Preparation of Hyflon AD/Polypropylene Blend Membrane for Artificial Lung
Abstract
:Highlights
- Preparation of anti-wetting polypropylene membrane using environmentally friendly diluents via TIPS method
- Optimization of Preparation Process for Polypropylene Hollow Fiber Membrane
- Fluorinated polymer modified membrane enhances anti-wetting performance and blood compatibility
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Determination of Phase Diagram
2.3. Preparation and Modification of PP Fiber Hollow Membrane
2.3.1. Preparation of PP Pristine Membranes
2.3.2. Hyflon ADx Modification
2.4. Basic Characterization of PP Membranes
2.4.1. Morphologies
2.4.2. Membrane Mechanical Properties, Gas Permeability, and Pore Size Distributions
2.4.3. Contact Angle and Surface Energy
- (1)
- Contact angle
- (2)
- Surface energy
- (3)
- Average roughness
2.4.4. Membrane Wetting
2.5. Biocompatibility Characterization of PP Membranes
2.5.1. BSA Protein Static Adsorption
2.5.2. Platelet Adsorption
2.5.3. Hemolysis Ratio
2.5.4. Blood Clotting Time
2.5.5. Cytotoxicity Testing
3. Results and Discussion
3.1. Phase Diagram
3.2. Comparison of Self-Made PP Membranes
3.3. Determination of PP Membrane Modification Conditions
3.3.1. Coating Concentration and Coating Frequency of Hyflon ADx
3.3.2. Modification Types of Hyflon ADx
3.3.3. Comparison between Pristine Membrane and Hyflon ADx Modified Membrane
- (1)
- Pore size distribution and pore volume distribution
- (2)
- XRD analysis
3.4. Blood Compatibility of PP Membranes
3.4.1. BSA Protein Static Adsorption and Hemolysis Ratio Assay
3.4.2. Platelet Adsorption and Coagulation Time Determination
3.4.3. Cytotoxicity Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Supady, A.; Combes, A.; Barbaro, R.P.; Camporota, L.; Diaz, R.; Fan, E.; Giani, M.; Hodgson, C.; Hough, C.L.; Karagiannidis, C.; et al. Respiratory indications for ECMO: Focus on COVID-19. Intensive Care Med. 2022, 48, 1326–1337. [Google Scholar] [CrossRef]
- Calhoun, A. ECMO: Nursing Care of Adult Patients on ECMO. Crit. Care Nurs. Q. 2018, 41, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.; An, Z.; Zhao, H.; Zhang, L.; Cao, Y.; Mansoorianfar, M.; Liu, X.; Pei, R. Slide-Ring Structure-Based Double-Network Hydrogel with Enhanced Stretchability and Toughness for 3D-Bio-Printing and Its Potential Application as Artificial Small-Diameter Blood Vessels. ACS Appl. Bio Mater. 2021, 4, 8597–8606. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Ullah, I.; Liu, X.; Shen, W.; Ding, P.; Zhang, Y.; Gao, T.; Mansoorianfar, M.; Gao, T.; Pei, R. Tannin-reinforced iron substituted hydroxyapatite nanorods functionalized collagen-based composite nanofibrous coating as a cell-instructive bone-implant interface scaffold. Chem. Eng. J. 2022, 438, 135611. [Google Scholar] [CrossRef]
- He, T.; He, J.; Wang, Z.; Cui, Z. Modification strategies to improve the membrane hemocompatibility in extracorporeal membrane oxygenator (ECMO). Adv. Compos. Hybrid. Mater. 2021, 4, 847–864. [Google Scholar] [CrossRef]
- Millar, J.E.; Fanning, J.P.; McDonald, C.I.; McAuley, D.F.; Fraser, J.F. The inflammatory response to extracorporeal membrane oxygenation (ECMO): A review of the pathophysiology. Crit. Care 2016, 20, 387. [Google Scholar] [CrossRef] [Green Version]
- Rose, A.T.; Keene, S. Changing populations being treated with ECMO in the neonatal period—Who are the others? Semin. Fetal. Neonatal. Med. 2022, 27, 101402. [Google Scholar] [CrossRef]
- Moreau de Bellaing, A.; Pottier, I.; Raisky, O. ECMO in newborns after congenital heart surgery: Short- and mid-term outcome. Arch. Cardiovasc. Dis. Suppl. 2021, 13, 323. [Google Scholar] [CrossRef]
- He, T.; Yu, S.; He, J.; Chen, D.; Li, J.; Hu, H.; Zhong, X.; Wang, Y.; Wang, Z.; Cui, Z. Membranes for extracorporeal membrane oxygenator (ECMO): History, preparation, modification and mass transfer. Chin. J. Chem. Eng. 2022, 49, 46–75. [Google Scholar] [CrossRef]
- Barmore, L.M.; Knudson, M.D. Mechanical and optical response of polymethylpentene under dynamic compression. J. Appl. Phys. 2019, 126, 185901. [Google Scholar] [CrossRef]
- Noora, J.; Lamy, A.; Smith, K.M.; Kent, R.; Batt, D.; Fedoryshyn, J.; Wang, X. The effect of oxygenator membranes on blood: A comparison of two oxygenators in open-heart surgery. Perfusion 2003, 18, 313–320. [Google Scholar] [CrossRef]
- Milano, A.D.; Dodonov, M.; Onorati, F.; Menon, T.; Gottin, L.; Malerba, G.; Mazzucco, A.; Faggian, G. Pulsatile flow decreases gaseous micro-bubble filtering properties of oxygenators without integrated arterial filters during cardiopulmonary bypass. Interact. Cardiovasc. Thorac. Surg. 2013, 17, 811–817. [Google Scholar] [CrossRef] [Green Version]
- Condello, I.; Lorusso, R.; Santarpino, G.; Fiore, F.; Nasso, G.; Speziale, G. Clinical Evaluation of Micro-Embolic Activity with Unexpected Predisposing Factors and Performance of Horizon AF PLUS during Cardiopulmonary Bypass. Membranes 2022, 12, 465. [Google Scholar] [CrossRef]
- Himma, N.F.; Anisah, S.; Prasetya, N.; Wenten, I.G. Advances in preparation, modification, and application of polypropylene membrane. J. Polym. Eng. 2016, 36, 329–362. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Liu, Y.; Wei, X.; Ding, L.-M.; Feng, Y.-N.; Zhao, Z.-P. Polypropylene hollow fiber membrane prepared with green binary diluents via TIPS: Effects of spinning process parameters and VMD desalination performance. Desalination 2022, 541, 116026. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Yan, S.-Y.; Zhao, Z.-P.; Xi, Z.-Y. Isothermal Crystallization of iPP in Environment-friendly Diluents: Effect of Binary Diluents and Crystallization Temperature on Crystallization Kinetics. Chin. J. Polym. Sci. 2019, 37, 617–626. [Google Scholar] [CrossRef]
- Lloyd, D.R.; Kim, S.S.; Kinzer, K.E. Microporous Membrane Formation Via Thermally-Induced Phase-Separation II. Liquid Liquid-Phase Separation. J. Membr. Sci. 1991, 64, 1–11. [Google Scholar] [CrossRef]
- Zhou, B.; Tang, Y.; Li, Q.; Lin, Y.; Yu, M.; Xiong, Y.; Wang, X. Preparation of polypropylene microfiltration membranes via thermally induced (solid-liquid or liquid-liquid) phase separation method. J. Appl. Polym. Sci. 2015, 132, 42490. [Google Scholar] [CrossRef]
- Jahanbakhshi, N.; Mousavi, S.A.; Farhadi, F. Fabrication and characterization of maleic anhydride grafted polypropylene membranes with high antifouling properties. Appl. Polym. Sci. 2016, 133, 43857. [Google Scholar] [CrossRef]
- Wang, J.; He, Q.; Zhao, Y.; Li, P.; Chang, H. Preparation and properties of iPP hollow fiber membranes for air gap membrane distillation. Desalination Water Treat. 2016, 57, 23546–23555. [Google Scholar] [CrossRef]
- Fang, C.; Jeon, S.; Rajabzadeh, S.; Cheng, L.; Fang, L.; Matsuyama, H. Tailoring the surface pore size of hollow fiber membranes in the TIPS process. J. Mater. Chem. A 2018, 6, 535–547. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Z.; Li, L.; Wang, Z.; Sun, Q. Facile preparation of isotactic polypropylene microporous membranes with bioinspired hierarchical morphology for nano-scale water-in-oil emulsion separation. J. Membr. Sci. 2019, 581, 224–235. [Google Scholar] [CrossRef]
- Hamilton, C.; Marin, D.; Weinbrenner, F.; Engelhardt, B.; Rosenzweig, D.; Beck, U.; Borisov, P.; Hohe, S. A new method to measure oxygenator oxygen transfer performance during cardiopulmonary bypass: Clinical testing using the Medtronic Fusion oxygenator. Perfusion 2017, 32, 133–140. [Google Scholar] [CrossRef]
- Lv, J.; He, B.; Yu, J.; Wang, Y.; Wang, C.; Zhang, S.; Wang, H.; Hu, J.; Zhang, Q.; Cheng, Y. Fluoropolymers for intracellular and in vivo protein delivery. Biomaterials 2018, 182, 167–175. [Google Scholar] [CrossRef]
- Nguyen Thi, B.P.; Duy Nguyen, B.T.; Jeong, I.S.; Kim, J.F. Hemocompatibility challenge of membrane oxygenator for artificial lung technology. Acta Biomater. 2022, 152, 19–46. [Google Scholar] [CrossRef]
- Saito, H.; Furuta, M.; Matsugaki, A.; Nakano, T.; Oishi, M.; Okazaki, M. Radiation-resistant properties of cross-linking PTFE for medical use. Polym. Bull. 2019, 76, 6111–6122. [Google Scholar] [CrossRef]
- Kadarusman, J.; Bhatia, R.; McLaughlin, J.; Lin, W.R. Growing cholesterol-dependent NS0 myeloma cell line in the wave bioreactor system: Overcoming cholesterol-polymer interaction by using pretreated polymer or inert fluorinated ethylene propylene. Biotechnol. Prog. 2005, 21, 1341–1346. [Google Scholar] [CrossRef]
- Gu, H.; Zhang, G.; Cai, E.; Tang, G.; Liu, Q. Bioactivity and biocompatibility of porous gradient bioceramic coating prepared via laser cladding process. Surf. Coat. Technol. 2021, 426, 127800. [Google Scholar] [CrossRef]
- Chang, C.-H.; Li, C.-L.; Yu, C.-C.; Chen, Y.-L.; Chyntara, S.; Chu, J.P.; Chen, M.-J.; Chang, S.-H. Beneficial effects of thin film metallic glass coating in reducing adhesion of platelet and cancer cells: Clinical testing. Surf. Coat. Technol. 2018, 344, 312–321. [Google Scholar] [CrossRef]
- Laugharn, J.A.; Hammerton, D.; Towle, T.W. Electronegatively Charged Blood Filter and Blood Cell Separation Method. U.S. Patent US19880272457, 17 November 1988. [Google Scholar]
- Dastbaz, A.; Karimi-Sabet, J.; Ahadi, H.; Amini, Y. Preparation and characterization of novel modified PVDF-HFP/GO/ODS composite hollow fiber membrane for Caspian Sea water desalination. Desalination 2017, 424, 62–73. [Google Scholar] [CrossRef]
- Pan, J.; Chen, M.; Xu, X.; Sun, S.-P.; Wang, Z.; Cui, Z.; Xing, W.; Tavajohi, N. Enhanced anti-wetted PVDF membrane for pulping RO brine treatment by vacuum membrane distillation. Desalination 2022, 526, 115533. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Cao, J.; Wang, X.; Cui, Z.; Zhou, S.; Li, M.; Drioli, E.; Wang, Z.; Zhao, S. Enhanced fouling and wetting resistance of composite Hyflon AD/poly(vinylidene fluoride) membrane in vacuum membrane distillation. Sep. Purif. Technol. 2019, 211, 135–140. [Google Scholar] [CrossRef]
- Park, A.; Song, Y.; Yi, E.; Duy Nguyen, B.T.; Han, D.; Sohn, E.; Park, Y.; Jung, J.; Lee, Y.M.; Cho, Y.H.; et al. Blood Oxygenation Using Fluoropolymer-Based Artificial Lung Membranes. ACS Biomater. Sci. Eng. 2020, 6, 6424–6434. [Google Scholar] [CrossRef]
- Bangera, A.E.; Appaiah, K. A conditional justification for the determination of surface energy of solids using contact angle methods. Mater. Chem. Phys. 2019, 234, 168–171. [Google Scholar] [CrossRef]
- Haynes, W.M. CRC Handbook of Chemistry and Physics; La Rivista Italiana delle Sostanze Grasse; American Chemical Rubber Company: Louisville, KY, USA, 2013; Volume 90. [Google Scholar]
- Lou, J.; Chu, G.; Zhou, G.; Jiang, J.; Huang, F.; Xu, J.; Zheng, S.; Jiang, W.; Lu, Y.; Li, X.; et al. Comparison between two kinds of cigarette smoke condensates (CSCs) of the cytogenotoxicity and protein expression in a human B-cell lymphoblastoid cell line using CCK-8 assay, comet assay and protein microarray. Mutat. Res. 2010, 697, 55–59. [Google Scholar] [CrossRef]
- Barmshuri, M.; Kholdebarin, B.; Sadeghi, S. Applications of comet and MTT assays in studying Dunaliella algae species. Algal Res. 2023, 70, 103018. [Google Scholar] [CrossRef]
- Chen, G.; Lin, Y.; Wang, X. Formation of microporous membrane of isotactic polypropylene in dibutyl phthalate-soybean oil via thermally induced phase separation. J. Appl. Polym. Sci. 2007, 105, 2000–2007. [Google Scholar] [CrossRef]
- Amini, Y.; Ghaednian-Jahromi, A.; Karimi-Sabet, J.; Dastbaz, A.; Hassanvand, A. CFD Simulation of He/CH4 Separation by Hyflon AD60X Membrane. Chem. Biochem. Eng. Q. 2022, 4, 355–367. [Google Scholar] [CrossRef]
- Nakanishi, K.; Sakiyama, T.; Imamura, K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J. Biosci. Bioeng. 2001, 91, 233–244. [Google Scholar] [CrossRef]
- Lindon, J.N.; McManama, G.; Kushner, L.; Merrill, E.W.; Salzman, E.W. Does the conformation of adsorbed fibrinogen dictate platelet interactions with artificial surfaces? Blood 1986, 68, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Henry, J.J. Nonthrombogenic approaches to cardiovascular bioengineering. Annu. Rev. Biomed. Eng. 2011, 13, 451–475. [Google Scholar] [CrossRef]
- Aghaie, A.; Khorsand Mohammad Pour, H.; Banazadeh, S. Preparation of albumin from human plasma by heat denaturation method in plasma bag. Transfus. Med. 2012, 22, 440–445. [Google Scholar] [CrossRef]
- Yamazoe, H.; Oyane, A.; Nashima, T.; Ito, A. Reduced platelet adhesion and blood coagulation on cross-linked albumin films. Mater. Sci. Eng. C 2010, 30, 812–816. [Google Scholar] [CrossRef]
- Paradowska, A.; Zegrocka-Stendel, O.; Drozdowska, J.; Zyżynska-Granica, B.; Ciemerych, M.A.; Jarzyna, R.; Redowicz, M.J.; Kaczmarek, E.; Koziak, K. Statins inhibit glucose uptake by endothelial cells by disorganization of actin cytoskeleton. Vasc. Pharmacol. 2012, 56, 353–354. [Google Scholar] [CrossRef]
- Roy, B.; Banerjee, I.; Sathian, B.; Mondal, M.; Saha, C.G. Blood Group Distribution and Its Relationship with Bleeding Time and Clotting Time: A Medical School Based Observational Study among Nepali, Indian and Sri Lankan Students. Nepal J. Epidemiol. 2011, 1, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Iddawela, S.; Swamy, P.; Member, S.; Harky, A. Venous or arterial samples for activated clotting time measurements: A systematic review. Perfusion 2021, 36, 845–852. [Google Scholar] [CrossRef]
Author | Diluent | Type | Public Year | Ref |
---|---|---|---|---|
Bo Zhou et al. | DPC + Myristic acid | Flat and hollow fiber membrane (HFM) | 2015 | [18] |
Nader Jahanbakhshi et al. | DOP + DBP | HFM | 2016 | [19] |
Juan Wang et al. | DOP + DBP | HFM | 2016 | [20] |
Fang Chuanjie et al. | GTA, DEP, NMP, GBL ect. | HFM | 2018 | [21] |
Yue Sun et al. | DOP + DBP | Flat membrane | 2019 | [22] |
Test Liquid | Non/Polarity | ||||
---|---|---|---|---|---|
Pure water | 51.00 | 21.80 | 72.80 | 2.36 | Polarity |
α-Bromonaphthalene | 0 | 44.60 | 44.60 | 0 | Nonpolar |
Membrane Type | M1 | M2 | M3 | Commercial PP Membrane | |
---|---|---|---|---|---|
Ratio of PP/Binary diluent | 3/4 | 2/3 | 3/7 | / | |
Inner/Outer diameters (mm) | 0.19/0.38 | 0.22/0.38 | 0.22/0.37 | 0.28/0.40 | |
Tensile strength (MPa) | 12.83 | 10.98 | 10.01 | 16.00 | |
Elongation at break (%) | 2257 | 1876 | 1893 | 695 | |
Porosity (%) | 45 | 57 | 66 | 45 | |
Gas permeation flux (mL·cm−2·bar−1·min−1) | CO2 | 3.36 | 10.26 | 27.57 | 7.12 |
O2 | 3.86 | 11.68 | 28.77 | 8.33 |
Hyflon AD40H Coating Concentration (wt%) and Coating Time (n#) | Gas Permeation Flux (mL·cm−2·min−1·bar−1) | ||
---|---|---|---|
CO2 | O2 | ||
Single coating (1#) | 0 | 10.78 ± 4.45 | 11.68 ± 4.10 |
0.01 | 7.53 ± 0.33 | 8.96 ± 0.78 | |
0.02 | 6.88 ± 1.94 | 7.51 ± 2.56 | |
0.05 | 3.59 ± 1.57 | 3.40 ± 1.26 | |
Secondary coating (2#) | 0 | / | / |
0.01 | 3.86 ± 0.83 | 4.40 ± 1.09 | |
0.02 | 3.79 ± 0.55 | 3.74 ± 0.23 | |
0.05 | / | / |
Membrane Type | Self-Made PP Membrane | Commercial PP Membrane | Hyflon AD40H Modified | Hyflon AD40L Modified | Hyflon AD60 Modified |
---|---|---|---|---|---|
Pure water contact angle (°) | 94.37 ± 2.47 | 95.77 ± 3.49 | 96.97 ± 1.15 | 104.50 ± 3.91 | 101.70 ± 4.94 |
Surface energy (mN·m−1) | 26.91 | 22.76 | 21.45 | 17.70 | 18.88 |
Ra (nm) | 31.88 | / | 20.04 | 17.19 | 18.30 |
Membrane Type | BSA Protein Adsorption Capacity (mg·cm−2) | Hemolysis Rate (%) |
---|---|---|
self-made PP-HFM | 1.28 ± 0.27 | 7.5 ± 0.1 |
2#-0.02 wt% Hyflon AD40L/PP-HFM | 1.04 ± 0.03 | 4.4 ± 1.3 |
Commercial PP membrane | 1.29 ± 0.48 | 8.2 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; He, T.; Chen, H.; Cheng, Y.; Drioli, E.; Wang, Z.; Cui, Z. Preparation of Hyflon AD/Polypropylene Blend Membrane for Artificial Lung. Membranes 2023, 13, 665. https://doi.org/10.3390/membranes13070665
Li J, He T, Chen H, Cheng Y, Drioli E, Wang Z, Cui Z. Preparation of Hyflon AD/Polypropylene Blend Membrane for Artificial Lung. Membranes. 2023; 13(7):665. https://doi.org/10.3390/membranes13070665
Chicago/Turabian StyleLi, Jie, Ting He, Hongyu Chen, Yangming Cheng, Enrico Drioli, Zhaohui Wang, and Zhaoliang Cui. 2023. "Preparation of Hyflon AD/Polypropylene Blend Membrane for Artificial Lung" Membranes 13, no. 7: 665. https://doi.org/10.3390/membranes13070665
APA StyleLi, J., He, T., Chen, H., Cheng, Y., Drioli, E., Wang, Z., & Cui, Z. (2023). Preparation of Hyflon AD/Polypropylene Blend Membrane for Artificial Lung. Membranes, 13(7), 665. https://doi.org/10.3390/membranes13070665