Removal of Methylene Blue Dye from Aqueous Solutions Using Polymer Inclusion Membrane Containing Calix[4]pyrrole
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis
2.3. Preparation of PIMs and Stability Test
2.4. Transport Studies
2.5. Characteristics of Developed Polymer Inclusion Membranes (PIMs)
2.5.1. Morphology
2.5.2. Analysis of Thermal Properties: Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) of PIMs
2.5.3. Analysis of Structure: Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy of PIMs
3. Results and Discussion
3.1. Kinetics and Repeatability of the Methylene Blue (MB) Dye Transport across Polymer Inclusion Membranes (PIMs)
3.2. The Effect of Carrier Concentration
3.3. Modification of Source Phase Composition
3.4. Modification of the Receiving Phase Composition
3.5. Membrane Reusability and Proposed Transport Mechanism
3.6. Physical–Chemical Characterization of the Developed PIMs
3.6.1. Morphology of the Developed PIMs
3.6.2. Thermal Properties Analysis Results
3.6.3. ATR-FTIR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sivakumar, R.; Lee, N.Y. Adsorptive removal of organic pollutant methylene blue using polysaccharide-based composite hydrogels. Chemosphere 2022, 286, 131890. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Khan, I.; Usman, M.; Imran, M.; Saeed, K. Nanoclay-mediated photocatalytic activity enhancement of copper oxide nanoparticles for enhanced methyl orange photodegradation. J. Mater. Sci. Mater. Electron. 2020, 31, 8971–8985. [Google Scholar] [CrossRef]
- Alencar, L.V.T.D.; Passos, L.M.S.; Soares, C.M.F.; Lima, A.S.; Souza, R.L. Efficiency Method for Methylene Blue Recovery Using Aqueous Two-Phase Systems Based on Cholinium-Ionic Liquids. J. Fash. Technol. Text. Eng. 2020, 6, 13–20. [Google Scholar] [CrossRef]
- Ahmad, A.; Mohd-Setapar, S.H.; Chuong, C.S.; Khatoon, A.; Wani, W.A.; Kumar, R.; Rafatullah, M. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Adv. 2015, 5, 30801–30818. [Google Scholar] [CrossRef]
- Ahmad, M.; Rehman, W.; Khan, M.M.; Qureshi, M.T.; Gul, A.; Haq, S.; Ullah, R.; Rab, A.; Menaa, F. Phytogenic fabrication of ZnO and gold decorated ZnO nanoparticles for photocatalytic degradation of Rhodamine B. J. Environ. Chem. Eng. 2021, 9, 104725. [Google Scholar] [CrossRef]
- Pandey, S.; Do, J.Y.; Kim, J.; Kang, M. Fast and highly efficient removal of dye from aqueous solution using natural locust bean gum based hydrogels as adsorbent. Int. J. Biol. Macromol. 2020, 143, 60–75. [Google Scholar] [CrossRef]
- Fong, W.M.; Affam, A.C.; Chung, W.C. Synthesis of Ag/Fe/CAC for colour and COD removal from methylene blue dye wastewater. Int. J. Environ. Sci. Technol. 2020, 17, 3485–3494. [Google Scholar] [CrossRef]
- Benosmane, N.; Boutemeur, B.; Hamdi, S.M.; Hamdi, M. Removal of methylene blue dye from aqueous solutions using polymer inclusion membrane technology. Appl. Water Sci. 2022, 12, 104. [Google Scholar] [CrossRef]
- Derakhshan, Z.; Baghapour, M.A.; Ranjbar, M.; Faramarzian, M. Adsorption of Methylene Blue Dye from Aqueous Solutions by Modified Pumice Stone: Kinetics and Equilibrium Studies. Health Scope 2013, 2, 136–144. [Google Scholar] [CrossRef]
- Allouche, F.N.; Yassaa, N. Potential adsorption of methylene blue from aqueous solution using green macroalgae Posidonia oceanica. In Proceedings of the IOP Conference Series: Materials Science and Engineering, International Conference on Functional Materials and Chemical Engineering (ICFMCE 2017), Dubai, United Arab Emirates, 24–26 November 2017; Volume 323, p. 012006. [Google Scholar]
- Han, T.H.; Khan, M.M.; Kalathil, S.; Lee, J.; Cho, M.H. Simultaneous enhancement of methylene blue degradation and power generation in a microbial fuel cell by gold nanoparticles. Ind. Eng. Chem. Res. 2013, 52, 8174–8181. [Google Scholar] [CrossRef]
- Ashraf, M.W. Removal of methylene blue dye from wastewaters by using supported liquid membrane technology. Pol. J. Chem. Technol. 2016, 18, 26–30. [Google Scholar] [CrossRef]
- Konczyk, J.; Nowik-Zajac, A.; Kozlowski, C. Calixarene-based extractants for heavy metal ions removal from aqueous solutions. Sep. Sci. 2016, 51, 2394–2410. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Mornane, P.; Potter, J.D.; Cattrall, R.W.; Kolev, S.D. Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J. Membr. Sci. 2006, 281, 7–41. [Google Scholar] [CrossRef]
- Benosmane, N.; Boutemeur, B.; Hamdi, S.M.; Hamdi, M. Citric acid removal from aqueous solution using polymer inclusion membrane based on mixture of CTA and CA. Desalin. Water Treat. 2018, 114, 163–168. [Google Scholar] [CrossRef]
- Nowik-Zajac, A.; Zawierucha, I.; Kozlowski, C. Selective transport of Ag(I) through a polymer inclusion membrane containing a calix[4]pyrrole derivative from nitrate aqueous solutions. Int. J. Mol. Sci. 2020, 21, 5348. [Google Scholar] [CrossRef] [PubMed]
- Zawierucha, I.; Nowik-Zajac, A.; Lagiewka, J.; Malina, G. Separation of Mercury(II) from Industrial Wastewater through Polymer Inclusion Membranes with Calix[4]pyrrole Derivative. Membranes 2022, 12, 492. [Google Scholar] [CrossRef] [PubMed]
- Zawierucha, I.; Nowik-Zajac, A.; Kozlowski, C.A. Removal of Pb(II) Ions Using Polymer Inclusion Membranes Containing Calix[4]resorcinarene Derivative as Ion Carrier. Polymers 2019, 11, 2111. [Google Scholar] [CrossRef] [PubMed]
- Zawierucha, I.; Nowik-Zajac, A.; Malina, G. Selective Removal of As(V) Ions from Acid Mine Drainage Using Polymer Inclusion Membranes. Minerals 2020, 10, 909. [Google Scholar] [CrossRef]
- Minhas, A.M.; Rauf, A.; Rauf, S.; Minhas, F.T.; Memon, N.; Jabbar, A.; Bhanger, M.I.; Malik, M.I. Selective and efficient extraction of cationic dyes from industrial effluents through polymer inclusion membrane. Sep. Purif. Technol. 2021, 272, 118883. [Google Scholar] [CrossRef]
- Lagiewka, J.; Nowik-Zajac, A.; Pajdak, A.; Zawierucha, I. A novel multifunctional β-cyclodextrin polymer as a promising sorbent for rapid removal of methylene blue from aqueous solutions. Carbohyd. Polym. 2023, 307, 120615. [Google Scholar] [CrossRef]
- Gale, P.A.; Sessler, J.L.; Kràl, V. Calixpyrroles. Chem. Commun. 1998, 1–8. [Google Scholar] [CrossRef]
- Gale, P.A.; Sessler, J.L.; Kràl, V.; Lynch, V. Calix[4]pyrroles: Old Yet New Anion Binding Agents. J. Am. Chem. Soc. 1996, 118, 5140–5141. [Google Scholar] [CrossRef]
- Danesi, P.R. Separation of metal species by supported liquid membranes. Sep. Sci. Technol. 1984, 85, 857–894. [Google Scholar] [CrossRef]
- Kebiche-Senhadji, O.; Mansouri, S.; Tingry, P.; Seta, M.; Benamor, M. Faciliated Cd(II) transport across CTA polymer inclusion membrane using anion (Aliquat 336) and cation (D2EHPA) metal carriers. J. Membr. Sci. 2008, 310, 438–445. [Google Scholar] [CrossRef]
- Scott, K. Handbook of Industrial Membranes; Elsevier Science Publishers Ltd.: London, UK, 2006. [Google Scholar]
- Cox, M. Solvent Extraction in Hydrometallurgy. In Solvent Extraction Principles and Practice, Revised and Expanded; Rydberg, J., Cox, M., Musikas, C., Choppin, C.R., Dekker, M., Eds.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Rodríguez de San Miguel, E.; Aquilar, J.C.; De Gyves, J. Structural effects on metal ion migration across polymer inclusion membranes: Dependence of transport profiles on nature of active plasticizer. J. Membr. Sci. 2008, 307, 105–116. [Google Scholar] [CrossRef]
- Forgacs, E.; Cserhati, F.; Oros, G. Removal of synthetic dyes from wastewaters: A review. Environ. Int. 2004, 30, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Xu, C.; Cattrall, R.W.; Kolev, S.D. A polymer inclusion membrane for extracting thiocyanate from weakly alkine solutions. J. Membr. Sci. 2011, 367, 85. [Google Scholar] [CrossRef]
- Sabzi, N.E.; Kiasat, A.R. β-cyclodextrin based nanosponge as a biodegradable porous three-dimensional nanocatalyst in the one-pot synthesis of N-containing organic scaffolds. Catal. Lett. 2018, 148, 2654–2664. [Google Scholar] [CrossRef]
- Benosmane, N.; Guedioura, B.; Hamdi, S.M.; Hamdi, M.; Boutemeur, B. Preparation, characterization and thermal studies of polymer inclusion cellulose acetate membrane with calix[4]resorcinarenes as carrier. Mater. Sci. Eng. C-Mater. Biol. Appl. 2010, 30, 860–867. [Google Scholar] [CrossRef]
- Arous, O.; Amara, M.; Kerdjoudi, H. Selective transport of metal ions using polymer inclusion membranes containing crown-ether and cryptands. Arab. J. Sci. Eng. 2010, 35, 79–93. [Google Scholar]
- Mohapatra, P.K.; Lakshmi, D.S.; Bhattacharyya, A.; Monchanda, V.K. Evaluation of polymer inclusion membrane containing crown ethers for selective cesium separation from nuclear waste solutions. J. Hazard. Mater. 2009, 169, 472–479. [Google Scholar] [CrossRef] [PubMed]
pH of Source Phase | % Removal of MB |
---|---|
3 | 5.48 |
6 | 18.43 |
9 | 74.57 |
10 | 93.10 |
11 | 92.12 |
12 | 91.89 |
Concentration of HCl in the Receiving Phase | % Removal of MB |
---|---|
0.1 M | 93.10 |
0.2 M | 89.75 |
0.3 M | 88.48 |
0.5 M | 70.58 |
1.0 M | 65.54 |
Bond | Membrane before the Transport Process (A) | Membrane after the Transport Process (B) | Typical Absorption Range [cm−1] * |
---|---|---|---|
Wavenumber [cm−1] | |||
R-X alkyl halides | 600.50 | 601.53 | 500–680 |
C-H aromatics | 744.94 | 743.91 | 705–745 |
C-H aromatics | 856.37 | 855.34 | 862 |
N-H amine groups | 899.71 | 900.74 | 665–910 |
RCO-OH carboxylic groups RCOOR’ C-O | 1033.84 | 1041.06 | 1000–1320 |
Ar-O-R ether groups | 1213.37 | 1229.88 | 1220–1260 |
C-H alkanes | 1364.01 | 1352.66 | 1360, second 723 |
RCH2CH3 alkanes CH2. CH3 | 1466.16 | 1466.16 | 1460 |
N-O nitro groups | 1524.97 | 1523.94 | 1520, second 1350 |
C=C alkenes | 1607.51 | 1607.51 | 1611 |
RCOOR’ esters groups | 1741.64 | 1749.90 | 1735 |
-CH2- alkanes C=C CO-OH carboxylic groups dimer OH | 2856.99 | 2855.96 | 2850 2800–3400 |
-CH2- alkanes | 2928.19 | 2926.12 | 2925 |
RCONHR’ | 3437.89 | 3437.89 | 3440 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowik-Zajac, A.; Zawierucha, I.; Lagiewka, J.; Jaksender, K.; Witt, K.; Malina, G.; Sabadash, V. Removal of Methylene Blue Dye from Aqueous Solutions Using Polymer Inclusion Membrane Containing Calix[4]pyrrole. Membranes 2024, 14, 92. https://doi.org/10.3390/membranes14040092
Nowik-Zajac A, Zawierucha I, Lagiewka J, Jaksender K, Witt K, Malina G, Sabadash V. Removal of Methylene Blue Dye from Aqueous Solutions Using Polymer Inclusion Membrane Containing Calix[4]pyrrole. Membranes. 2024; 14(4):92. https://doi.org/10.3390/membranes14040092
Chicago/Turabian StyleNowik-Zajac, Anna, Iwona Zawierucha, Jakub Lagiewka, Karolina Jaksender, Katarzyna Witt, Grzegorz Malina, and Vira Sabadash. 2024. "Removal of Methylene Blue Dye from Aqueous Solutions Using Polymer Inclusion Membrane Containing Calix[4]pyrrole" Membranes 14, no. 4: 92. https://doi.org/10.3390/membranes14040092
APA StyleNowik-Zajac, A., Zawierucha, I., Lagiewka, J., Jaksender, K., Witt, K., Malina, G., & Sabadash, V. (2024). Removal of Methylene Blue Dye from Aqueous Solutions Using Polymer Inclusion Membrane Containing Calix[4]pyrrole. Membranes, 14(4), 92. https://doi.org/10.3390/membranes14040092