A PDA@ZIF-8-Incorporated PMIA TFN-FO Membrane for Seawater Desalination: Improving Water Flux and Anti-Fouling Performance
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of PDA@ZIF-8 Nanoparticles
2.2. Fabrication of the PMIA Substrate
2.3. Fabrication of the PMIA TFC-FO and TFN-FO Membrane
2.4. Characterization of Membranes
2.4.1. Characterizations of PDA@ZIF-8 Nanoparticles
2.4.2. Characterizations of the PMIA FO Membrane
2.5. Evaluation of FO Performance
3. Results and Discussion
3.1. Characterization of ZIF-8 and PDA@ZIF-8 Nanoparticles
3.2. The Chemical Composition of the FO Membrane
3.3. Surface Morphology and Performance Characteristics of the FO Membranes
3.4. The PRO and FO Properties of the FO Membrane
3.4.1. Influence of the Amount of PDA@ZIF-8 Incorporated on the PRO Mode and FO Mode
3.4.2. The Long-Term Stability of FO Membranes
3.4.3. Membrane-Fouling Properties
3.5. Comparison of FO Membrane Performance in the Literature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vatanpour, V.; Zoqi, N. Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes. Appl. Surf. Sci. 2017, 396, 1478–1489. [Google Scholar] [CrossRef]
- Kashif, M.; Sabri, M.A.; Zhang, N.; Banat, F. Graphene: A diamond hammer for cracking hard nuts in reverse osmosis desalination membranes. Desalination 2024, 581, 117552. [Google Scholar] [CrossRef]
- Wang, F.; Qu, D.; Li, Y.; Fang, Y.; Ji, M.; Liu, K.; Zhang, Z.; Wang, W.; Liu, Y. High proportional nitrification-derived nitrate in glacier runoffs on the Tibetan Plateau indicated by triple oxygen isotopes of nitrate. J. Hydrol. 2022, 614, 128632. [Google Scholar] [CrossRef]
- Kegl, T.; Korenak, J.; Buksek, H.; Petrinic, I. Modeling and multi-objective optimization of forward osmosis process. Desalination 2024, 580, 117550. [Google Scholar] [CrossRef]
- Shahrim, N.A.A.; Abounahia, N.M.; El-Sayed, A.M.A.; Saleem, H.; Zaidi, S.J. An overview on the progress in produced water desalination by membrane-based technology. J. Water Process Eng. 2023, 51, 103479. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Zhang, K. Influence of hydrophilic carbon dots on polyamide thin film nanocomposite reverse osmosis membranes. J. Membr. Sci. 2017, 537, 42–53. [Google Scholar] [CrossRef]
- Bendoy, A.P.; Zeweldi, H.G.; Park, M.J.; Shon, H.K.; Kim, H.; Chung, W.-J.; Nisola, G.M. Silicene nanosheets as support fillers for thin film composite forward osmosis membranes. Desalination 2022, 536, 115817. [Google Scholar] [CrossRef]
- Kim, B.; Gwak, G.; Hong, S. Review on methodology for determining forward osmosis (FO) membrane characteristics: Water permeability (A), solute permeability (B), and structural parameter (S). Desalination 2017, 422, 5–16. [Google Scholar] [CrossRef]
- Kim, Y.; Elimelech, M.; Shon, H.K.; Hong, S. Combined organic and colloidal fouling in forward osmosis: Fouling reversibility and the role of applied pressure. J. Membr. Sci. 2014, 460, 206–212. [Google Scholar] [CrossRef]
- Zhang, M.; Jin, W.; Yang, F.; Duke, M.; Dong, Y.; Tang, C.Y. Engineering a Nanocomposite Interlayer for a Novel Ceramic-Based Forward Osmosis Membrane with Enhanced Performance. Environ. Sci. Technol. 2020, 54, 7715–7724. [Google Scholar] [CrossRef]
- Nasir, A.M.; Adam, M.R.; Kamal, S.N.E.A.M.; Jaafar, J.; Othman, M.H.D.; Ismail, A.F.; Aziz, F.; Yusof, N.; Bilad, M.R.; Mohamud, R.; et al. A review of the potential of conventional and advanced membrane technology in the removal of pathogens from wastewater. Sep. Purif. Technol. 2022, 286, 120454. [Google Scholar] [CrossRef] [PubMed]
- Dutt, M.A.; Hanif, M.A.; Nadeem, F.; Bhatti, H.N. A review of advances in engineered composite materials popular for wastewater treatment. J. Environ. Chem. Eng. 2020, 8, 104073. [Google Scholar] [CrossRef]
- Lu, X.; Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: History, current efforts, and future directions. Chem. Soc. Rev. 2021, 50, 6290–6307. [Google Scholar] [CrossRef] [PubMed]
- Rong, K.; Zhang, T.C. Forward Osmosis: Mass Transmission Coefficient-Based Models for Evaluation of Concentration Polarization under Different Conditions. J. Environ. Eng. 2018, 144, 04017095. [Google Scholar] [CrossRef]
- Song, H.-L.; Zhai, S.-Q.; Nan, J.; Cai, W.-J.; Xu, S.-Y.; Tang, Y.-W.; Yang, Y.-L. Dynamic relationship between membrane fouling and reverse diffusion of inorganic draw solutes in forward osmosis. Desalination 2024, 570, 117101. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, P.; Xu, S.; Liu, H.; Zhang, W.; Song, W.; Wang, X. Structurally tuned polyamide membranes via the polyvinylpyrrolidone-modulated interfacial polymerization reaction for enhanced forward osmosis performance. Desalination 2024, 585, 117753. [Google Scholar] [CrossRef]
- Li, M.; Karanikola, V.; Zhang, X.; Wang, L.; Elimelech, M. A Self-Standing, Support-Free Membrane for Forward Osmosis with No Internal Concentration Polarization. Environ. Sci. Technol. Lett. 2018, 5, 266–271. [Google Scholar] [CrossRef]
- Liang, H.-Q.; Hung, W.-S.; Yu, H.-H.; Hu, C.-C.; Lee, K.-R.; Lai, J.-Y.; Xu, Z.-K. Forward osmosis membranes with unprecedented water flux. J. Membr. Sci. 2017, 529, 47–54. [Google Scholar] [CrossRef]
- Huang, Y.; Jin, H.; Yu, P.; Luo, Y. Polyamide thin-film composite membrane based on nano-silica modified polysulfone microporous support layer for forward osmosis. Desalination Water Treat. 2016, 57, 20177–20187. [Google Scholar] [CrossRef]
- Bagherzadeh, M.; Nikkhoo, M.; Ahadian, M.M.; Bayrami, A.; Amini, M. Polyethersulfone/polyamide thin-film nanocomposite membrane decorated by WS2-Cys-UiO-66-(CO2H)2 nanocomposites for forward osmosis. J. Environ. Chem. Eng. 2023, 11, 109959. [Google Scholar] [CrossRef]
- Ma, D.; Peh, S.B.; Han, G.; Chen, S.B. Thin-Film Nanocomposite (TFN) Membranes Incorporated with Super-Hydrophilic Metal- Organic Framework (MOF) UiO-66: Toward Enhancement of Water Flux and Salt Rejection. ACS Appl. Mater. Interfaces 2017, 9, 7523–7534. [Google Scholar] [CrossRef] [PubMed]
- Emadzadeh, D.; Lau, W.J.; Matsuura, T.; Hilal, N.; Ismail, A.F. The potential of thin film nanocomposite membrane in reducing organic fouling in forward osmosis process. Desalination 2014, 348, 82–88. [Google Scholar] [CrossRef]
- Wang, L.; Fang, M.; Liu, J.; He, J.; Deng, L.; Li, J.; Lei, J. The influence of dispersed phases on polyamide/ZIF-8 nanofiltration membranes for dye removal from water. RSC Adv. 2015, 5, 50942–50954. [Google Scholar] [CrossRef]
- Arjmandi, M.; Peyravi, M.; Chenar, M.P.; Jahanshahi, M. Channelization of water pathway and encapsulation of DS in the SL of the TFC FO membrane as a novel approach for controlling dilutive internal concentration polarization†. Environ. Sci. Water Res. Technol. 2019, 5, 1436–1452. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, D.; Yao, Y.; Zhang, B.; Lin, Y.S. Stability of ZIF-8 membranes and crystalline powders in water at room temperature. J. Membr. Sci. 2015, 485, 103–111. [Google Scholar] [CrossRef]
- Dai, F.; Qian, G.; Ke, Z.; Xu, K.; Wang, M.; Li, D.; Deng, Z.; Yu, Y.; Chen, C. Antifouling polyphenylene sulfone tight-ultrafiltration membrane by co-depositing dopamine and zwitterionic polymer for efficient dye/salt separation. Sep. Purif. Technol. 2024, 345, 127403. [Google Scholar] [CrossRef]
- Yassari, M.; Shakeri, A. Nature based forward osmosis membranes: A novel approach for improved anti-fouling properties of thin film composite membranes. Chem. Eng. Res. Des. 2022, 184, 137–151. [Google Scholar] [CrossRef]
- Ong, R.C.; Chung, T.-S. Fabrication and positron annihilation spectroscopy (PAS) characterization of cellulose triacetate membranes for forward osmosis. J. Membr. Sci. 2012, 394, 230–240. [Google Scholar] [CrossRef]
- Lakra, R.; Balakrishnan, M.; Basu, S. Activated carbon incorporation on forward osmosis membrane surface for enhanced performance. Water Supply 2022, 22, 409–423. [Google Scholar] [CrossRef]
- Yu, Y.; Seo, S.; Kim, I.-C.; Lee, S. Nanoporous polyethersulfone (PES) membrane with enhanced flux applied in forward osmosis process. J. Membr. Sci. 2011, 375, 63–68. [Google Scholar] [CrossRef]
- Suwaileh, W.; Pathak, N.; Shon, H.; Hilal, N. Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook. Desalination 2020, 485, 114455. [Google Scholar] [CrossRef]
- Jin, L.; Hu, L.; Liang, S.; Wang, Z.; Xu, G.; Yang, X. A novel organic solvent nanofiltration (OSN) membrane fabricated by Poly (m-phenylene isophthalamide) (PMIA) under large-scale and continuous process. J. Membr. Sci. 2022, 647, 120259. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, S.; Zhang, Z.; Yang, Y.; Zhang, C.; Qian, Y.; Ren, X. A novel antifouling polyamide thin-film composite forward osmosis membrane fabricated by poly(m-phenylene isophthalamide) for seawater desalination. J. Environ. Chem. Eng. 2023, 11, 110739. [Google Scholar] [CrossRef]
- He, M.; Yao, J.; Liu, Q.; Wang, K.; Chen, F.; Wang, H. Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous Mesoporous Mater. 2014, 184, 55–60. [Google Scholar] [CrossRef]
- Jian, M.; Liu, B.; Zhang, G.; Liu, R.; Zhang, X. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids Surf. a-Physicochem. Eng. Asp. 2015, 465, 67–76. [Google Scholar] [CrossRef]
- Zhang, J.; He, X.; Yu, S.; Zhu, J.; Wang, H.; Tian, Z.; Zhu, S.; Cui, Z. A novel dental adhesive containing Ag/polydopamine-modified HA fillers with both antibacterial and mineralization properties. J. Dent. 2021, 111, 103710. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, Y.; Hou, L. Synthesis of zeolitic imidazolate framework-8 on polyester fiber for PM2.5 removal. RSC Adv. 2018, 8, 31471–31477. [Google Scholar] [CrossRef]
- Schejn, A.; Balan, L.; Falk, V.; Aranda, L.; Medjahdi, G.; Schneider, R. Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. Crystengcomm 2014, 16, 4493–4500. [Google Scholar] [CrossRef]
- Pan, F.; Qiao, L.; Yuan, B.; Duan, C.; Wang, J.; Wu, W.; Lin, Q.; Shi, Y.; Chen, Z.; Jiang, Z. Polydopamine coated poly(m-phenylene isophthalamid) membrane as heat-tolerant separator for lithium-ion batteries. Ionics 2020, 26, 5471–5480. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, S.; Song, H.; Qin, G.; Li, P.; Zhang, K.; Li, T.; Han, L.; Liu, W.; Ji, S. A green and facile one-step hydration method based on ZIF-8-PDA to prepare melamine composite sponges with excellent hydrophobicity for oil-water separation. J. Hazard. Mater. 2023, 451, 131064. [Google Scholar] [CrossRef]
- Chen, M.; Xiao, C.; Wang, C.; Liu, H.; Huang, N. Preparation and characterization of a novel thermally stable thin film composite nanofiltration membrane with poly (m-phenyleneisophthalamide) (PMIA) substrate. J. Membr. Sci. 2018, 550, 36–44. [Google Scholar] [CrossRef]
- Tang, C.Y.; Kwon, Y.-N.; Leckie, J.O. Probing the nano- and micro-scales of reverse osmosis membranes—A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements. J. Membr. Sci. 2007, 287, 146–156. [Google Scholar] [CrossRef]
- Singh, P.S.; Joshi, S.V.; Trivedi, J.J.; Devmurari, C.V.; Rao, A.P.; Ghosh, P.K. Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions. J. Membr. Sci. 2006, 278, 19–25. [Google Scholar] [CrossRef]
- Cao, C.; Tan, L.; Liu, W.; Ma, J.; Li, L. Polydopamine coated electrospun poly(vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries. J. Power Sources 2014, 248, 224–229. [Google Scholar] [CrossRef]
- Shi, C.; Dai, J.; Huang, S.; Li, C.; Shen, X.; Zhang, P.; Wu, D.; Sun, D.; Zhao, J. A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries. J. Membr. Sci. 2016, 518, 168–177. [Google Scholar] [CrossRef]
- Ouyang, S.; Wang, T.; Zhong, L.; Peng, M.; Yao, J.; Wang, S. Fabrication of hierarchical feather-mimetic polymer nanofibres. Appl. Surf. Sci. 2018, 427, 471–479. [Google Scholar] [CrossRef]
- Zhong, W.; Zhang, Y.; Zhao, L.; Li, W. Highly stable and antifouling graphene oxide membranes prepared by bio-inspired modification for water purification. Chin. Chem. Lett. 2020, 31, 2651–2656. [Google Scholar] [CrossRef]
- Li, Z.; Cao, Z.; Grande, C.; Zhang, W.; Dou, Y.; Li, X.; Fu, J.; Shezad, N.; Akhtar, F.; Kaiser, A. A phase conversion method to anchor ZIF-8 onto a PAN nanofiber surface for CO2 capture. RSC Adv. 2021, 12, 664–670. [Google Scholar] [CrossRef]
- Malik, A.; Nath, M.; Mohiyuddin, S.; Packirisamy, G. Multifunctional CdSNPs@ZIF-8: Potential Antibacterial Agent against GFP-Expressing Escherichia coli and Staphylococcus aureus and Efficient Photocatalyst for Degradation of Methylene Blue. ACS Omega 2018, 3, 8288–8308. [Google Scholar] [CrossRef]
- Li, Y.; Shi, S.; Gao, H.; Zhao, Z.; Su, C.; Wen, H. Improvement of the antifouling performance and stability of an anion exchange membrane by surface modification with graphene oxide (GO) and polydopamine (PDA). J. Membr. Sci. 2018, 566, 44–53. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Li, B.; Dai, Y.; Chen, X. Melamine-induced novel MSONs heterostructured framework: Controlled-switching between MOF and SOF via a self-assembling approach for rapid uranium sequestration. Chem. Eng. J. 2020, 379, 122279. [Google Scholar] [CrossRef]
- Zhang, X.; Choi, P.J.; Khanzada, N.K.; Wong, P.W.; An, A.K. Highly permeable chlorine-resistant forward osmosis membrane by grafting novel sulfonamide monomers. Desalination 2023, 564, 116754. [Google Scholar] [CrossRef]
- Huang, J.J.; Mei, X.; Han, J.; Yao, L.; Chen, S.; You, X.; Liao, Y. Impacts of hydrophobic, hydrophilic, superhydrophobic and superhydrophilic nanofibrous substrates on the thin film composite forward osmosis membranes. J. Environ. Chem. Eng. 2022, 10, 106958. [Google Scholar] [CrossRef]
- Dai, R.; Guo, H.; Tang, C.Y.; Chen, M.; Li, J.; Wang, Z. Hydrophilic Selective Nanochannels Created by Metal Organic Frameworks in Nanofiltration Membranes Enhance Rejection of Hydrophobic Endocrine-Disrupting Compounds. Environ. Sci. Technol. 2019, 53, 13776–13783. [Google Scholar] [CrossRef]
- Liu, L.; Jing, Y.; Du, T.; Li, X.; Song, J. Improved performance of polyamide nanofiltration membrane embedded with zeolite beta. J. Mol. Liq. 2024, 401, 124587. [Google Scholar] [CrossRef]
- Lu, P.; Liang, S.; Zhou, T.; Xue, T.; Mei, X.; Wang, Q. Layered double hydroxide nanoparticle modified forward osmosis membranes via polydopamine immobilization with significantly enhanced chlorine and fouling resistance. Desalination 2017, 421, 99–109. [Google Scholar] [CrossRef]
- Zhao, Y.-y.; Liu, Y.-l.; Wang, X.-m.; Huang, X.; Xie, Y.F. Impacts of Metal-Organic Frameworks on Structure and Performance of Polyamide Thin-Film Nanocomposite Membranes. ACS Appl. Mater. Interfaces 2019, 11, 13724–13734. [Google Scholar] [CrossRef]
- Sun, H.; Wu, P. Tuning the functional groups of carbon quantum dots in thin film nanocomposite membranes for nanofiltration. J. Membr. Sci. 2018, 564, 394–403. [Google Scholar] [CrossRef]
- Wu, X.; Yang, L.; Meng, F.; Shao, W.; Liu, X.; Li, M. ZIF-8-incorporated thin-film nanocomposite (TFN) nanofiltration membranes: Importance of particle deposition methods on structure and performance. J. Membr. Sci. 2021, 632, 119356. [Google Scholar] [CrossRef]
- Zhang, N.; Yan, T.; Li, C.; Deng, H.; Li, Z.; Yu, R.; Wang, T.; Xu, S.; Li, Q.; Wang, J. Improved separation performance of polyamide based reverse osmosis membrane incorporated with poly(dopamine) coated carbon nanotubes. J. Appl. Polym. Sci. 2021, 138, 50808. [Google Scholar] [CrossRef]
- Sun, H.; Yu, B.; Pan, X.; Liu, Z. MOF Nanosheets-decorated electrospun nanofiber membrane with Ultra-high adsorption capacity for dye removal from aqueous solutions. J. Mol. Liq. 2022, 367, 120367. [Google Scholar] [CrossRef]
- Ameloot, R.; Vermoortele, F.; Vanhove, W.; Roeffaers, M.B.J.; Sels, B.F.; De Vos, D.E. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nat. Chem. 2011, 3, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Zhang, K. MXene nanocomposite nanofiltration membrane for low carbon and long-lasting desalination. J. Membr. Sci. 2021, 640, 119808. [Google Scholar] [CrossRef]
- Golgoli, M.; Farahbakhsh, J.; Asif, A.H.; Khiadani, M.; Razmjou, A.; Johns, M.L.; Zargar, M. Harnessing the power of metal-organic frameworks to develop microplastic fouling resistant forward osmosis membranes. J. Membr. Sci. 2023, 682, 121766. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, L.; Guan, C.Y.; Liu, C.X.; Lang, W.Z.; Wang, Y. Construction of SiO @MWNTs incorporated PVDF substrate for reducing internal concentration polarization in forward osmosis. J. Membr. Sci. 2018, 564, 328–341. [Google Scholar] [CrossRef]
- Lu, P.; Liang, S.; Zhou, T.; Mei, X.; Zhang, Y.; Zhang, C.; Umar, A.; Wang, Q. Layered double hydroxide/graphene oxide hybrid incorporated polysulfone substrate for thin-film nanocomposite forward osmosis membranes. RSC Adv. 2016, 6, 56599–56609. [Google Scholar] [CrossRef]
- Son, M.; Park, H.; Liu, L.; Choi, H.; Kim, J.H.; Choi, H. Thin-film nanocomposite membrane with CNT positioning in support layer for energy harvesting from saline water. Chem. Eng. J. 2016, 284, 68–77. [Google Scholar] [CrossRef]
Element Concentration (%) | |||||
---|---|---|---|---|---|
Membrane | C | N | O | Zn | O/N Ratio |
TFC-FO | 78.25 | 12.8 | 8.95 | 0 | 0.7 |
TFN-FO | 74.43 | 15.34 | 9.67 | 0.56 | 0.63 |
Membrane | Rq (nm) | Ra (nm) | Rmax (nm) |
---|---|---|---|
TFC-FO | 110 | 89.3 | 663 |
TFN-FO | 38 | 29 | 302 |
Substrate | Modification | Temperature (°C) | pH | Draw Solution | Jw (LMH) | Js/Jw | Practical Application |
---|---|---|---|---|---|---|---|
CTA [28] | / | 25 | 7.0 | 2 M NaCl (0.5 h) | 12.8 | 0.53 | Simulated seawater |
CTA [29] | CS-AC | 25 | 7.0 | 2 M NaCl (0.5 h) | 19.4 | 0.665 | Simulated seawater |
PVDF [65] | / | 25 | 7.0 | 1 M NaCl (0.5 h) | 10.1 | 1.12 | Simulated seawater |
PSf [66] | / | 25 | 7.0 | 1 M NaCl (0.5 h) | 8 | 0.75 | Simulated seawater |
PSf [66] | 2.0 wt%LDH/GO | 25 | 7.0 | 1 M NaCl (0.5 h) | 13.5 | 5.5 | Simulated seawater |
PES [67] | / | 25 | 7.0 | 0.5 M NaCl (0.5 h) | 9.5 | 0.39 | Simulated seawater |
PES [67] | 0.5 wt%MWNTs-COOH | 25 | 7.0 | 0.5 M NaCl (0.5 h) | 21.8 | 0.57 | Simulated seawater |
Commercial [33] | / | 25 | 7.0 | 1 M NaCl (0.5 h) | 6.71 | 0.01 | Simulated seawater |
PMIA (This work) | / | 25 | 7.0 | 1 M NaCl (0.5 h) | 8.18 | 0.8 | Simulated seawater |
PMIA (This work) | 0.05PDA@ZIF-8 | 25 | 7.0 | 1 M NaCl (0.5 h) | 11.1 | 0.35 | simulated seawater |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Jia, R.; Xu, Z.-L.; Aibulatova, A.; Jin, X.-G.; Fang, Y.-X.; Zhang, M.-X.; Xu, S.-J. A PDA@ZIF-8-Incorporated PMIA TFN-FO Membrane for Seawater Desalination: Improving Water Flux and Anti-Fouling Performance. Membranes 2024, 14, 272. https://doi.org/10.3390/membranes14120272
Ma Y, Jia R, Xu Z-L, Aibulatova A, Jin X-G, Fang Y-X, Zhang M-X, Xu S-J. A PDA@ZIF-8-Incorporated PMIA TFN-FO Membrane for Seawater Desalination: Improving Water Flux and Anti-Fouling Performance. Membranes. 2024; 14(12):272. https://doi.org/10.3390/membranes14120272
Chicago/Turabian StyleMa, Yu, Rui Jia, Zhen-Liang Xu, Aida Aibulatova, Xiao-Gang Jin, Yin-Xin Fang, Ming-Xiao Zhang, and Sun-Jie Xu. 2024. "A PDA@ZIF-8-Incorporated PMIA TFN-FO Membrane for Seawater Desalination: Improving Water Flux and Anti-Fouling Performance" Membranes 14, no. 12: 272. https://doi.org/10.3390/membranes14120272
APA StyleMa, Y., Jia, R., Xu, Z.-L., Aibulatova, A., Jin, X.-G., Fang, Y.-X., Zhang, M.-X., & Xu, S.-J. (2024). A PDA@ZIF-8-Incorporated PMIA TFN-FO Membrane for Seawater Desalination: Improving Water Flux and Anti-Fouling Performance. Membranes, 14(12), 272. https://doi.org/10.3390/membranes14120272