Stimuli-Responsive Track-Etched Membranes for Separation of Water–Oil Emulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation and Modification of Track-Etched Membranes
2.3. Methods of Characterization
2.4. Testing of pH-Responsive PET TeMs in the Separation of Water–Oil Emulsions
3. Results and Discussion
3.1. Graft Polymerization of Styrene
- −
- grafting time—60 min,
- −
- molar ratio RAFT agent:initiator = 1:10,
- −
- monomer concentration—2 vol.%.
3.2. Graft Copolymerization of 4-Vinylpyridine on PET TeMs-g-PS
- −
- grafting time: 45 min,
- −
- molar ratio RAFT agent:initiator = 1:10
- −
- monomer concentration: 2 vol.%.
3.3. Testing of pH-Responsive Membranes in Water–Oil Emulsion Separation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Korolkov, I.V.; Narmukhamedova, A.R.; Melnikova, G.B.; Muslimova, I.B.; Yeszhanov, A.B.; Zhatkanbayeva, Z.K.; Chizhik, S.A.; Zdorovets, M.V. Preparation of Hydrophobic PET Track-Etched Membranes for Separation of Oil–Water Emulsion. Membranes 2021, 11, 637. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Dunderdale, G.J.; England, M.W.; Hozumi, A. Oil/water separation techniques: A review of recent progresses and future directions. J. Mater. Chem. A 2017, 5, 16025–16058. [Google Scholar] [CrossRef]
- Myeong, J.; Deshmukh, P.; Shin, W.G. Facile preparation of superhydrophilic and underwater superoleophobic stainless steel mesh for oil–water separation. J. Ind. Eng. Chem. 2023, 120, 398–409. [Google Scholar] [CrossRef]
- Tan, S.L.; El Meragawi, S.; Majumder, M.; Lau, E. Von Superhydrophilic and Underwater Superoleophobic Graphene Oxide-Phytic Acid Membranes for Efficient Separation of Oil-in-Water Emulsions. Sep. Purif. Technol. 2023, 314, 123544. [Google Scholar] [CrossRef]
- Xu, X.; Liu, G.; Bai, J.; Cao, M.; Yu, D.; Wu, X. In-Situ Self-Compensation Strategy for Superhard, Universal Superhydrophilic/Underwater Superoleophobic Coatings. Chem. Eng. Sci. 2022, 262, 118007. [Google Scholar] [CrossRef]
- Rasouli, S.; Rezaei, N.; Hamedi, H.; Zendehboudi, S.; Duan, X. Superhydrophobic and Superoleophilic Membranes for Oil-Water Separation Application: A Comprehensive Review. Mater. Des. 2021, 204, 109599. [Google Scholar] [CrossRef]
- Yue, R.-Y.; Yuan, P.-C.; Zhang, C.-M.; Wan, Z.-H.; Wang, S.-G.; Sun, X. Robust Self-Cleaning Membrane with Superhydrophilicity and Underwater Superoleophobicity for Oil-in-Water Separation. Chemosphere 2023, 330, 138706. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, M.; Yang, F.; Liu, M.; Li, L.; Wang, S.; Jiang, L. An Underwater PH-Responsive Superoleophobic Surface with Reversibly Switchable Oil-Adhesion. Soft Matter 2012, 8, 6740–6743. [Google Scholar] [CrossRef]
- Cheng, B.; Li, Z.; Li, Q.; Ju, J.; Kang, W.; Naebe, M. Development of Smart Poly(Vinylidene Fluoride)-Graft-Poly(Acrylic Acid) Tree-like Nanofiber Membrane for PH-Responsive Oil/Water Separation. J. Memb. Sci. 2017, 534, 1–8. [Google Scholar] [CrossRef]
- Zhang, J.; Peppas, N.A. Synthesis and Characterization of PH- and Temperature-Sensitive Poly(Methacrylic Acid)/Poly(N-Isopropylacrylamide) Interpenetrating Polymeric Networks. Macromolecules 2000, 33, 102–107. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, Y.; Liu, X.; Wang, D.; Li, J.; Jiang, L.; Jin, J. Salt-Induced Fabrication of Superhydrophilic and Underwater Superoleophobic PAA-g-PVDF Membranes for Effective Separation of Oil-in-Water Emulsions. Angew. Chem. Int. Ed. 2013, 53, 856–860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-M.; Gan, Z.-Q.; Bao, R.-Y.; Ke, K.; Liu, Z.-Y.; Yang, M.-B.; Yang, W. Green and robust superhydrophilic electrospun stereocomplex polylactide membranes: Multifunctional oil/water separation and self-cleaning. J. Membr. Sci. 2019, 593, 117420. [Google Scholar] [CrossRef]
- Teng, D.; Zhao, T.; Xu, Y.; Zhang, X.; Zeng, Y. The zein-based fiber membrane with switchable superwettability for on-demand oil/water separation. Sep. Purif. Technol. 2021, 263, 118393. [Google Scholar] [CrossRef]
- Kou, X.; Han, N.; Zhang, Y.; Tian, S.; Li, P.; Wang, W.; Wu, C.; Li, W.; Yan, X.; Zhang, X. Fabrication of polyphenylene sulfide nanofibrous membrane via sacrificial templated-electrospinning for fast gravity-driven water-in-oil emulsion separation. Sep. Purif. Technol. 2021, 275, 119124. [Google Scholar] [CrossRef]
- Yin, X.; Yu, S.; Wang, L.; Li, H.; Xiong, W. Design and preparation of superhydrophobic NiS nanorods on Ni mesh for oil-water separation. Sep. Purif. Technol. 2020, 234, 116126. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Graphene Foam with Switchable Oil Wettability for Oil and Organic Solvents Recovery. Adv. Funct. Mater. 2015, 25, 597–605. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. A smart membrane with antifouling capability and switchable oil wettability for high-efficiency oil/water emulsions separation. J. Membr. Sci. 2018, 555, 69–77. [Google Scholar] [CrossRef]
- Apel, P.Y. Fabrication of functional micro- and nanoporous materials from polymers modified by swift heavy ions. Radiat. Phys. Chem. 2019, 159, 25–34. [Google Scholar] [CrossRef]
- Wen, Q.; Yan, D.; Liu, F.; Wang, M.; Ling, Y.; Wang, P.; Kluth, P.; Schauries, D.; Trautmann, C.; Apel, P.; et al. Highly Selective Ionic Transport through Subnanometer Pores in Polymer Films. Adv. Funct. Mater. 2016, 26, 5796–5803. [Google Scholar] [CrossRef]
- Koros, W.J.; Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 2017, 16, 289–297. [Google Scholar] [CrossRef]
- Ma, T.; Janot, J.M.; Balme, S. Track-Etched Nanopore/Membrane: From Fundamental to Applications. Small Methods 2020, 4, 2000366. [Google Scholar] [CrossRef]
- Tian, X.; Ding, J.; Zhang, B.; Qiu, F.; Zhuang, X.; Chen, Y. Recent Advances in RAFT Polymerization: Novel Initiation Mechanisms and Optoelectronic Applications. Polymers 2018, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Barsbay, M.; Güven, O. Grafting in confined spaces: Functionalization of nanochannels of track-etched membranes. Radiat. Phys. Chem. 2014, 105, 26–30. [Google Scholar] [CrossRef]
- Keddie, D.J. A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization. Chem. Soc. Rev. 2013, 43, 496–505. [Google Scholar] [CrossRef]
- Barsbay, M.; Güven, O.; Bessbousse, H.; Wade, T.L.; Beuneu, F.; Clochard, M.-C. Nanopore size tuning of polymeric membranes using the RAFT-mediated radical polymerization. J. Membr. Sci. 2013, 445, 135–145. [Google Scholar] [CrossRef]
- Gorokhovatsky, Y.A.; Temnov, D.E.; Shabanova, N.S.; Nechaeff, A.N.; Rossouw, A. Thermoactivated Current Spectroscopy of Polyethylene Terephthalate Films Irradiated by Heavy Xenon Ions. St. Petersburg State Polytech. Univ. J. Phys. Math. 2021, 14, 8–20. [Google Scholar] [CrossRef]
- Golshaei, P.; Güven, O. Chemical modification of PET surface and subsequent graft copolymerization with poly(N-isopropylacrylamide). React. Funct. Polym. 2017, 118, 26–34. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Mashentseva, A.A.; Güven, O.; Niyazova, D.T.; Barsbay, M.; Zdorovets, M.V. The effect of oxidizing agents/systems on the properties of track-etched PET membranes. Polym. Degrad. Stab. 2014, 107, 150–157. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Kuandykova, A.; Yeszhanov, A.B.; Güven, O.; Gorin, Y.G.; Zdorovets, M.V. Modification of PET Ion-Track Membranes by Silica Nanoparticles for Direct Contact Membrane Distillation of Salt Solutions. Membranes 2020, 10, 322. [Google Scholar] [CrossRef]
- Melnikova, G.B.; Petrovskaya, A.S.; Makhanek, A.A.; Chizhik, S.A. Characterization of soft and heterogeneous surfaces by mechanical properties map obtained with atomic force microscopy. IOP Conf. Series: Mater. Sci. Eng. 2018, 443, 012023. [Google Scholar] [CrossRef]
- Yeszhanov, A.B.; Muslimova, I.B.; Melnikova, G.B.; Petrovskaya, A.S.; Seitbayev, A.S.; Chizhik, S.A.; Zhappar, N.K.; Korolkov, I.V.; Güven, O.; Zdorovets, M.V. Graft Polymerization of Stearyl Methacrylate on PET Track-Etched Membranes for Oil–Water Separation. Polymers 2022, 14, 3015. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Cheng, D.; Li, M.; Xin, M.; Sun, W.; Xiao, W. RAFT Copolymerization of Styrene and Maleic Anhydride with Addition of Ascorbic Acid at Ambient Temperature. Adv. Polym. Technol. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Feng, L.-B.; Zhou, S.-X.; You, B.; Wu, L.-M. Synthesis and surface properties of polystyrene-graft-poly(ethylene glycol) copolymers. J. Appl. Polym. Sci. 2007, 103, 1458–1465. [Google Scholar] [CrossRef]
- Hong, G.-B.; Su, T.-L. Statistical analysis of experimental parameters in characterization of ultraviolet-resistant polyester fiber using a TOPSIS-Taguchi method. Iran. Polym. J. 2012, 21, 877–885. [Google Scholar] [CrossRef]
- Oshinowo, L.M.; Vilagines, R.D. Modeling of oil–water separation efficiency in three-phase separators: Effect of emulsion rheology and droplet size distribution. Chem. Eng. Res. Des. 2020, 159, 278–290. [Google Scholar] [CrossRef]
- Hussain, A.; Al-Yaari, M.; Hussain, A.; Al-Yaari, M. Development of Polymeric Membranes for Oil/Water Separation. Membranes 2021, 11, 42. [Google Scholar] [CrossRef]
- Moatmed, S.M.; Khedr, M.H.; El-Dek, S.; Kim, H.-Y.; El-Deen, A.G. Highly efficient and reusable superhydrophobic/superoleophilic polystyrene@ Fe3O4 nanofiber membrane for high-performance oil/water separation. J. Environ. Chem. Eng. 2019, 7, 103508. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Wei, W.; Zhang, H.; Wang, Y.; Cai, G.; Wu, J. pH-Sensitive Membranes with Smart Cleaning Capability for Efficient Emulsion Separation and Pollutant Removal. Membranes 2021, 11, 193. [Google Scholar] [CrossRef]
- Lin, J.; Lin, F.; Liu, R.; Li, P.; Fang, S.; Ye, W.; Zhao, S. Scalable fabrication of robust superhydrophobic membranes by one-step spray-coating for gravitational water-in-oil emulsion separation. Sep. Purif. Technol. 2020, 231, 115898. [Google Scholar] [CrossRef]
- Xiong, W.; Li, L.; Qiao, F.; Chen, J.; Chen, Z.; Zhou, X.; Hu, K.; Zhao, X.; Xie, Y. Air Superhydrophilic-Superoleophobic SiO2-Based Coatings for Recoverable Oil/Water Separation Mesh with High Flux and Mechanical Stability. J. Colloid Interface Sci. 2021, 600, 118–126. [Google Scholar] [CrossRef]
- Li, W.; Wang, F.; Li, Z. A Facile Strategy for Fabricating Robust Superhydrophobic and Superoleophilic Metal Mesh via Diazonium Chemistry. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127570. [Google Scholar] [CrossRef]
Reaction Parameters | Grafting Degree, % | Conversion, % | Theoretical Mw of Polymer, ×103 g/mol | Contact Angle, ±3 ° | Pore Diameter, ±0.1 μm |
---|---|---|---|---|---|
Pristine PET TeMs | - | - | - | 67 | 2.0 |
Concentration of monomer, vol.% * | |||||
1 | 0.21 ± 0.101 | 17 ± 0.30 | 190 ± 3.3 | 96 | 1.8 |
2 | 2.6 ± 0.02 | 25 ± 2.7 | 590 ± 61 | 97 | 1.8 |
4 | 8.7 ± 1.03 | 36 ± 0.89 | 1600 ± 40 | 95 | 1.7 |
RAFT agent: Initiator, molar ratio ** | |||||
1:2 | 2.6 ± 0.01 | 9.6 ± 1.2 | 220 ± 26 | 88 | 1.8 |
1:10 | 2.6 ± 0.02 | 25 ± 2.7 | 590 ± 61 | 97 | 1.8 |
1:100 | 3.2 ± 0.14 | 53 ± 8.3 | 1200 ± 19 | 94 | 1.9 |
Time, min *** | |||||
30 | 0.31 ± 0.24 | 13 ± 1.3 | 290 ± 29 | 92 | 1.9 |
60 | 2.6 ± 0.02 | 25 ± 2.7 | 590 ± 61 | 97 | 1.8 |
120 | 12 ± 1.1 | 42 ± 1.3 | 950 ± 29 | 96 | 1.7 |
Reaction Parameters | ω, ±0.01 mN/m | γp, ±0.01 mN/m | Ra, nm | Rq, nm | F, nN | E, ±200 MPa |
---|---|---|---|---|---|---|
Pristine PET TeMs | 53 | 6.7 | 12 ± 2.5 | 16 ± 4.5 | 21 ± 2.5 | 530 |
Concentration of monomer, vol.% * | ||||||
1 | 50 | 0 | 14 ± 3.1 | 20 ± 5.0 | 17 ± 2.8 | 450 |
2 | 42 | 0.01 | 10 ± 1.5 | 15 ± 2.6 | 32 ± 2.8 | 570 |
4 | 43 | 0.14 | 2.2 ± 0.4 | 2.8 ± 0.5 | 31 ± 9.7 | 570 |
RAFT agent: Initiator, molar ratio ** | ||||||
1:2 | 50 | 0.45 | 12 ± 3.1 | 17 ± 5.1 | 21 ± 2.2 | 570 |
1:10 | 42 | 0.01 | 10 ± 1.6 | 15 ± 2.6 | 32 ± 2.8 | 570 |
1:100 | 50 | 0 | 10 ± 2.2 | 14 ± 3.6 | 22 ± 3.5 | 370 |
Time, min *** | ||||||
30 | 50 | 0.06 | 6.6 ± 0.2 | 9.4 ± 0.3 | 21 ± 3.4 | 350 |
60 | 42 | 0.01 | 10 ± 1.6 | 15 ± 2.6 | 32 ± 2.8 | 570 |
120 | 47 | 0.01 | 2.3 ± 0.4 | 2.9 ± 0.5 | 22 ± 3.3 | 480 |
Sample | Atomic Content, % | ||
---|---|---|---|
C | O | S | |
Pristine PET TeMs | 70 | 30 | - |
PET TeM-PS Raft agent:Initiator = 1:10 (degree of grafting—2.6 ± 0.02%) | 71 | 29 | 0.06 |
Sample | Area700/Area1410 |
---|---|
Concentration of monomer, vol.% (at constant molar ratio of RAFT agent:Initiator = 1:10 and irradiation time of 60 min) | |
1 | 0.38 |
2 | 0.39 |
4 | 0.40 |
RAFT agent:Initiator, molar ratio (at constant time 60 min and concentration of ST 2 vol.%) | |
1:2 | 0.40 |
1:10 | 0.39 |
1:100 | 0.92 |
Time, min (at constant concentration of ST 2 vol.% and molar ratio of RAFT agent:initiator = 1:10) | |
30 | 0.30 |
60 | 0.39 |
120 | 28 |
Reaction Parameters | Grafting Degree, % | Conversion, % | Theoretical Mw of Polymer, ×103 g/mol | Contact Angle at pH, ±3 ° | Pore Diameter, ±0.1 μm | ||
---|---|---|---|---|---|---|---|
2 | 7 | 9 | |||||
Pristine PET TeMs | - | - | - | 85 | 67 | 84 | 2.0 |
PET TeMs-g-PS | 2.6 ± 0.02 | 25 ± 2.7 | 590 ± 61 | 97 | 97 | 97 | 1.8 |
Concentration of monomer, vol.% * | |||||||
1 | 0.67 ± 0.03 | 0.20 ± 0.03 | 2.7 ± 0.30 | 65 | 94 | 77 | 1.7 |
2 | 1.2 ± 0.02 | 9.6 ± 0.42 | 220 ± 9.7 | 58 | 97 | 95 | 1.7 |
4 | 3.3 ± 0.14 | 5.6 ± 0.53 | 260 ± 25 | 49 | 84 | 81 | 1.7 |
RAFT agent: Initiator, molar ratio ** | |||||||
1:2 | 0.68 ± 0,04 | 5.8 ± 0.49 | 130 ± 11 | 78 | 94 | 86 | 1.7 |
1:10 | 1.2 ± 0.02 | 9.6 ± 0.42 | 220 ± 9.7 | 58 | 97 | 95 | 1.7 |
1:100 | 1.4 ± 0.07 | 13 ± 0.6 | 310 ± 14 | 69 | 89 | 78 | 1.7 |
Time, min *** | |||||||
30 | 0.5 ± 0.28 | 9.5 ± 0.13 | 220 ± 3.1 | 55 | 96 | 76 | 1.7 |
45 | 1.2 ± 0.02 | 9.6 ± 0.42 | 220 ± 9.7 | 58 | 97 | 95 | 1.7 |
60 | 0.65 ± 0.02 | 9.03 ± 0.49 | 197 ± 12 | 57 | 99 | 73 | 1.7 |
Reaction Parameters | ω, ±0.01 mN/m | γp, ±0.01 mN/m | Ra, nm | Rq, nm | F, nN | E, ±200 MPa |
---|---|---|---|---|---|---|
Pristine PET TeMs | 53 | 6.7 | 12 ± 2.5 | 16 ± 4.5 | 21 ± 2.5 | 530 |
PET TeMs-g-PS | 42 | 0.01 | 10 ± 1.5 | 15 ± 2.6 | 32 ± 2.8 | 570 |
Concentration of 4-VP, vol.% * | ||||||
1 | 46 | 0.05 | 12 ± 2.1 | 17 ± 3.3 | 18 ± 2.7 | 280 |
2 | 48 | 0.54 | 11 ± 1.8 | 15 ± 2.6 | 22 ± 3.1 | 290 |
4 | 43 | 2.01 | 16 ± 3.7 | 22 ± 5 | 25 ± 4.1 | 270 |
RAFT agent: Initiator, molar ratio ** | ||||||
1:2 | 37 | 0.71 | 20 ± 2.4 | 26 ± 3.1 | 15 ± 2.4 | 290 |
1:10 | 48 | 0.54 | 11 ± 1.8 | 15 ± 2.6 | 22 ± 3.1 | 290 |
1:100 | 45 | 0.72 | 13 ± 1.9 | 17 ± 2.3 | 27 ± 6.0 | 300 |
Time, min *** | ||||||
30 | 47 | 0.00 | 6.6 ± 0.2 | 9.4 ± 0.35 | 28 ± 2.2 | 350 |
45 | 48 | 0.54 | 11 ± 1.8 | 15 ± 2.6 | 22 ± 3.1 | 290 |
60 | 44 | 0.01 | 22 ± 3.7 | 29 ± 4.7 | 27 ± 8.7 | 310 |
Sample | Atomic Content, % | |||
---|---|---|---|---|
C | O | S | N | |
PET TeMs | 70 | 30 | - | - |
PET TeMs-g-PS-RAFT (degree of grafting—2.6 ± 0.02%) | 71 | 29 | 0.06 | - |
PET TeMs-g-PS-g-P4VP-RAFT (degree of grafting—1.2 ± 0.02%) | 67 | 27 | 0.05 | 5.9 |
Direct Emulsion Separation | Reverse Emulsion Separation | |||||
---|---|---|---|---|---|---|
D, μm before | D, μm after | , % | D, μm before | D, μm after | , % | |
Water–Cetane | 0.6 | not detected | 97–100 | 4.9 | not detected | 97–100 |
Water–Hexane | 3.1 | not detected | 97–100 | 0.44 | not detected | 95–100 |
Water–Cyclohexane | 4.5 | not detected | 97–100 | 0.71 | not detected | 95–100 |
Membrane | Composition of the Emulsion | Membrane Property in Separation | Flux, L/h·m2 | Pressure | Separation Efficiency, % | Reference |
---|---|---|---|---|---|---|
Cellulose acetate/Nylon 66/Dimethyl Sulfoxide (D1) | Hexane:water | Oil rejection | 33 | Applied 1.5 × 103 mbar | 90 | [36] |
Cellulose acetate/Nylon 66/Formic Acid | Hexane:water | Oil rejection | 23 | Applied 1.5 × 103 mbar | 70 | [36] |
Polystyrene@ Fe3O4 nanofiber membrane | Hexane–water | Superhydrophobicity/superoleophilicity | 5000 | Without external pressure. | 96 | [37] |
Polyethylene (PP) membrane grafted with poly(2-dimethylaminoethyl methacrylate) at pH9 | SDS-stabilized diesel-in-water | High hydrophilicity and oleophobicity | 60 | Vacuum 1000 mbar | 80–100 (by light transmission of the permeate) | [38] |
Fluorinated SiO2-sprayed PVDF membrane | Water–petroleum ether | Superhydrophobicity | 2400 | By gravity force (height of ca. 10 cm) | 100 | [39] |
Cu mesh with nanoparticles SiO2 coating | Oil/water | Superhydrophilicity-superoleophobicity | 14,000 | By gravity | 99 | [40] |
Mesh Cu-3,5-di(trifluoromethyl) phenyl | Oil/water | Superhydrophobicity and superoleophilicity | 25,000 | By gravity | 98 | [41] |
PET TeMs-trichloro(octyl)silane | Chloroform–water | Hydrophobicity | 1100 | Vacuum 700 mbar | 99 | [1] |
PET TeMs-trichloro(octyl)silane | Cetane–water | Hydrophobicity | 270 | Vacuum 700 mbar | 100–99 | [1] |
PET TeMs-stearyl methacrylate | Hexadecane/water | Hydrophobicity | 2100 | Vacuum 600 mbar | 97 | [31] |
PET TeMs-stearyl methacrylate | Chloroform/water | Hydrophobicity | 4000 | Vacuum 900 mbar | 97 | [31] |
PET TeMs-PS-P4VP at pH2 | Water:cetane | Hydrophilicity | 5200 | Vacuum 900 mbar | 97–100 | Present study |
PET TeMs-PS-P4VP at pH9 | Hexane:water | Hydrophobicity | 7400 | Vacuum 900 mbar | 95–100 | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muslimova, I.B.; Zhatkanbayeva, Z.K.; Omertasov, D.D.; Melnikova, G.B.; Yeszhanov, A.B.; Güven, O.; Chizhik, S.A.; Zdorovets, M.V.; Korolkov, I.V. Stimuli-Responsive Track-Etched Membranes for Separation of Water–Oil Emulsions. Membranes 2023, 13, 523. https://doi.org/10.3390/membranes13050523
Muslimova IB, Zhatkanbayeva ZK, Omertasov DD, Melnikova GB, Yeszhanov AB, Güven O, Chizhik SA, Zdorovets MV, Korolkov IV. Stimuli-Responsive Track-Etched Membranes for Separation of Water–Oil Emulsions. Membranes. 2023; 13(5):523. https://doi.org/10.3390/membranes13050523
Chicago/Turabian StyleMuslimova, Indira B., Zh K. Zhatkanbayeva, Dias D. Omertasov, Galina B. Melnikova, Arman B. Yeszhanov, Olgun Güven, Sergei A. Chizhik, Maxim V. Zdorovets, and Ilya V. Korolkov. 2023. "Stimuli-Responsive Track-Etched Membranes for Separation of Water–Oil Emulsions" Membranes 13, no. 5: 523. https://doi.org/10.3390/membranes13050523
APA StyleMuslimova, I. B., Zhatkanbayeva, Z. K., Omertasov, D. D., Melnikova, G. B., Yeszhanov, A. B., Güven, O., Chizhik, S. A., Zdorovets, M. V., & Korolkov, I. V. (2023). Stimuli-Responsive Track-Etched Membranes for Separation of Water–Oil Emulsions. Membranes, 13(5), 523. https://doi.org/10.3390/membranes13050523