Editorial for the Special Issue “Preparation and Application of Advanced Functional Membranes”
1. Introduction
2. Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Strathmann, H. Introduction to Membrane Science and Technology; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2011; pp. 1–544. [Google Scholar]
- Issaoui, M.; Jellali, S.; Zorpas, A.A.; Dutournie, P. Membrane technology for sustainable water resources management: Challenges and future projections. Sustain. Chem. Pharm. 2022, 25, 100590. [Google Scholar] [CrossRef]
- Komaladewi, A.A.I.A.S.; Aryanti, P.T.P.; Subagia, I.D.G.A.; Wenten, I.G. Membrane technology in air pollution control: Prospect and challenge. J. Phys. Conf. Ser. 2019, 1217, 012046. [Google Scholar] [CrossRef]
- Kang, Y.; Zhong, Z.; Xing, W. Functionalized membranes for multipollutants bearing air treatment. In Hybrid and Combined Processes for Air Pollution Control; Assadi, A., Amrane, A., Nguyen, T.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 167–200. [Google Scholar] [CrossRef]
- Cheng, Y.; Xia, C.; Garalleh, H.A.L.; Garaleh, M.; Lan Chi, N.T.; Brindhadevi, K. A review on optimistic development of polymeric nanocomposite membrane on environmental remediation. Chemosphere 2023, 315, 137706. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Van der Bruggen, B.; Matsuyama, H.; Lin, Y.; Zheng, J. Resource Recovery and Recycling from Water Streams: Advanced Membrane Technologies and Case Studies. ACS EST Water 2023, 3, 1699–1701. [Google Scholar] [CrossRef]
- Yaroslavtsev, A.B.; Stenina, I.A.; Golubenko, D.V. Membrane materials for energy production and storage. Pure Appl. Chem. 2020, 92, 1147–1157. [Google Scholar] [CrossRef]
- Mzahma, S.; Duplay, J.; Souguir, D.; Ben Amar, R.; Ghazi, M.; Hachicha, M. Membrane Processes Treatment and Possibility of Agriculture Reuse of Textile Effluents: Study Case in Tunisia. Water 2023, 15, 1430. [Google Scholar] [CrossRef]
- Van der Bruggen, B.B.; Curcio, E.; Drioli, E. Process intensification in the textile industry: The role of membrane technology. J. Environ. Manag. 2004, 73, 267–274. [Google Scholar] [CrossRef]
- Hariharan, P.; Sundarrajan, S.; Arthanareeswaran, G.; Seshan, S.; Das, D.B.; Ismail, A.F. Advancements in modification of membrane materials over membrane separation for biomedical applications—Review. Environ. Res. Part B 2022, 204, 112045. [Google Scholar] [CrossRef]
- Sommer, B. Membrane Packing Problems: A Short Review on Computational Membrane Modeling Methods and Tools. Comput. Struct. Biotechnol. J. 2013, 5, e201302014. [Google Scholar] [CrossRef]
- Llorensa, J.; Zanelli, A. Structural membranes for refurbishment of the architectural heritage. Procedia Eng. 2016, 155, 18–27. [Google Scholar] [CrossRef]
- Van, N.T.B.; Singyabuth, S. Cultural Sustainability of Hoi an Ancient Houses in the process of becoming the World Cultural Heritage City. Int. J. Membr. Sci. Technol. 2023, 10, 251–262. [Google Scholar] [CrossRef]
- Basile, A.; Charcosset, C. Integrated Membrane Systems and Processes; Wiley: Chichester, UK, 2016; pp. 1–424. [Google Scholar]
- Gugliuzza, A.; Basile, A. Membranes for Clean and Renewable Power Applications; Woodhead Publishing: Cambridge, UK, 2014; pp. 1–410. [Google Scholar]
- Nghiem, L.D.; Schäfer, A.I.; Waite, T.D. Adsorptive Interactions between Membranes and Trace Contaminants. Desalination 2002, 147, 269–274. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Abdullah, M.M. Molecular modeling and simulation of some efficient charge transfer materials using density functional theory. Mater. Today Commun. 2020, 22, 100788. [Google Scholar] [CrossRef]
- Comitti, A.; Vijayakumaran, H.; Nejabatmeimandi, M.H.; Seixas, L.; Cabello, A.; Misseroni, D.; Penasa, M.; Paech, C.; Bessa, M.; Bown, A.C.; et al. Ultralight Membrane Structures Toward a Sustainable Environment. In Sustainable Structures and Buildings; Bahrami, A., Ed.; Springer: Cham, Switzerland, 2024; pp. 17–37. [Google Scholar] [CrossRef]
- Dhume, S.; Chendake, Y. Membrane Technology for Green Engineering. In Applied Biopolymer Technology and Bioplastics, Sustainable Development by Green Engineering Materials; Rawat, N.K., Volova, T.G., Haghi, A.K., Eds.; Apple Academic Press: New York, NY, USA, 2021; pp. 1–27. [Google Scholar]
- Landaburu-Aguirre, J.; Molina, S. Circular Economy in Membrane Technology. Membranes 2023, 13, 784. [Google Scholar] [CrossRef] [PubMed]
- Ludovic, F.; Dumée, L.F.; Sadrzadeh, M.; Shirazi, M.M.A. Green Membrane Technologies towards Environmental Sustainability; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–646. [Google Scholar]
- Gugliuzza, A.; Aceto, M.C.; Drioli, E. Interactive functional poly(vinylidene fluoride) membranes with modulated lysozyme affinity: A promising class of new interfaces for contactor crystallizers. Polym. Int. 2009, 58, 1452–1464. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, Y.; Yang, S.; Zhang, C.; Ullah, Z. Recent research progress on the stimuli-responsive smart membrane: A review. Nanotechnol. Rev. 2023, 12, 20220538. [Google Scholar] [CrossRef]
- Apel, P. Track etching technique in membrane technology. Radiat. Meas. 2001, 34, 559–566. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Y.; Xu, L.; Zeng, F.; Hou, D.; Wang, J. Optimizing stretching conditions in fabrication of PTFE hollow fiber membrane for performance improvement in membrane distillation. J. Membr. Sci. 2018, 550, 126–135. [Google Scholar] [CrossRef]
- Baig, U.; Waheed, A. Exploiting interfacial polymerization to fabricate hyper-cross-linked nanofiltration membrane with a constituent linear aliphatic amine for freshwater production. npj Clean Water 2022, 5, 46. [Google Scholar] [CrossRef]
- Vogelaar, L.; Lammertink, R.G.H.; Barsema, J.N.; Nijdam, W.; Bolhuis-Versteeg, L.A.M.; van Rijn, C.J.M.; Wessling, M. Phase Separation Micromolding: A New Generic Approach for Microstructuring Various Materials. Small 2005, 1, 645–655. [Google Scholar] [CrossRef]
- Ahmed, F.Z.; Lalia, B.S.; Hashaikeh, R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Hamta, A.; Ashtiani, F.Z.; Karimi, M.; Moayedfard, S. Asymmetric block copolymer membrane fabrication mechanism through self-assembly and non-solvent induced phase separation (SNIPS) process. Sci. Rep. 2022, 12, 771. [Google Scholar] [CrossRef] [PubMed]
- Perrotta, M.L.; Saielli, G.; Casella, G.; Macedonio, F.; Giorno, L.; Drioli, E.; Gugliuzza, A. An ultrathin suspended hydrophobic porous membrane for high-efficiency water desalination. Appl. Mater. Today 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Sabirova, A.; Florica, C.F.; Pisig, F.; Syed, A.; Buttner, U.; Li, X.; Nunes, S.P. Nanoporous membrane fabrication by nanoimprint lithography for nanoparticle sieving. Nanoscale Adv. 2022, 4, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Joseph, N.; Ahmadiannamini, P.; Hoogenboom, R.; Vankelecom, I.F.G. Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation. Polym. Chem. 2014, 5, 1817–1831. [Google Scholar] [CrossRef]
- Gugliuzza, A.; Drioli, E. Role of additives in the water vapor transport through block co-poly(amide/ether) membranes: Effects on surface and bulk polymer properties. Eur. Polym. J. 2004, 40, 2381–2389. [Google Scholar] [CrossRef]
- Hao, L.; Li, P.; Chung, T.-S. PIM-1 as an organic filler to enhance the gas separation performance of Ultem polyetherimide. J. Membr. Sci. 2014, 453, 614–623. [Google Scholar] [CrossRef]
- Wang, R.; Chen, D.; Wang, Q.; Ying, Y.; Gao, W.; Xie, L. Recent Advances in Applications of Carbon Nanotubes for Desalination: A Review. Nanomaterials 2020, 10, 1203. [Google Scholar] [CrossRef] [PubMed]
- Amirkhani, F.; Mosadegh, M.; Asghari, M.; Parnian, M.J. The beneficial impacts of functional groups of CNT on structure and gas separation properties of PEBA mixed matrix membranes. Polym. Test. 2020, 82, 106285. [Google Scholar] [CrossRef]
- Gnus, M.; Dudek, G.; Turczyn, R. The influence of filler type on the separation properties of mixed-matrix membranes. Chem. Pap. 2018, 72, 1095–1105. [Google Scholar] [CrossRef]
- De Pascale, M.; De Angelis, M.G.; Boi, C. Mixed Matrix Membranes Adsorbers (MMMAs) for the Removal of Uremic Toxins from Dialysate. Membranes 2022, 12, 203. [Google Scholar] [CrossRef] [PubMed]
- Suvigya, K.; Lalita, S.; Gopinadhan, K. Membranes for desalination and dye separation: Are 2D materials better than polymers? A critical comparison. Sep. Purif. Technol. 2023, 325, 124693. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, G.; Zhao, J.; Jin, W. Two-Dimensional-Material Membranes: Manipulating the Transport Pathway for Molecular Separation. Acc. Mater. Res. 2021, 2, 114–128. [Google Scholar] [CrossRef]
- Kim, A.; Moon, S.J.; Kim, J.H.; Patel, R. Review on thin-film nanocomposite membranes with various quantum dots for water treatments. J. Ind. Eng. Chem. 2023, 118, 19–32. [Google Scholar] [CrossRef]
- Frappa, M.; Del Rio Castillo, A.E.; Macedonio, F.; Pellegrini, V.; Drioli, E.; Gugliuzza, A. A few-layer graphene for advanced composite PVDF membranes dedicated to water desalination: A comparative study. Nanoscale Adv. 2020, 2, 4728–4739. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.C. Recent developments in 2D materials for gas separation membranes. Curr. Opin. Chem. Eng. 2023, 40, 100905. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, Y.; Yu, S.; Chen, W.; Yang, J. A Review of Advancing Two-Dimensional Material Membranes for Ultrafast and Highly Selective Liquid Separation. Nanomaterials 2022, 12, 2103. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahi, N.; Aber, S.; Vatanpour, V.; Mahmoodi, N.M. Development of hydrophilic microporous PES ultrafiltration membrane containing CuO nanoparticles with improved antifouling and separation performance. Mater. Chem. Phys. 2019, 222, 338–350. [Google Scholar] [CrossRef]
- Cao, T.-X.; Xie, R.; Ju, X.-J.; Wang, W.; Pan, D.-W.; Liu, Z.; Chu, L.-Y. Biomimetic Two-Dimensional Composited Membranes for Ion Separation and Desalination. Ind. Eng. Chem. Res. 2023, 62, 14772–14790. [Google Scholar] [CrossRef]
- Kim, S.; Wang, H.; Moo Lee, Y.M. 2D Nanosheets and Their Composite Membranes for Water, Gas, and Ion Separation. Ang. Chem. Int. Ed. 2019, 58, 17483–17871. [Google Scholar] [CrossRef]
- Galizia, M.; Chi, W.S.; Smith, Z.S.; Merkel, T.C.; Baker, R.W.; Freeman, B.D. 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Macromolecules 2017, 50, 7809–7843. [Google Scholar] [CrossRef]
- Zhang, Z.; Rahman, M.; Abetz, C.; AbetzJ, V. High-performance asymmetric isoporous nanocomposite membranes with chemically-tailored amphiphilic nanochannels. Mater. Chem. A 2020, 8, 9554–9566. [Google Scholar] [CrossRef]
- Sardarabadi, H.; Kiani, S.; Karkhanechi, H.; Mousavi, S.M.; Saljoughi, E.; Matsuyama, H. Effect of Nanofillers on Properties and Pervaporation Performance of Nanocomposite Membranes: A Review. Membranes 2022, 12, 1232. [Google Scholar] [CrossRef] [PubMed]
- Agboola, O.; Fayomi, O.S.I.; Ayodeji, A.; Ayeni, A.O.; Alagbe, E.E.; Sanni, S.E.; Okoro, E.E.; Moropeng, L.; Sadiku, R.; Kupolati, K.W.; et al. A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation. Membranes 2021, 11, 139. [Google Scholar] [CrossRef] [PubMed]
- Frappa, M.; Castillo, A.E.D.R.; Macedonio, F.; Di Luca, G.; Drioli, E.; Gugliuzza, A. Exfoliated Bi2Te3-enabled membranes for new concept water desalination: Freshwater production meets new routes. Water Res. 2021, 203, 117503. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; He, S.; Hosseini, S.S.; Zhu, B.; Shao, L. Emerging nanomaterial incorporated membranes for gas separation and pervaporation towards energetic-efficient applications. Adv. Membr. 2022, 2, 100015. [Google Scholar] [CrossRef]
- Cay-Durgun, P.; McCloskey, C.; Konecny, J.; Khosravi, A.; Lind, M.L. Evaluation of thin film nanocomposite reverse osmosis membranes for long-term brackish water desalination performance. Desalination 2017, 404, 304–312. [Google Scholar] [CrossRef]
- Janakiram, S.; Ahmadi, M.; Dai, Z.; Ansaloni, L.; Deng, L. Performance of Nanocomposite Membranes Containing 0D to 2D Nanofillers for CO2 Separation: A Review. Membranes 2018, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Di Luca, G.; Chen, G.; Jin, W.; Gugliuzza, A. Aliquots of MIL-140 and Graphene in Smart PNIPAM Mixed Hydrogels: A Nanoenvironment for a More Eco-Friendly Treatment of NaCl and Humic Acid Mixtures by Membrane Distillation. Membranes 2023, 13, 437. [Google Scholar] [CrossRef]
- Butylskii, D.; Troitskiy, V.; Chuprynina, D.; Dammak, L.; Larchet, C.; Nikonenko, V. Application of Hybrid Electrobaromembrane Process for Selective Recovery of Lithium from Cobalt- and Nickel-Containing Leaching Solutions. Membranes 2023, 13, 509. [Google Scholar] [CrossRef]
- Joosten, N.; Wyrębak, W.; Schenning, A.; Nijmeijer, K.; Borneman, Z. On the Performance of a Ready-to-Use Electrospun Sulfonated Poly(Ether Ether Ketone) Membrane Adsorber. Membranes 2023, 13, 543. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.S.; Ferraria, A.M.; Botelho do Rego, A.M.; Monteiro, S.; Santos, R.; Minhalma, M.; Sánchez-Loredo, M.G.; Tovar-Tovar, R.L.; de Pinho, M.N. Bactericide Activity of Cellulose Acetate/Silver Nanoparticles Asymmetric Membranes: Surfaces and Porous Structures Role. Membranes 2023, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Ferreira, F.C.; Pires, F.; Portugal, C.A.M. Magnetic-Responsive Liposomal Hydrogel Membranes for Controlled Release of Small Bioactive Molecules-An Insight into the Release Kinetics. Membranes 2023, 13, 674. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yang, Z.; Liu, G.; Sun, L.; Xu, R.; Zhong, J. Functionalized GO Membranes for Efficient Separation of Acid Gases from Natural Gas: A Computational Mechanistic Understanding. Membranes 2022, 12, 1155. [Google Scholar] [CrossRef] [PubMed]
- Polak, D.; Szwast, M. Analysis of the Influence of Process Parameters on the Properties of Homogeneous and Heterogeneous Membranes for Gas Separation. Membranes 2022, 12, 1016. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Li, S.; Tocci, E.; Saielli, G.; Gugliuzza, A.; Wang, Y. Pathway for Water Transport through Breathable Nanocomposite Membranes of PEBAX with Ionic Liquid [C12C1im]Cl. Membranes 2023, 13, 749. [Google Scholar] [CrossRef]
- Strzelewicz, A.; Krasowska, M.; Cieśla, M. Lévy Flights Diffusion with Drift in Heterogeneous Membranes. Membranes 2023, 13, 417. [Google Scholar] [CrossRef]
- Ceccio, G.; Vacik, J.; Siegel, J.; Cannavó, A.; Choukourov, A.; Pleskunov, P.; Tosca, M.; Fink, D. Etching and Doping of Pores in Polyethylene Terephthalate Analyzed by Ion Transmission Spectroscopy and Nuclear Depth Profiling. Membranes 2022, 12, 1061. [Google Scholar] [CrossRef] [PubMed]
- Nitodas, S.; Skehan, M.; Liu, H.; Shah, R. Current and Potential Applications of Green Membranes with Nanocellulose. Membranes 2023, 13, 694. [Google Scholar] [CrossRef]
- Man, G.T.; Albu, P.C.; Nechifor, A.C.; Grosu, A.R.; Tanczos, S.-K.; Grosu, V.-A.; Ioan, M.-R.; Nechifor, G. Thorium Removal, Recovery and Recycling: A Membrane Challenge for Urban Mining. Membranes 2023, 13, 765. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gugliuzza, A.; Boi, C. Editorial for the Special Issue “Preparation and Application of Advanced Functional Membranes”. Membranes 2024, 14, 100. https://doi.org/10.3390/membranes14050100
Gugliuzza A, Boi C. Editorial for the Special Issue “Preparation and Application of Advanced Functional Membranes”. Membranes. 2024; 14(5):100. https://doi.org/10.3390/membranes14050100
Chicago/Turabian StyleGugliuzza, Annarosa, and Cristiana Boi. 2024. "Editorial for the Special Issue “Preparation and Application of Advanced Functional Membranes”" Membranes 14, no. 5: 100. https://doi.org/10.3390/membranes14050100
APA StyleGugliuzza, A., & Boi, C. (2024). Editorial for the Special Issue “Preparation and Application of Advanced Functional Membranes”. Membranes, 14(5), 100. https://doi.org/10.3390/membranes14050100