | 7.7 |
SE2 | ||||||
UF | 19.5 | 16.9 | 2.67 | 1.52 | 1.15 | 13.7 |
NF | 53.7 | 44.3 | 9.45 | 8.06 | 1.38 | 17.6 |
Parameter | SE1-UF | SE1-NF | SE1-CF/UF | SE1-PAC/UF | SE2-UF | SE2-NF |
---|---|---|---|---|---|---|
pH | 8.18 | 7.75 | 7.34 | 7.98 | 8.47 | 7.52 |
EC (µS·cm−1) | 770 | 361 | 878 | 752 | 744 | 297 |
Turbidity (NTU) | 0.55 | 0.37 | 0.19 | 0.54 | 0.37 | 0.29 |
COD (mg·L−1) | 19 | 6 | 11 | 14 | 8.3 | 2.1 |
DOC (mg·L−1) | 6.20 | 1.99 | 4.90 | 5.26 | 2.68 | 0.96 |
Absorbance (254 nm) | 0.110 | 0.017 | 0.079 | 0.057 | 0.065 | 0.011 |
N (mg·L−1) | 2.5 | 2.3 | 2.3 | 2.1 | 0.0 | 0.0 |
P (mg·L−1) | 0.13 | 0.05 | 0.10 | 0.11 | 0.07 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldana, J.C.; Agudelo, C.; Álvarez, P.M.; Acero, J.L. Removal of Micropollutants in Water Reclamation by Membrane Filtration: Impact of Pretreatments and Adsorption. Membranes 2024, 14, 146. https://doi.org/10.3390/membranes14070146
Aldana JC, Agudelo C, Álvarez PM, Acero JL. Removal of Micropollutants in Water Reclamation by Membrane Filtration: Impact of Pretreatments and Adsorption. Membranes. 2024; 14(7):146. https://doi.org/10.3390/membranes14070146
Chicago/Turabian StyleAldana, Juan C., Cristina Agudelo, Pedro M. Álvarez, and Juan L. Acero. 2024. "Removal of Micropollutants in Water Reclamation by Membrane Filtration: Impact of Pretreatments and Adsorption" Membranes 14, no. 7: 146. https://doi.org/10.3390/membranes14070146
APA StyleAldana, J. C., Agudelo, C., Álvarez, P. M., & Acero, J. L. (2024). Removal of Micropollutants in Water Reclamation by Membrane Filtration: Impact of Pretreatments and Adsorption. Membranes, 14(7), 146. https://doi.org/10.3390/membranes14070146