Integration of Porous Nanomaterial-Infused Membrane in UF/FO Membrane Hybrid for Simulated Osmosis Membrane Bioreactor (OsMBR) Process
Abstract
:1. Introduction
2. Materials and Experimental
2.1. Synthesis of Porous Titanium Dioxide
2.2. Preparation of Nanocomposite Membrane
2.3. UF/FO Membrane Hybrid for Simulated Osmosis Membrane Bioreactor (OsMBR) Process
2.4. Membrane Fouling Tests
2.5. Membrane Characterization
3. Results and Discussion
3.1. Characterization of the Nanoparticles and Membrane
3.2. Membrane Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guimarães, R.N.; Moreira, V.R.; Amaral, M.C. Membrane technology as an emergency response against drinking water shortage in scenarios of dam failure. Chemosphere 2022, 309, 136618. [Google Scholar] [CrossRef] [PubMed]
- Obotey Ezugbe, E.; Rathilal, S. Membrane technologies in wastewater treatment: A review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Lejarazu-Larrañaga, A.; Ortiz, J.M.; Molina, S.; Pawlowski, S.; Galinha, C.F.; Otero, V.; García-Calvo, E.; Velizarov, S.; Crespo, J.G. Nitrate removal by Donnan dialysis and anion-exchange membrane bioreactor using upcycled end-of-life reverse osmosis membranes. Membranes 2022, 12, 101. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.X.; Song, H.L.; Chand, H.; Wu, Y.; Yang, Y.L.; Yang, X.L. New insights into the role of molecular structures on the fate and behavior of antibiotics in an osmotic membrane bioreactor. J. Hazard. Mater. 2022, 423, 127040. [Google Scholar] [CrossRef]
- Chang, H.M.; Chen, S.S.; Hsiao, S.S.; Chang, W.S.; Chien, I.C.; Duong, C.C.; Nguyen, T.X.Q. Water reclamation and microbial community investigation: Treatment of tetramethylammonium hydroxide wastewater through an anaerobic osmotic membrane bioreactor hybrid system. J. Hazard. Mater. 2022, 427, 128200. [Google Scholar] [CrossRef]
- Sutrisna, P.D.; Kurnia, K.A.; Siagian, U.W.; Ismadji, S.; Wenten, I.G. Membrane fouling and fouling mitigation in oil–water separation: A review. J. Environ. Chem. Eng. 2022, 10, 107532. [Google Scholar] [CrossRef]
- Ma, Y.; Chew, J.W. Investigation of membrane fouling phenomenon using molecular dynamics simulations: A review. J. Membr. Sci. 2022, 661, 120874. [Google Scholar] [CrossRef]
- Saleh, T.A.; Mustaqeem, M.; Khaled, M. Water treatment technologies in removing heavy metal ions from wastewater: A review. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100617. [Google Scholar] [CrossRef]
- Manikandan, S.; Subbaiya, R.; Saravanan, M.; Ponraj, M.; Selvam, M.; Pugazhendhi, A. A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere 2022, 289, 132867. [Google Scholar] [CrossRef]
- Asante-Sackey, D.; Rathilal, S.; Tetteh, E.K.; Armah, E.K. Membrane Bioreactors for Produced Water Treatment: A Mini-Review. Membranes 2022, 12, 275. [Google Scholar] [CrossRef]
- Zhu, X.; Lee, L.W.; Song, G.; Zhang, X.; Gao, Y.; Yang, G.; Luo, S.; Huang, X. Deciphering mono/multivalent draw solute-induced microbial ecology and membrane fouling in anaerobic osmotic membrane bioreactor. Water Res. 2021, 209, 117869. [Google Scholar] [CrossRef]
- Chapalaghi, M.; Ahsani, M.; Ghofrani, B.; Ranjbaran, N.; Yegani, R. A step-by-step assessment of the backwashing process impact on the fouling mitigation of blended PVC/PC and nanocomposite PVC/PC/MAg membranes in a membrane bioreactor (MBR) treating pharmaceutical wastewater. Chem. Eng. Res. Des. 2022, 188, 831–845. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Y.; Wang, T.; Zhang, X. Silver@silica nanopollen modified membranes for wastewater treatment in membrane bioreactors: Limited adverse effects on microorganisms and compelling antifouling properties. Environ. Sci. Water Res. Technol. 2022, 8, 640–647. [Google Scholar] [CrossRef]
- Vatanpour, V.; Ağtaş, M.; Abdelrahman, A.M.; Erşahin, M.E.; Ozgun, H.; Koyuncu, I. Nanomaterials in membrane bioreactors: Recent progresses, challenges, and potentials. Chemosphere 2022, 302, 134930. [Google Scholar] [CrossRef]
- Qu, Y.; Pan, Y.; Wu, L.; Zhu, H. Mitigation of salinity buildup in hybrid flow-electrode capacitive deionization-osmotic membrane bioreactor for sludge anaerobic digestion. Chem. Eng. J. 2022, 435, 134885. [Google Scholar] [CrossRef]
- Bhati, K.; Tripathy, D.B.; Kumaravel, V.; Sudhani, H.P.K.; Ali, S.; Choudhary, R.; Shukla, S. Sensitive Fingerprint Detection Using Biocompatible Mesoporous Silica Nanoparticle Coating on Non-Porous Surfaces. Coatings 2023, 13, 268. [Google Scholar] [CrossRef]
- Iftekhar, S.; Heidari, G.; Amanat, N.; Zare, E.N.; Asif, M.B.; Hassanpour, M.; Lehto, V.P.; Sillanpaa, M. Porous materials for the recovery of rare earth elements, platinum group metals, and other valuable metals: A review. Environ. Chem. Lett. 2022, 20, 3697–3746. [Google Scholar] [CrossRef]
- Zhang, N.; Ning, X.; Chen, J.; Xue, J.; Lu, G.; Qiu, H. Photocatalytic degradation of tetracycline based on the highly reactive interface between graphene nanopore and TiO2 nanoparticles. Microporous Mesoporous Mater. 2022, 338, 111958. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Mao, G.; Zhang, Y.; Lai, F.P. Effect of Nanoparticle Adsorption on the Pore Structure of a Coalbed Methane Reservoir: A Laboratory Experimental Study. ACS Omega 2022, 7, 6261–6270. [Google Scholar] [CrossRef]
- Uthappa, U.; Jeong, H.-H.; Kurkuri, M. A Brief Overview of Drug Delivery Systems and Significance of Advanced Porous Biomaterials in the Drug Delivery Field. In Advanced Porous Biomaterials for Drug Delivery Applications; CRC Press: Boca Raton, FL, USA, 2022; pp. 3–19. [Google Scholar]
- Xiong, J.; Zhang, M.; Lu, M.; Zhao, K.; Han, C.; Cheng, G.; Wen, Z. Achieving simultaneous Cu particles anchoring in meso-porous TiO2 nanofabrication for enhancing photo-catalytic CO2 reduction through rapid charge separation. Chin. Chem. Lett. 2021, 33, 1313–1316. [Google Scholar] [CrossRef]
- Sagadevan, S.; Imteyaz, S.; Murugan, B.; Lett, J.A.; Sridewi, N.; Weldegebrieal, G.K.; Fatimah, I.; Oh, W.-C. A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications. Green Process. Synth. 2022, 11, 44–63. [Google Scholar] [CrossRef]
- Nyamukamba, P.; Okoh, O.; Mungondori, H.; Taziwa, R.; Zinya, S. Synthetic Methods for Titanium Dioxide Nanoparticles: A Review. In Titanium Dioxide—Material for a Sustainable Environment; IntechOpen: London, UK, 2018; pp. 151–1755. [Google Scholar]
- Peng, T.; Zhao, D.; Dai, K.; Shi, W.; Hirao, K. Synthesis of Titanium Dioxide Nanoparticles with Mesoporous Anatase Wall and High Photocatalytic Activity. J. Phys. Chem. B 2005, 109, 4947–4952. [Google Scholar] [CrossRef] [PubMed]
- Emadzadeh, D.; Lau, W.; Matsuura, T.; Rahbari-Sisakht, M.; Ismail, A. A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination. Chem. Eng. J. 2013, 237, 70–80. [Google Scholar] [CrossRef]
- Qi, S.R.; Li, Y.; Zhao, Y.; Li, W.Y.; Tang, C.Y.Y. Highly Efficient Forward Osmosis Based on Porous Membranes—Applications and Implications. Environ. Sci. Technol. 2015, 49, 4690–4695. [Google Scholar] [CrossRef] [PubMed]
- TTian, E.; Hu, C.; Qin, Y.; Ren, Y.; Wang, X.; Wang, X.; Xiao, P.; Yang, X. A study of poly (sodium 4-styrenesulfonate) as draw solute in forward osmosis. Desalination 2015, 360, 130–137. [Google Scholar] [CrossRef]
- Emadzadeh, D.; Lau, W.; Matsuura, T.; Ismail, A.; Rahbari-Sisakht, M. Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization. J. Membr. Sci. 2014, 449, 74–85. [Google Scholar] [CrossRef]
- Emadzadeh, D.; Lau, W.; Rahbari-Sisakht, M.; Daneshfar, A.; Ghanbari, M.; Mayahi, A.; Matsuura, T.; Ismail, A. A novel thin film nanocomposite reverse osmosis membrane with superior anti-organic fouling affinity for water desalination. Desalination 2015, 368, 106–113. [Google Scholar] [CrossRef]
- Padaki, M.; Emadzadeh, D.; Masturra, T.; Ismail, A. Antifouling properties of novel PSf and TNT composite membrane and study of effect of the flow direction on membrane washing. Desalination 2015, 362, 141–150. [Google Scholar] [CrossRef]
- Bidsorkhi, H.C.; Riazi, H.; Emadzadeh, D.; Ghanbari, M.; Matsuura, T.; Lau, W.J.; Ismail, A.F. Preparation and characterization of a novel highly hydrophilic and antifouling polysulfone/nanoporous TiO2nanocomposite membrane. Nanotechnology 2016, 27, 415706. [Google Scholar] [CrossRef]
- Nandagudi, A.; Nagarajarao, S.; Santosh, M.; Basavaraja, B.; Malode, S.; Mascarenhas, R.; Shetti, N. Hydrothermal synthesis of transition metal oxides, transition metal oxide/carbonaceous material nanocomposites for supercapacitor applications. Mater. Today Sustain. 2022, 19, 100214. [Google Scholar] [CrossRef]
- Bardestani, R.; Patience, G.S.; Kaliaguine, S. Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can. J. Chem. Eng. 2019, 97, 2781–2791. [Google Scholar] [CrossRef]
- Ghanbari, M.; Emadzadeh, D.; Lau, W.J.; Matsuura, T.; Davoody, M.; Ismail, A.F. Super hydrophilic TiO2/HNT nanocomposites as a new approach for fabrication of high performance thin film nanocomposite membranes for FO application. Desalination 2015, 371, 104–114. [Google Scholar] [CrossRef]
- Emadzadeh, D.; Lau, W.; Ismail, A. Synthesis of thin film nanocomposite forward osmosis membrane with enhancement in water flux without sacrificing salt rejection. Desalination 2013, 330, 90–99. [Google Scholar] [CrossRef]
- Lai, G.; Yusob, M.; Lau, W.; Gohari, R.J.; Emadzadeh, D.; Ismail, A.; Goh, P.; Isloor, A.; Arzhandi, M.R.-D. Novel mixed matrix membranes incorporated with dual-nanofillers for enhanced oil-water separation. Sep. Purif. Technol. 2017, 178, 113–121. [Google Scholar] [CrossRef]
- Abedi, F.; Emadzadeh, D.; Dubé, M.A.; Kruczek, B. Modifying cellulose nanocrystal dispersibility to address the permeability/selectivity trade-off of thin-film nanocomposite reverse osmosis membranes. Desalination 2022, 538, 115900. [Google Scholar] [CrossRef]
- Abedi, F.; Dubé, M.A.; Emadzadeh, D.; Kruczek, B. Improving nanofiltration performance using modified cellulose nanocrystal-based TFN membranes. J. Membr. Sci. 2023, 670, 121369. [Google Scholar] [CrossRef]
- Memisoglu, G.; Murugesan, R.C.; Zubia, J.; Rozhin, A.G. Graphene Nanocomposite Membranes: Fabrication and Water Treatment Applications. Membranes 2023, 13, 145. [Google Scholar] [CrossRef]
- Yang, E.; Park, S.; Kim, Y.; Yanar, N.; Choi, H. Fabrication and Investigation of Acid Functionalized CNT Blended Nanocomposite Hollow Fiber Membrane for High Filtration and Antifouling Performance in Ultrafiltration Process. Membranes 2023, 13, 70. [Google Scholar] [CrossRef]
- Amari, A.; Ali, M.H.; Jaber, M.M.; Spalevic, V.; Novicevic, R. Study of Membranes with Nanotubes to Enhance Osmosis Desalination Efficiency by Using Machine Learning towards Sustainable Water Management. Membranes 2023, 13, 31. [Google Scholar] [CrossRef]
- Gohain, M.B.; Karki, S.; Yadav, D.; Yadav, A.; Thakare, N.R.; Hazarika, S.; Lee, H.K.; Ingole, P.G. Development of Antifouling Thin-Film Composite/Nanocomposite Membranes for Removal of Phosphate and Malachite Green Dye. Membranes 2022, 12, 768. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, Y.; Chen, F.; Chai, Y. A Membrane with Strong Resistance to Organic and Biological Fouling Using Graphene Oxide and D-Tyrosine as Modifiers. Membranes 2022, 12, 486. [Google Scholar] [CrossRef] [PubMed]
- Masibi, E.G.; Makhetha, T.A.; Moutloali, R.M. Effect of the Incorporation of ZIF-8@GO into the Thin-Film Membrane on Salt Rejection and BSA Fouling. Membranes 2022, 12, 436. [Google Scholar] [CrossRef] [PubMed]
- Kamal, N.; Kochkodan, V.; Zekri, A.; Ahzi, S. Polysulfone Membranes Embedded with Halloysites Nanotubes: Preparation and Properties. Membranes 2019, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Loske, L.; Nakagawa, K.; Yoshioka, T.; Matsuyama, H. 2D Nanocomposite Membranes: Water Purification and Fouling Mitigation. Membranes 2020, 10, 295. [Google Scholar] [CrossRef]
- Ahmad, N.A.; Goh, P.S.; Zulhairun, A.K.; Ismail, A.F. Antifouling Property of Oppositely Charged Titania Nanosheet Assembled on Thin Film Composite Reverse Osmosis Membrane for Highly Concentrated Oily Saline Water Treatment. Membranes 2020, 10, 237. [Google Scholar] [CrossRef]
- Bae, T.-H.; Kim, I.-C.; Tak, T.-M. Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes. J. Membr. Sci. 2006, 275, 1–5. [Google Scholar] [CrossRef]
- EEl-Naggar, M.E.; Abdel-Karim, A.; Radwan, E.K.; Sharmoukh, W.; Wassel, A.R.; Bayoumy, A.M.; Ibrahim, M. Experimental and theoretical investigations on fouling resistant cellulose acetate/SiO2 NPs/PEDOT ultrafiltration nanocomposite membranes. J. Clean. Prod. 2021, 324, 129288. [Google Scholar] [CrossRef]
- Zangeneh, H.; Zinatizadeh, A.A.; Zinadini, S.; Feyzi, M.; Bahnemann, D.W. Preparation ultrafine L-Methionine (C, N, S triple doped)-TiO2-ZnO nanoparticles and their photocatalytic performance for fouling alleviation in PES nanocomposite membrane. Compos. Part B Eng. 2019, 176, 107158. [Google Scholar] [CrossRef]
- Yan, L.; Hong, S.; Li, M.L.; Li, Y.S. Application of the Al2O3–PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research. Sep. Purif. Technol. 2009, 66, 347–352. [Google Scholar] [CrossRef]
- Ostadi, M.; Kamelian, F.S.; Mohammadi, T. Superhydrophilic micro/nano hierarchical functionalized-CuO/PVDF nanocomposite membranes with ultra-low fouling/biofouling performance for acetate wastewater treatment: MBR application. J. Membr. Sci. 2023, 676, 121591. [Google Scholar] [CrossRef]
- Koyuncu, I.; Gul, B.Y.; Esmaeili, M.S.; Pekgenc, E.; Teber, O.O.; Tuncay, G.; Karimi, H.; Parvaz, S.; Maleki, A.; Vatanpour, V. Modification of PVDF membranes by incorporation Fe3O4@ Xanthan gum to improve anti-fouling, anti-bacterial, and separation performance. J. Environ. Chem. Eng. 2022, 10, 107784. [Google Scholar] [CrossRef]
- Algamdi, M.S.; Alsohaimi, I.H.; Lawler, J.; Ali, H.M.; Aldawsari, A.M.; Hassan, H.M. Fabrication of graphene oxide incorporated polyethersulfone hybrid ultrafiltration membranes for humic acid removal. Sep. Purif. Technol. 2019, 223, 17–23. [Google Scholar] [CrossRef]
PSF Membrane | PSf (wt%) | PVP (wt%) | NMP (wt%) | PTis |
---|---|---|---|---|
MT0(control) | 17.5 | 0.5 | 82.0 | 0.0 |
MT0.5 | 17.5 | 0.5 | 81.5 | 0.5 |
MT1 | 17.5 | 0.5 | 81 | 1 |
MT2 | 17.5 | 0.5 | 80.0 | 2 |
Membrane | (nm) | (nm) | (nm) | Contact Angle = | ||
---|---|---|---|---|---|---|
MT0 | 20.9 | 27.1 | 36.49 | 68 | 1.29 | 93.90 |
MT0.5 | 28.6 | 36.2 | 76.01 | 64 | 1.26 | 98.10 |
MT1 | 41.3 | 50.5 | 105.7 | 61 | 1.22 | 101.68 |
MT2 | 42.6 | 48.9 | 122.5 | 57 | 1.14 | 107.54 |
Membrane | Carbon (C) | Oxygen (O) | Nitrogen (N) | Titanium (Ti) | Total |
---|---|---|---|---|---|
MT0 | 80.46 | 9.76 | 9.78 | - | 100 |
MT0.5 | 80.04 | 10.82 | 9.07 | 0.07 | 100 |
MT1 | 78.78 | 10.30 | 10.61 | 0.31 | 100 |
MT2 | 78.80 | 11.36 | 9.35 | 0.49 | 100 |
Membrane | Nanoparticle Type | Nanoparticle Concentration | Fouling Resistance | Water Flux L/m2h.bar | Flux Recovery | Particle Size | References |
---|---|---|---|---|---|---|---|
PSf | MT1 | 1% | High | 52.5 * | 96% | 7–40 nm | This work |
PSf | TNT | 0.1% | Low | 58 | 78% | 20–40 nm | [30,48] |
Cellulose acetate | SiO2 | 10% | Moderate | 100 | 90% | 250 nm | [49] |
PES | TiO2-ZnO | 0.5% | Low | 10.6 | 76% | - | [50] |
PVDF | Al2O3 | 2% | High | 150 | 96% | 10 nm | [51] |
PVDF | CuO | 1% | Moderate | 480 | 90% | - | [52] |
PVDF | Fe3O4@Xanthan gum | 0.2 | Low | 50 | 66.5% | 10–40 | [53] |
PES | GO | 3% | Moderate | 270 | 92% | - | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahedipoor, A.; Faramarzi, M.; Mansourizadeh, A.; Ghaedi, A.; Emadzadeh, D. Integration of Porous Nanomaterial-Infused Membrane in UF/FO Membrane Hybrid for Simulated Osmosis Membrane Bioreactor (OsMBR) Process. Membranes 2023, 13, 577. https://doi.org/10.3390/membranes13060577
Zahedipoor A, Faramarzi M, Mansourizadeh A, Ghaedi A, Emadzadeh D. Integration of Porous Nanomaterial-Infused Membrane in UF/FO Membrane Hybrid for Simulated Osmosis Membrane Bioreactor (OsMBR) Process. Membranes. 2023; 13(6):577. https://doi.org/10.3390/membranes13060577
Chicago/Turabian StyleZahedipoor, Ahmadreza, Mehdi Faramarzi, Amir Mansourizadeh, Abdolmohammad Ghaedi, and Daryoush Emadzadeh. 2023. "Integration of Porous Nanomaterial-Infused Membrane in UF/FO Membrane Hybrid for Simulated Osmosis Membrane Bioreactor (OsMBR) Process" Membranes 13, no. 6: 577. https://doi.org/10.3390/membranes13060577
APA StyleZahedipoor, A., Faramarzi, M., Mansourizadeh, A., Ghaedi, A., & Emadzadeh, D. (2023). Integration of Porous Nanomaterial-Infused Membrane in UF/FO Membrane Hybrid for Simulated Osmosis Membrane Bioreactor (OsMBR) Process. Membranes, 13(6), 577. https://doi.org/10.3390/membranes13060577