Magnetic-Responsive Liposomal Hydrogel Membranes for Controlled Release of Small Bioactive Molecules—An Insight into the Release Kinetics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis and Characterization of the Iron Oxide Nanoparticles
2.2.2. Liposome Preparation, Loading and Purification
2.2.3. Characterization of the Liposomes
Determination of Liposome Dimension
Entrapment Efficiency (EE) and Loading Capacity (LC) of Ferulic Acid-Loaded Liposomes
2.2.4. Preparation of the Liposomal Hydrogel Membranes
2.2.5. Characterization of the Hydrogel Membranes
Swelling Ability
Determination of the Hydrophilic Character and Water Uptake
Analysis of the Structural Integrity of the Liposomes-Encapsulated Hydrogels
Chemical Characterization of the Liposomal Hydrogels
2.2.6. Ferulic Acid Release Assay
3. Results and Discussion
3.1. Synthesis and Characterization of FA-Loaded Liposomes
3.2. Design and Characterization of the Liposomal Gelatin Membranes
3.2.1. Encapsulation of Liposomes into the Gelatin Membranes
3.2.2. Determination of the Liposomal Gelatin Membranes Swelling Ability
3.2.3. Chemical Characterization of the Liposomal Gelatin Membranes
3.3. Ferulic Acid Release Assays
3.4. Magnetically Controlled Release of Ferulic Acid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Liposome | Purification | Mean Size (nm) | PI |
---|---|---|---|
DPPC:FA_30:1 DPPC:FA_10:1 | No | 716.5 ± 103.7 1930.1 ± 101.7 | 1.49 ± 0.44 0.63 ± 0.09 |
DPPC:FA_30:1 DPPC:FA_10:1 | Yes | 714.1 ± 152.9 998.5 ± 131.0 | 0.71 ± 0.01 0.63 ± 0.05 |
Hydrogel + FA | DPPC:FA Suspension | ||
---|---|---|---|
3:1 | 10:1 | ||
k1 (min−1) | 1.6 × 10−3 | 3.4 × 10−3 | 7.1 × 10−3 |
R2 | 0.9205 | 0.767 | 0.933 |
Hydrogel + FA | DPPC:FA Suspension | ||
---|---|---|---|
3:1 | 10:1 | ||
kH | 44.1 × 10−7 | 2.4 × 10−7 | 10.2 × 10−7 |
n = 0.5 | 0.641 | 0.807 | 0.141 |
R2 | 0.945 | 0.968 | 0.983 |
0.25% MNPs | 1% MNPs | |||||||
---|---|---|---|---|---|---|---|---|
3:1 | 10:1 | 3:1 MF | 10:1 MF | 3:1 | 10:1 | 3:1 MF | 10:1 MF | |
k1 (min−1) | 0.0049 | 0.0056 | 0.0033 | 0.0049 | 0.0050 | 0.0044 | 0.0033 | 0.0032 |
R2 | 0.719 | 0.847 | 0.797 | 0.844 | 0.777 | 0.753 | 0.8035 | 0.7128 |
References
- Dana, P.; Bunthot, S.; Suktham, K.; Surassmo, S.; Yata, T.; Namdee, K. Active Targeting Liposome-PLGA Composite for Cisplatin Delivery against Cervical Cancer. Colloids Surf. B Biointerfaces 2020, 196, 111270. [Google Scholar] [CrossRef] [PubMed]
- Jeon, M.; Kim, G.; Lee, W.; Im, H.-J. Development of Theranostic PEGylated Liposomal Au-Liposome for Effective Tumor Passive Targeting and Photothermal Therapy. Soc. Nucl. Med. 2020, 61, 1076. [Google Scholar]
- Pires, F.; Geraldo, V.P.; Antunes, A.; Marletta, A.; Oliveira, O.N., Jr.; Raposo, M. On the role of epigallocatechin-3-gallate in protecting phospholipid molecules against UV irradiation. Colloids Surf. B Biointerfaces 2019, 173, 312–319. [Google Scholar] [CrossRef]
- Pires, F.; Magalhaes-Mota, G.; Geraldo, V.P.; Ribeiro, P.A.; Oliveira, O.N., Jr.; Raposo, M. The impact of blue light in monolayers representing tumorigenic and nontumorigenic cell membranes containing epigallocatechin-3-gallate. Colloids Surf. B Biointerfaces 2020, 193, 111129. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Li, X.; Liang, X.; Luo, X. The Influence of Different Long-Circulating Materials on the Pharmacokinetics of Liposomal Vincristine Sulfate. Int. J. Nanomed. 2016, 11, 4187–4197. [Google Scholar] [CrossRef] [Green Version]
- Portilla, S.; Fernández, L.; Gutiérrez, D.; Rodríguez, A.; García, P. Encapsulation of the Antistaphylococcal Endolysin LysRODI in pH-Sensitive Liposomes. Antibiotics 2020, 9, 242. [Google Scholar] [CrossRef]
- Figueroa-Robles, A.; Antunes-Ricardo, M.; Guajardo-Flores, D. Encapsulation of Phenolic Compounds with Liposomal Improvement in the Cosmetic Industry. Int. J. Pharm. 2020, 593, 120125. [Google Scholar] [CrossRef]
- Matole, V.; Shegaonkar, A.; Kumbhar, S.; Thorat, Y.; Hosmani, A. Need of Liposomes as a Novel Drug Delivery System. Res. J. Pharm. Dos. Forms Technol. 2020, 12, 285–294. [Google Scholar] [CrossRef]
- Fan, Q.-Q.; Zhang, C.-L.; Qiao, J.-B.; Cui, P.-F.; Xing, L.; Oh, Y.-K.; Jiang, H.-L. Extracellular Matrix-Penetrating Nanodrill Micelles for Liver Fibrosis Therapy. Biomaterials 2020, 230, 119616. [Google Scholar] [CrossRef]
- Wei, X.; Liu, L.; Li, X.; Wang, Y.; Guo, X.; Zhao, J.; Zhou, S. Selectively Targeting Tumor-Associated Macrophages and Tumor Cells with Polymeric Micelles for Enhanced Cancer Chemo-Immunotherapy. J. Control. Release 2019, 313, 42–53. [Google Scholar] [CrossRef]
- Wang, Y.; van Steenbergen, M.J.; Beztsinn, N.; Shi, Y.; Lammers, T.; Van Nostrum, C.F.; Hennink, W.E. Biotin-decorated all-HPMA polymeric micelles for paclitaxel delivery. J. Control. Release 2020, 328, 970–984. [Google Scholar] [CrossRef]
- Hussein, Y.H.A.; Youssry, M. Polymeric Micelles of Biodegradable Diblock Copolymers: Enhanced Encapsulation of Hydrophobic Drugs. Materials 2018, 11, 688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapse, A.; Anup, N.; Patel, V.; Saraogi, G.K.; Mishra, D.K.; Tekade, R.K. Chapter 6—Polymeric micelles: A ray of hope among new drug delivery systems. In Advances in Pharmaceutical Product Development and Research, Drug Delivery Systems; Tekade, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 235–289. ISBN 9780128144879. [Google Scholar] [CrossRef]
- Salehi, S.; Naghib, S.M.; Garshasbi, H.R.; Ghorbanzadeh, S.; Zhang, W. Smart stimuli-responsive injectable gels and hydrogels for drug delivery and tissue engineering applications: A review. Front. Bioeng. Biotechnol. 2023, 11, 1104126. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Liu, X.; Yang, C.; Yang, Z.; Luo, J.; Kou, S.; Liu, K.; Sun, F. Injectable, photoresponsive hydrogels for delivering neuroprotective proteins enabled by metal directed protein assembly. Sci. Adv. 2022, 6, eabc4824. [Google Scholar] [CrossRef] [PubMed]
- Kurian, A.G.; Singh, R.K.; Patel, K.D.; Lee, J.-H.; Kim, H.-W. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact. Mat. 2022, 8, 267–295. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhong, D.; He, Y.; Jiang, J.; Xie, W.; Tang, Z.; Qiu, J.; Luo, J.; Wang, X. Photoresponsive hydrogel-coated upconversion cyanobacteria nanocapsules for myocardial infarction prevention and treatment. Adv. Sci. 2022, 9, 2202920. [Google Scholar] [CrossRef]
- Sabourian, P.; Tavakolian, M.; Yazdani, H.; Frounchi, M.; van de Ven, T.G.M.; Maysinger, D.; Kakkar, A. Stimuli-responsive chitosan as an advantageous platform for efficient delivery of bioactive agents. J. Control. Release 2020, 317, 216–231. [Google Scholar] [CrossRef]
- Shen, X.; Li, S.; Zhao, X.; Han, J.; Chen, J.; Rao, Z.; Zhang, K.; Quan, D.; Yuan, J.; Bao, Y. Dual-crosslinked regenerative hydrogel for sutureless long-term repair of corneal defect. Bioact. Mat. 2023, 20, 434–448. [Google Scholar] [CrossRef]
- Wang, X.; Swing, C.J.; Feng, T.; Xia, S.; Yu, J.; Zhang, X. Effects of environmental pH and ionic strength on the physical stability of cinnamaldehyde-loaded liposomes. J. Dispers. Sci. Technol. 2020, 41, 1568–1575. [Google Scholar] [CrossRef]
- Huang, X.; Brazel, C.S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release 2001, 73, 121–136. [Google Scholar] [CrossRef]
- Sankaranarayanan, J.; Mahmoud, A.E.; Kim, G.; Morachis, J.M.; Almutairi, A. Multiresponse strategies to modulate burst degradation and release from nano-particles. ACS Nano 2010, 4, 5930–5936. [Google Scholar] [CrossRef]
- Martínez, A.W.; Caves, J.M.; Swathi, L.W.; Chaikof, E.L. Effects of crosslinking on the mechanical properties, drug release and cytocompatibility of protein polymers. Acta Biomater. 2014, 10, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Nakhaei, P.; Margiana, R.; Bokov, D.O.; Abdelbasset, W.K.; Jadidi, K.M.A.; Varma, R.S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N. Liposomes: Structure, Biomedical Applications, and Stability Parameters with Emphasis on Cholesterol. Front. Bioeng. Biotechnol. 2021, 9, 705886. [Google Scholar] [CrossRef]
- Panwar, P.; Pandey, B.; Lakhera, P.C.; Singh, K.P. Preparation, characterization, and in-vitro release study of albendazole encapsulated nanosize liposomes. Int. J. Nanomed. 2010, 5, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Trucillo, P.; Campardelli, R.; Reverchon, E. Supercritical CO2 Assisted Liposomes Formation: Optimization of the Lipidic Layer for an Efficient Hydrophilic Drug Loading. J. Co2 Util. 2017, 18, 181–188. [Google Scholar] [CrossRef]
- Ricci, M.; Oliva, R.; Del Vecchio, P.; Paolantoni, M.; Morresi, A.; Sassi, P. DMSO-induced Perturbation of Thermotropic Properties of Cholesterol-Containing DPPC Liposomes. Biochim. Biophys. Acta (Bba)—Biomembr. 2016, 1858, 3024–3031. [Google Scholar] [CrossRef] [PubMed]
- Samuni, A.M.; Lipman, A.; Barenholz, Y. Damage to liposomal lipids: Protection by antioxidants and cholesterol-mediated dehydration. Chem. Phys. Lipids 2000, 105, 121–134. [Google Scholar] [CrossRef]
- Popova, A.V.; Hincha, D.K. Effects of cholesterol on dry bilayers: Interactions between phosphatidylcholine unsaturation and glycolipid or free sugar. Biophys. J. 2007, 93, 1204–1214. [Google Scholar] [CrossRef] [Green Version]
- Mou, Y.; Zhang, P.; Lai, W.-F.; Zhang, D. Design and applications of liposome-in-gel as carriers for cancer therapy. Drug Deliv. 2022, 29, 3245–3255. [Google Scholar] [CrossRef]
- Ivashkov, O.; Yakimova, T.; Evtushenko, E.; Gelissen, A.; Plamper, F.; Richtering, W.; Yaroslavov, A. On the mechanism of payload release from liposomes bound to temperature-sensitive microgel particles. Colloids Surf. A Physicochem. Eng. Asp. 2019, 570, 396–402. [Google Scholar] [CrossRef]
- Qin, C.; Lv, Y.; Xu, C.; Li, J.; Yin, L.; He, W. Lipid-bilayer-coated nanogels allow for sustained release and enhanced internalization. Int. J. Pharm. 2018, 551, 8–13. [Google Scholar] [CrossRef]
- Moustafa, M.A.; El-Refaie, W.M.; Elnaggar, Y.S.R.; Abdallah, O.Y. Gel in core carbosomes as novel ophthalmic vehicles with enhanced corneal permeation and residence. Int. J. Pharm. 2018, 546, 166–175. [Google Scholar] [CrossRef]
- Petralito, S.; Spera, R.; Pacelli, S.; Relucenti, M.; Familiarim, G.; Vitalone, A.; Paolicelli, P.; Casadei, M.A. Design and development of PEG-DMA gel-in-liposomes as a new tool for drug delivery. React. Funct. Polym. 2014, 77, 30–38. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, Y.; Wang, F.; Deng, L.; Xu, X.; Cui, W. Microfluidic liposomes-anchored microgels as extended delivery platform T for treatment of osteoarthritis. Chem. Eng. J. 2020, 400, 126004. [Google Scholar] [CrossRef]
- Mourtas, S.; Fotopoulou, S.; Duraj, S.; Sfika, V.; Tsakiroglou, C.; Antimisiaris, S. Liposomal drugs dispersed in hydrogels. Colloids Surf. B Biointerfaces 2007, 55, 212–221. [Google Scholar] [CrossRef] [PubMed]
- GuhaSarkar, S.; More, P.; Banerjee, R. Urothelium-adherent, ion-triggered liposome-in-gel system as a platform for intravesical drug delivery. J. Control. Release 2017, 10, 147–156. [Google Scholar] [CrossRef]
- O’Neill, H.S.; Herron, C.C.; Hastings, C.L.; Deckers, R.; Noriega, A.L.; Kelly, H.M.; Hennink, W.E.; McDonnell, C.O.; O’Brien, F.J.; Ruiz-Hernández, E.; et al. A stimuli responsive liposome loaded hydrogel provides flexible on-demand release of therapeutic agents. Acta Biomater. 2017, 48, 110–119. [Google Scholar] [CrossRef]
- Bilard, L.; Pourchet, S.; Malaise, P.; Alcouffe, A.; Montembault, C.; Ladavière, C. Liposome-loaded chitosan physical hydrogel: Toward a promising delayed-release biosystem. Carbohydr. Polym. 2015, 115, 651–657. [Google Scholar] [CrossRef]
- Ruel-Gariepy, E.; Leclair, G.; Hildgen, P.; Gupta, A.; Leroux, J.-C. Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J. Control. Release 2002, 82, 373–383. [Google Scholar] [CrossRef]
- Klotz, B.J.; Gawlitta, D.; Rosenberg, A.J.E.P.; Malda, J.; Melchels, F.P.W. Gelatin-methacryloyl hydrogels: Towards biofabrication-based tissue repair. Trends Biotechnol. 2016, 34, 394–407. [Google Scholar] [CrossRef] [Green Version]
- Ciobanu, B.C.; Cadinoiu, A.N.; Popa, M.; Desbrières, J.; Peptu, C.A. Modulated release from liposomes entrapped in chitosan/gelatin hydrogels. Mater. Sci. Eng. C 2014, 43, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Lajavardi, L.; Carmelo, S.; Agnely, F.; Luo, W.; Goldenberg, B.; Naud, M.-C.; Behar-Cohen, F.; de Kozak, Y.; Bochot, A. New formulations of vasoactive intestinal peptide using liposomes in hyaluronic acid gel for uveitis. J. Control. Release 2009, 139, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Hyuntaek, O.; Baxa, U.; Raghavan, S.R.; Blumenthal, R. Biopolymer-Connected Liposome Networks as Injectable Biomaterials Capable of Sustained Local Drug Delivery. Biomacromolecules 2012, 13, 3388–3394. [Google Scholar] [CrossRef] [Green Version]
- GuhaSarkar, S.; Pathak, K.; Sudhalkar, N.; More, P.; Goda, J.S.; Gota, V.; Banerjee, R. Synergistic locoregional chemoradiotherapy using a composite liposome-in-gel system as an injectable drug depot. Int. J. Nanomed. 2016, 11, 6435–6448. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Dai, Y.; Liu, H.; Cheng, R.; Ni, Q.; Ye, T.; Cui, W. Local release of gemcitabine via in situ UV-crosslinked lipid-strengthened hydrogel for inhibiting osteosarcoma. Drug Deliv. 2018, 25, 1642–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veloso, S.R.S.; Andrade, R.G.D.; Castanheira, E.M.S. Review on the advancements of magnetic gels: Towards multifunctional magnetic liposome-hydrogel composites for biomedical applications. Adv. Colloid Interface Sci. 2021, 288, 102351. [Google Scholar] [CrossRef]
- Hurler, J.; Žakelj, S.; Mravljak, J.; Pajk, S.; Kristl, A.; Schubert, R.; Škalko-Basnet, N. The effect of lipid composition and liposome size on the release properties of liposomes-in-hydrogel. Int. J. Pharm. 2013, 456, 49–57. [Google Scholar] [CrossRef] [Green Version]
- TS, A.; Lu, Y.J.; Chen, J.P. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy. Int. J. Mol. Sci. 2020, 21, 5187. [Google Scholar] [CrossRef]
- Amiri, M.; Gholami, T.; Amiri, O.; Pardakhti, A.; Ahmadi, M.; Akbari, A.; Amanatfard, A.; Salavati-Niasari, M. The magnetic inorganic-organic nanocomposite based on ZnFe2O4-Imatinib-liposome for biomedical applications, in vivo and in vitro study. J. Alloys Compd. 2020, 849, 156604. [Google Scholar] [CrossRef]
- Kong, Y.; Dai, Y.; Qi, D.; Du, W.; Ni, H.; Zhang, F.; Zhao, H.; Shen, Q.; Li, M.; Fan, Q. Injectable and thermosensitive liposomal hydrogels for NIR-II light-triggered photothermal-chemo therapy of pancreatic cancer. ACS Appl. Bio Mater. 2021, 4, 7595–7604. [Google Scholar] [CrossRef]
- Mao, Y.; Li, X.; Chen, G.; Wang, S. Thermosensitive hydrogel system with paclitaxel liposomes used in localized drug delivery system for in situ treatment of tumor: Better antitumor efficacy and lower toxicity. J. Pharm. Sci. 2016, 105, 194–204. [Google Scholar] [CrossRef]
- Hosny, K.M. Preparation and Evaluation of Thermosensitive Liposomal Hydrogel for Enhanced Transcorneal Permeation of Ofloxacin. Aaps Pharmscitech 2009, 10, 1336–1342. [Google Scholar] [CrossRef] [Green Version]
- Filipcsei, G.; Csetneki, I.; Szilaǵyi, A.; Zrínyi, M. Magnetic responsive-field smart polymer composites. Adv. Polym. Sci. 2007, 206, 137–189. [Google Scholar]
- Szabo, D.; Szeghy, G.; Zrínyi, M. Shape Transition of Magnetic Field Sensitive Polymer Gels. Macromolecules 1998, 31, 6541–6548. [Google Scholar] [CrossRef]
- Manjua, A.C.; Alves, V.D.; Crespo, J.G.; Portugal, C.A.M. Magnetic responsive PVA hydrogels for remote modulation of protein sorption. ACS Appl. Mater. Interfaces 2019, 11, 21239–21249. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manjua, A.C.; Cabral, J.M.S.; Portugal, C.A.M.; Ferreira, F.C. Magnetic stimulation of the angiogenic potential of mesenchymal stromal cells in vascular tissue engineering. Sci. Technol. Adv. Mater. 2021, 22, 461–480. [Google Scholar] [CrossRef] [PubMed]
- Pires, F.; Santos, J.F.; Bitoque, D.; Silva, G.A.; Marletta, A.; Nunes, V.A.; Raposo, M. Polycaprolactone/gelatin nanofiber membranes containing EGCG-loaded liposomes and their potential use for skin regeneration. ACS Appl. Bio Mater. 2019, 2, 4790–4800. [Google Scholar] [CrossRef]
- Peppas, N.A.; Hoffman, A.S. Biomaterials Science: An Introduction to Materials in Medicine, 4th ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 1, pp. 153–166. [Google Scholar] [CrossRef]
- Pal, K.; Singh, V.K.; Anis, A.; Thakur, G.; Bhattacharya, M.K. Hydrogel-Based Controlled Release Formulations: Designing Considerations, Characterization Techniques and Applications. Polym.-Plast. Technol. Eng. 2013, 52, 1391–1422. [Google Scholar] [CrossRef]
- Lee, J.; Gustin, J.; Chen, T.; Payne, G.; Raghavan, S. Vesicle−biopolymer gels: Networks of surfactant vesicles connected by associating biopolymers. Langmuir 2005, 21, 26–33. [Google Scholar] [CrossRef]
- Derkach, S.R.; Voronko, N.G.; Sokolan, N.I.; Kolotova, D.S.; Kuchina, Y.A. Interactions between gelatin and sodium alginate: UV and FTIR studies. J. Dispers. Sci. Technol. 2020, 41, 690–698. [Google Scholar] [CrossRef]
- Gaihre, B.; Khil, M.S.; Lee, D.R.; Kim, H.Y. Gelatin-coated magnetic iron oxide nanoparticles as carrier system: Drug loading and in vitro drug release study. Int. J. Pharm. 2009, 365, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, L.; Semsarilar, M.; Quémener, D.; Fernández-Pacheco, R.; Martinez, G.; Mallada, R.; Coelhoso, I.M.; Portugal, C.A.M.; Crespo, J.G. Block copolymer based novel magnetic mixed matrix membranes-magnetic modulation of water permeation by irreversible structural changes. J. Membr. Sci. 2018, 551, 273–282. [Google Scholar] [CrossRef] [Green Version]
Liposome | Dilution Factor | Sonication Time (min) | Mean Size (nm) | PI |
---|---|---|---|---|
DPPC_5_30 | 5× | 30 | 705.3 ± 155.8 | 0.52 ± 0.03 |
DPPC_10_30 | 10× | 30 | 559.5 ± 27.6 | 0.76 ± 0.21 |
DPPC_5_45 | 5× | 45 | 270.6 ± 139.2 | 0.53 ± 0.09 |
DPPC_10_45 | 10× | 45 | 237.7 ± 65.4 | 0.51 ± 0.12 |
Liposome | Purification | Mean Size (nm) | PI |
---|---|---|---|
DPPC | No | 106.6 ± 45.9 | 0.36 ± 0.34 |
DPPC:FA_30:1 | 716.5 ± 103.7 | 1.49 ± 0.44 | |
DPPC:FA_10:1 | 1385.7 ± 443.3 | 0.12 ± 0.01 | |
DPPC:FA_3:1 | 1200.0 ± 257.8 | 0.12 ± 0.11 | |
DPPC:FA_30:1 | Yes | 714.1 ± 152.9 | 0.71 ± 0.01 |
DPPC:FA_10:1 | 992.6 ± 121.0 | 0.15 ± 0.06 | |
DPPC:FA_3:1 | 775.9 ± 39.4 | 0.17 ± 0.02 |
Liposome | EE (%) | LC (%) |
---|---|---|
DPPC:FA_30:1 | 62.1 | 1.28 |
DPPC:FA_10:1 | 73.53 | 6.73 |
DPPC:FA_3:1 | 88.06 | 14.01 |
Hydrogel + FA | DPPC:FA Hydrogel | DPPC:FA Suspension | |||
---|---|---|---|---|---|
3:1 | 10:1 | 3:1 | 10:1 | ||
kKP | 3.818 ± 0.022 | 0.264 ± 0.068 | 1.104 ± 0.090 | 0.352 ± 0.197 5.810 ± 0.059 | 0.238 ± 0.067 12.460 ± 0.080 |
n | 0.428 ± 0.051 | 0.426 ± 0.028 | 0.405 ± 0.037 | 0.920 ± 0.129 0.223 ± 0.022 | 0.794 ± 0.033 0.129 ± 0.027 |
R2 | 0.980 | 0.934 | 0.915 | 0.926 0.940 | 0.970 0.875 |
Liposomal Hydrogel | 0.25% MNPs | 1% MNPs | |||||||
---|---|---|---|---|---|---|---|---|---|
3:1 | 3:1_MF | 10:1 | 10:1_MF | 3:1 | 3:1_MF | 10:1 | 10:1_MF | ||
Higuchi | kH (×10−7) | 0.225 ± 0.107 | 0.567 ± 0.042 | 0.428 ± 0.044 | 0.464 ± 0.064 | 0.331 ± 0.080 | 4.594 ± 0.043 | 0.837 ± 0.073 | 2.193 ± 0.057 |
n = 0.5 | 0.651 ± 0.054 | 0.494 ± 0.021 | 0.531 ± 0.022 | 0.551 ± 0.032 | 0.562 ± 0.040 | 0.363 ± 0.022 | 0.501 ± 0.036 | 0.381 ± 0.029 | |
R2 | 0.983 | 0.988 | 0.989 | 0.991 | 0.988 | 0.990 | 0.984 | 0.966 | |
Korsmeyer–Peppas | kKP | 0.174 ± 0.044 | 0.550 ± 0.055 | 0.333 ± 0.103 | 0.715 ± 0.064 | 0.129 ± 0.079 | 1.784 ± 0.043 | 1.235 ± 0.073 | 3.237 ± 0.057 |
n | 0.531 ± 0.022 | 0.481 ± 0.028 | 0.663 ± 0.052 | 0.551 ± 0.032 | 0.562 ± 0.040 | 0.363 ± 0.022 | 0.501 ± 0.036 | 0.381 ± 0.029 | |
R2 | 0.989 | 0.990 | 0.990 | 0.991 | 0.988 | 0.990 | 0.984 | 0.966 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, L.; Ferreira, F.C.; Pires, F.; Portugal, C.A.M. Magnetic-Responsive Liposomal Hydrogel Membranes for Controlled Release of Small Bioactive Molecules—An Insight into the Release Kinetics. Membranes 2023, 13, 674. https://doi.org/10.3390/membranes13070674
Pereira L, Ferreira FC, Pires F, Portugal CAM. Magnetic-Responsive Liposomal Hydrogel Membranes for Controlled Release of Small Bioactive Molecules—An Insight into the Release Kinetics. Membranes. 2023; 13(7):674. https://doi.org/10.3390/membranes13070674
Chicago/Turabian StylePereira, Luís, Frederico Castelo Ferreira, Filipa Pires, and Carla A. M. Portugal. 2023. "Magnetic-Responsive Liposomal Hydrogel Membranes for Controlled Release of Small Bioactive Molecules—An Insight into the Release Kinetics" Membranes 13, no. 7: 674. https://doi.org/10.3390/membranes13070674
APA StylePereira, L., Ferreira, F. C., Pires, F., & Portugal, C. A. M. (2023). Magnetic-Responsive Liposomal Hydrogel Membranes for Controlled Release of Small Bioactive Molecules—An Insight into the Release Kinetics. Membranes, 13(7), 674. https://doi.org/10.3390/membranes13070674