Membranes Based on Cellulose and Copolymers of Acrylonitrile Prepared from Joint Solutions
Abstract
:1. Introduction
- -
- to obtain the highly concentrated solutions in NMMO with various ratios between cellulose and PAN,
- -
- to study the rheological behavior of the mixed solutions,
- -
- to form composite membranes from these dopes and to evaluate their structure, morphology, mechanical, and transport properties.
2. Materials and Methods
2.1. Materials
2.2. Preparation of Mixed Solutions
2.3. Preparation of the Membranes
2.4. Characterization Methods
2.4.1. Rheology
2.4.2. Mechanical Properties of Wet Membranes
2.4.3. Morphology of Composite Membranes
2.4.4. Structure of Composite Membranes
2.4.5. Sorption of N-Decane
2.4.6. Flux and Nanofiltration Characteristics of the Membranes
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perepelkin, K.E. Lyocell fibers based on the direct dissolution of cellulose in N-methyl morpholine N-oxide: Development and prospects. Fibre Chem. 2007, 39, 163–172. [Google Scholar] [CrossRef]
- Aizenshtein, E.M. Global Output of Chemical Fibres in 2014. Fibre Chem. 2016, 48, 90–93. [Google Scholar] [CrossRef]
- Krumm, C.; Pfaendtner, J.; Dauenhauer, P.J. Millisecond Pulsed Films Unify the Mechanisms of Cellulose Fragmentation. Chem. Mater. 2016, 28, 3108–3114. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Langan, P.; Chanzy, H. Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction. J. Am. Chem. Soc. 2002, 124, 9074–9082. [Google Scholar] [CrossRef]
- Gardner, K.H.; Blackwell, J. Hydrogen Bonding in Native Cellulose. Biochim. Biophys. Acta 1974, 343, 232–237. [Google Scholar] [CrossRef]
- Golova, L.K.; Borodina, O.E.; Kuznetsova, L.K.; Lyubova, T.A.; Krylova, T.B. The Solid-Phase MMO Process. Fibre Chem. 2000, 32, 243–251. [Google Scholar] [CrossRef]
- Hilal, N.; Ismail, A.F.; Wright, C. Membrane Fabrication. In Practice, Progress, and Proficiency in Sustainability; Hilal, N., Ismail, A.F., Wright, C., Eds.; CRC Press: Boca Raton, FL, USA, 2015; p. 758. [Google Scholar]
- Abe, Y.; Mochizuki, A. Hemodialysis Membrane Prepared from Cellulose/N-Methylmorpholine-N-oxide Solution. I. Effect of Membrane Preparation Conditions on Its Permeation Characteristics. J. Appl. Polym. Sci. 2002, 84, 2302–2307. [Google Scholar] [CrossRef]
- Abe, Y.; Mochizuki, A. Hemodialysis Membrane Prepared from Cellulose/N-Methylmorpholine-N-oxide Solution. II. Comparative Studies on the Permeation Characteristics of Membranes Prepared from N-Methylmorpholine-N-oxide and Cuprammonium Solutions. J. Appl. Polym. Sci. 2003, 89, 333–339. [Google Scholar] [CrossRef]
- Bil’dyukevich, A.V.; Germ, E.V.; Protsenko, V.E.; Kaputskii, F.N. Membranes for hemodialysis with raised permeability. Pharm. Chem. J. 1986, 20, 441–444. [Google Scholar] [CrossRef]
- Makarov, I.S.; Golova, L.K.; Bondarenko, G.N.; Anokhina, T.S.; Dmitrieva, E.S.; Levin, I.S.; Makhatova, V.E.; Galimova, N.Z.; Shambilova, G.K. Structure, Morphology, and Permeability of Cellulose Films. Membranes 2022, 12, 297. [Google Scholar] [CrossRef]
- Mao, Z.; Cao, Y.; Jie, X.; Kang, G.; Zhou, M.; Yuan, Q. Dehydration of isopropanol–water mixtures using a novel cellulose membrane prepared from cellulose/N-methylmorpholine-N-oxide/H2O solution. Sep. Purif. Technol. 2010, 72, 28–33. [Google Scholar] [CrossRef]
- McBain, J.W.; Kistler, S.S. Membranes for high pressure ultra-filtration. Trans. Faraday Soc. 1930, 26, 157–162. [Google Scholar] [CrossRef]
- Stamm, A.J. Colloid Chemistry of Cellulosic Materials; U.S. Department of Agriculture: Washington, DC, USA, 1936; p. 91.
- Yushkin, A.A.; Anokhina, T.S.; Volkov, A.V. Application of cellophane films as nanofiltration membranes. Pet. Chem. 2015, 55, 746–752. [Google Scholar] [CrossRef]
- Makarov, I.S.; Golova, L.K.; Kuznetsova, L.K.; Antonov, S.V.; Kotsyuk, A.V.; Ignatenko, V.Y.; Kulichikhin, V.G. Influence of Precipitation and Conditioning Baths on the Structure, Morphology, and Properties of Cellulose Films. Fibre Chem. 2016, 48, 298–305. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, Y. Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method. Front. Chem. Eng. China 2008, 2, 204–208. [Google Scholar] [CrossRef]
- Ichwan, M.; Son, T.W. Preparation and characterization of dense cellulose film for membrane application. J. Appl. Polym. Sci. 2012, 124, 1409–1418. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, H.; Hu, X. Atomic Force Microscopy of Cellulose Membranes Prepared from the N-Methylmorpholine-N-oxide/Water Solvent System. J. Appl. Polym. Sci. 2002, 86, 3389–3395. [Google Scholar] [CrossRef]
- Crawshaw, J.; Cameron, R.E. A small angle X-ray scattering study of pore structure in Tencel cellulose fibres and the effects of physical treatments. Polymers 2002, 41, 4691–4698. [Google Scholar] [CrossRef]
- Peng, Y.; Gardner, D.J.; Han, Y.; Kiziltas, A.; Cai, Z.; Tshabalala, M.A. Influence of drying method on the material properties of nanocellulose I: Thermostability and crystallinity. Cellulose 2013, 20, 2379–2392. [Google Scholar] [CrossRef]
- Vickers, M.E.; Briggs, N.P.; Ibbett, R.N.; Payne, J.J.; Smith, S.B. Small angle X-ray scattering studies on lyocell cellulosic fibres: The effects of drying, re-wetting and changing coagulation temperature. Polymers 2001, 42, 8241–8248. [Google Scholar] [CrossRef]
- Lenz, J. Properties and structure of lyocell and viscose-type fibres in the swollen state. Lenzinger Ber. 1994, 9, 19–25. [Google Scholar]
- Wei, M.; Yang, G.; Tian, Y.; Shao, H.; Hu, X. Formation of the crystal structure of Lyocell fiber during drying. Holzforschung 2009, 63, 23–27. [Google Scholar] [CrossRef]
- Golova, L.K. Processing of cellulose via highly concentrated “solid solutions”. Fibre Chem. 1996, 28, 5–16. [Google Scholar] [CrossRef]
- Golova, L.; Makarov, I.; Kuznetsova, L.; Plotnikova, E.; Kulichikhin, V. Structure—Properties Interrelationships in Multicomponent Solutions Based on Cellulose and Fibers Spun Therefrom. In Book Cellulose: Fundamental Aspects. Book 1; Van De Ven, T.G.M., Ed.; InTech Publishing: New York, NY, USA, 2013; p. 377. [Google Scholar]
- Golova, L.K.; Makarov, I.S.; Vinogradov, M.I.; Kuznetsova, L.K.; Kulichikhin, V.G. Morphological Features and Rheological Properties of Combined Cellulose and Polyacrylonitrile Solutions in N-Methylmorpholine-N-oxide. Polym. Sci. Ser. A 2018, 60, 796–804. [Google Scholar] [CrossRef]
- Makarov, I.S.; Golova, L.K.; Vinogradov, M.I.; Levin, I.S.; Sorokin, S.E. Structure of Polyacrylonitrile Fibers Produced from N-Methylmorpholine-N-Oxide Solutions. Fibre Chem. 2019, 50, 508–513. [Google Scholar] [CrossRef]
- Vinogradov, M.; Makarov, I.; Golova, L.; Anokhina, T.; Kulichikhin, V. Composite membranes based on cellulose and polyacrylonitrile copolymers prepared from solutions in MMO. Abstract book. In Proceedings of the 5th EPNOE Conference 2017, Jena, Germany, 20–24 August 2017; p. 212. [Google Scholar]
- Makarov, I.S.; Golova, L.K.; Kuznetsova, L.K.; Rebrov, A.V.; Berkovich, A.K.; Skvortsov, I.Y.; Kulichikhin, V.G. Composite fibers based on cellulose and polyacrylonitrile copolymers. Russ. J. Gen. Chem. 2017, 87, 1351–1356. [Google Scholar] [CrossRef]
- Makarov, I.S.; Golova, L.K.; Kuznetsova, L.K.; Vinogradov, M.I.; Kulichikhin, V.G. Method of Producing Spinning Mixed Solutions of Cellulose and Copolymer PAN in N-methylmorpholine-N-oxide (Versions). RF Patent 2707600, 28 November 2019. [Google Scholar]
- Golova, L.K.; Romanov, V.V.; Lunina, O.B.; Platonov, V.A.; Papkov, S.P.; Khorozova, O.D.; Yakshin, V.V.; Belasheva, T.P.; Sokira, A.N. The Method of Obtaining the Solution for Forming Fibers. Patent RF 1645308, 30 April 1991. [Google Scholar]
- Orekhov, A.S.; Klechkovskaya, V.V.; Kononova, S.V. Low-voltage scanning electron microscopy of multilayer polymer systems. Crystallogr. Rep. 2017, 62, 710–715. [Google Scholar] [CrossRef]
- Smotrina, T.V. Influence of High-Temperatures on Structural and Physical State of Cellulose and Its Absorption Properties. Ph.D. Thesis, Mari State Technical University (MSTU), Ioshkar-Ola, Russia, 1998; p. 149. [Google Scholar]
- Tsar’kov, S.E.; Malakhov, A.O.; Litvinova, E.G.; Volkov, A.V. Nanofiltration of Dye Solutions through Membranes Based on Poly(trimethylsilylpropyne). Pet. Chem. 2013, 53, 537–545. [Google Scholar] [CrossRef]
- Blackburn, R. Biodegradable and Sustainable Fibres; Woodhead Publishing: Cambridge, UK, 2005. [Google Scholar]
- Makarov, I.S.; Vinogradov, M.I.; Golova, L.K.; Arkharova, N.A.; Shambilova, G.K.; Makhatova, V.E.; Naukenov, M.Z. Design and Fabrication of Membranes Based on PAN Copolymer Obtained from Solutions in N-methylmorpholine-N-oxide. Polymers 2022, 14, 2861. [Google Scholar] [CrossRef]
- Volkov, V.V.; Mchedlishvili, B.V.; Roldugin, V.I.; Ivanchev, S.S.; Yaroslavtsev, A.B. Membrane and nanotechnology. Russ. Nanotechnol. 2008, 3, 67–99. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Z. Preparation and characterization of polyacrylonitrile ultrafiltration membranes. J. Membr. Sci. 2003, 222, 87–98. [Google Scholar] [CrossRef]
- Anokhina, T.; Dmitrieva, E.; Volkov, A. Recovery of Model Pharmaceutical Compounds from Water and Organic Solutions with Alginate-Based Composite Membranes. Membranes 2022, 12, 235. [Google Scholar] [CrossRef] [PubMed]
- Jegal, J.; Lee, K.H. Nanofiltration membranes based on poly (vinyl alcohol) and ionic polymers. J. Appl. Polym. Sci. 1999, 72, 1755. [Google Scholar] [CrossRef]
- Artuğ, G.; Roosmasari, I.; Richau, K.; Hapke, J. A comprehensive characterization of commercial nanofiltration membranes. Sep. Sci. Technol. 2007, 42, 2947. [Google Scholar] [CrossRef]
Sample | Thickness, μm | Tensile Strength, MPa | Elongation at Break, % |
---|---|---|---|
100 wt.% Cellulose | 110 ± 4 | 3.9 ± 0.3 | 190 ± 9 |
90 wt.% Cellulose + 10 wt.% PAN | 82 ± 3 | 3.8 ± 0.3 | 171 + 11 |
80 wt.% Cellulose + 20 wt.% PAN | 93 ± 5 | 3.5 ± 0.5 | 165 ± 10 |
70 wt.% Cellulose + 30 wt.% PAN | 85 ± 2 | 3.1 ± 0.2 | 94 ± 7 |
60 wt.% Cellulose + 40 wt.% PAN | 84 ± 3 | 2.7 ± 0.2 | 67 ± 3 |
50 wt.% Cellulose + 50 wt.% PAN | 92 ± 2 | 1.8 ± 0.3 | 39 ± 5 |
Sample | A *, wt.% | P **, kg/(m2·h·atm) |
---|---|---|
100 wt.% Cellulose | 10 ± 0.1 | 2 ± 0.1 |
90 wt.% Cellulose + 10 wt.% PAN | 13 ± 0.2 | 2.2 ± 0.1 |
80 wt.% Cellulose + 20 wt.% PAN | 18 ± 0.4 | 2.4 ± 0.1 |
70 wt.% Cellulose + 30 wt.% PAN | 31 ± 0.3 | 3.4 ± 0.2 |
50 wt.% Cellulose + 50 wt.% PAN | 47 ± 0.3 | 6 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makarov, I.S.; Shambilova, G.K.; Vinogradov, M.I.; Anokhina, T.S.; Bukanova, A.S.; Kairliyeva, F.B.; Bukanova, S.K.; Levin, I.S. Membranes Based on Cellulose and Copolymers of Acrylonitrile Prepared from Joint Solutions. Membranes 2023, 13, 667. https://doi.org/10.3390/membranes13070667
Makarov IS, Shambilova GK, Vinogradov MI, Anokhina TS, Bukanova AS, Kairliyeva FB, Bukanova SK, Levin IS. Membranes Based on Cellulose and Copolymers of Acrylonitrile Prepared from Joint Solutions. Membranes. 2023; 13(7):667. https://doi.org/10.3390/membranes13070667
Chicago/Turabian StyleMakarov, Igor S., Gulbarshin K. Shambilova, Markel I. Vinogradov, Tatyana S. Anokhina, Aigul S. Bukanova, Fazilat B. Kairliyeva, Saule K. Bukanova, and Ivan S. Levin. 2023. "Membranes Based on Cellulose and Copolymers of Acrylonitrile Prepared from Joint Solutions" Membranes 13, no. 7: 667. https://doi.org/10.3390/membranes13070667
APA StyleMakarov, I. S., Shambilova, G. K., Vinogradov, M. I., Anokhina, T. S., Bukanova, A. S., Kairliyeva, F. B., Bukanova, S. K., & Levin, I. S. (2023). Membranes Based on Cellulose and Copolymers of Acrylonitrile Prepared from Joint Solutions. Membranes, 13(7), 667. https://doi.org/10.3390/membranes13070667