Hydrogen Sulphide Sequestration with Metallic Ions in Acidic Media Based on Chitosan/sEPDM/Polypropylene Composites Hollow Fiber Membranes System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Procedures
2.2.1. Preparation of Composite Membranes (Chi/sEPDM/PPy)
2.2.2. Pertraction of Hydrogen Sulfide with Composite Membranes
2.3. Equipment
3. Results and Discussion
3.1. Morphological and Structural Membrane and Membrane Material Characteristics
3.1.1. Scanning Electron Microscopy (SEM)
3.1.2. Fourier Transform InfraRed Spectroscopy (FTIR) Membrane Characteristics
3.1.3. Thermal Characteristics of the Prepared Test Membranes
3.2. The Pertraction Performance for the Hydrogen Sulfur Separation with Prepared Composite Membranes (Chi/sEPDM/PPy)
3.2.1. The Influence of the pM of the Receiving Phase on Hydrogen Sulfide Pertraction through Chi/sEPDM/PPy–CM from Synthetic Gas Mixture
3.2.2. The Influence of the pH of the Receiving Phase on Hydrogen Sulfide Pertraction through a Chi/sEPDM/PPy Composite Membrane from Synthetic Gas Mixture
3.2.3. The Influence of the Hydrogen Sulfide Concentration on Pertraction from a Synthetic Gas Mixture, Using Composite Membranes (Chi/sEPDM/PPy)
3.2.4. The Influence of the Gas Mixture Flow on Hydrogen Sulfide Pertraction through Chi/sEPDM/PPy Composite Membranes
3.2.5. The Proposed Mechanism of the Hydrogen Sulfide Sequestration through Pertraction with Metallic Ions in Acid Media by Chi/sEPDM/PPy–CM from Synthetic Gas Mixtures
- Reticulation of the chitosan (selective membrane material) with which the polypropylene hollow fiber support membrane is impregnated, so that it no longer detaches from the support fiber.
- Optimizing the concentration of metal ions and sulfide ions to ensure the precipitation of metal sulfides and their fixation in the receiving phase.
- Diffusion of gases from the source phase through polypropylene hollow fiber membrane support.
- Hydrogen sulfide concentration in the selective chitosan layer of the composite membrane through a solubilization–extraction mechanism in the solid phase and diffusion towards the interface with the receiving acid solution containing metal ions.
- Solubilization of hydrogen sulfide in the receiving phase.
- Immobilization of hydrogen sulfide through precipitation as metallic sulfide in the receiving phase.
3.2.6. Practical Aspects and Application Perspectives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Chi | Chitosan |
sEPDM | Sulfonated ethylene–propylene–diene terpolymer |
PPy | Polypropylene |
Chi/sEPDM/PPy–CM | Chitosan/sulfonated ethylene–propylene–diene terpolymer/polypropylene composite membrane |
SEM | Scanning Electron Microscopy |
HR–SEM | High Resolution Scanning Electron Microscopy |
FTIR | Fourier Transform Infra-Red spectroscopy |
EDAX | Energy-Dispersive Spectroscopy Analysis |
TA | Thermal Analysis |
TG | Thermo-Gravimetric |
DSC | Differential Scanning Calorimetry |
GC | Gas Chromatography |
UV–Vis | Ultraviolet-Visible Spectrophotometry |
AAS | Atomic Absorption Spectrometry |
MIR | Fourier Transform Infra-Red Microscopy |
PE | Pertraction Efficiency |
pH | -log [H3O] |
pH | -log [M2+] |
References
- Nechifor, A.C.; Cotorcea, S.; Bungău, C.; Albu, P.C.; Pașcu, D.; Oprea, O.; Grosu, A.R.; Pîrțac, A.; Nechifor, G. Removing of the Sulfur Compounds by Impregnated Polypropylene Fibers with Silver Nanoparticles-Cellulose Derivatives for Air Odor Correction. Membranes 2021, 11, 256. [Google Scholar] [CrossRef]
- Li, H.; Lu, J.; Li, B. Does pollution-intensive industrial agglomeration increase residents’ health expenditure? Sustain. Cities Soc. 2020, 56, 102092. [Google Scholar] [CrossRef]
- Pan, Y.; Guo, J.; Yang, L.; Yuan, Q.; Ren, Z.; Wang, L. Numerical Simulations of Non-Point Source Pollution in a Small Urban Catchment: Identification of Pollution Risk Areas and Effectiveness of Source-Control Measures. Water 2021, 13, 96. [Google Scholar] [CrossRef]
- Yu, S.; Bao, J.; Ding, W.; Chen, X.; Tang, X.; Hao, J.; Zhang, W.; Singh, P. Investigating the Relationship between Public Satisfaction and Public Environmental Participation during Government Treatment of Urban Malodorous Black River in China. Sustainability 2021, 13, 3584. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, H.; Wu, T.; Xu, H.; Lu, Y.; Qiu, Z.; Wang, X.; Zhang, P. Investigation on the Emission and Diffusion of Hydrogen Sulfide during Landfill Operations: A Case Study in Shenzhen. Sustainability 2021, 13, 2886. [Google Scholar] [CrossRef]
- Vo, T.T.T.; Huynh, T.D.; Wang, C.-S.; Lai, K.-H.; Lin, Z.-C.; Lin, W.-N.; Chen, Y.-L.; Peng, T.-Y.; Wu, H.-C.; Lee, I.-T. The Potential Implications of Hydrogen Sulfide in Aging and Age-Related Diseases through the Lens of Mitohormesis. Antioxidants 2022, 11, 1619. [Google Scholar] [CrossRef] [PubMed]
- Gorini, F.; Bustaffa, E.; Chatzianagnostou, K.; Bianchi, F.; Vassalle, C. Hydrogen sulfide and cardiovascular disease: Doubts, clues, and interpretation difficulties from studies in geothermal areas. Sci. Total Environ. 2020, 743, 140818. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, X.; Qu, G.; He, K. Efficient purification of hydrogen sulfide by synergistic effects of electrochemical and liquid phase catalysis. J. Sep. Pur. 2019, 218, 43–50. [Google Scholar] [CrossRef]
- Reverberi, A.P.; Klemeš, J.J.; Varbanov, P.S.; Fabiano, B. A review on hydrogen production from hydrogen sulphide by chemical and photochemical methods. J. Clean. Prod. 2016, 136, 72–80. [Google Scholar] [CrossRef]
- Prokkola, H.; Nurmesniemi, E.-T.; Lassi, U. Removal of Metals by Sulphide Precipitation Using Na2S and HS−-Solution. ChemEngineering 2020, 4, 51. [Google Scholar] [CrossRef]
- Han, X.; Chen, H.; Liu, Y.; Pan, J. Study on removal of gaseous hydrogen sulfide based on macroalgae biochars. J. Nat. Gas Sci. Eng. 2020, 73, 103068. [Google Scholar] [CrossRef]
- Georgiadis, A.G.; Charisiou, N.; Yentekakis, I.V.; Goula, M.A. Hydrogen Sulfide (H2S) Removal via MOFs. Materials 2020, 13, 3640. [Google Scholar] [CrossRef]
- Costa, C.; Cornacchia, M.; Pagliero, M.; Fabiano, B.; Vocciante, M.; Reverberi, A.P. Hydrogen Sulfide Adsorption by Iron Oxides and Their Polymer Composites: A Case-Study Application to Biogas Purification. Materials 2020, 13, 4725. [Google Scholar] [CrossRef] [PubMed]
- Imtiaz, A.; Othman, M.H.D.; Jilani, A.; Khan, I.U.; Kamaludin, R.; Iqbal, J.; Al-Sehemi, A.G. Challenges, Opportunities and Future Directions of Membrane Technology for Natural Gas Purification: A Critical Review. Membranes 2022, 12, 646. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Z.; Pan, J.; Liu, Y. Removal of gaseous hydrogen sulfide using Fenton reagent in a spraying reactor. Fuel 2019, 239, 70–75. [Google Scholar] [CrossRef]
- Koutsonikolas, D.; Karagiannakis, G.; Plakas, K.; Chatzis, V.; Skevis, G.; Giudicianni, P.; Amato, D.; Sabia, P.; Boukis, N.; Stoll, K. Membrane and Electrochemical Based Technologies for the Decontamination of Exploitable Streams Produced by Thermochemical Processing of Contaminated Biomass. Energies 2022, 15, 2683. [Google Scholar] [CrossRef]
- Vikrant, K.; Kim, K.H.; Deep, A. Photocatalytic mineralization of hydrogen sulfide as a dual-phase technique for hydrogen production and environmental remediation. Appl. Catal. B Environ. 2019, 259, 118025. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Y.; Fan, H.; de Falco, G.; Yang, S.; Shangguan, J.; Bandosz, T.J. Bifunctional ZnO-MgO/activated carbon adsorbents boost H2S room temperature adsorption and catalytic oxidation. Appl. Catal. B Environ. 2020, 266, 118674. [Google Scholar] [CrossRef]
- Reddy, C.N.; Bae, S.; Min, B. Biological removal of H2S gas in a semi-pilot scale biotrickling filter: Optimization of various parameters for efficient removal at high loading rates and low pH conditions. Bioresour. Technol. 2019, 285, 121328. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Guo, H.; Selyanchyn, R.; Wang, B.; Deng, L.; Dai, Z.; Jiang, X. Hydrogen sulfide removal from natural gas using membrane technology: A review. J. Mater. Chem. A 2021, 9, 20211–20240.21. [Google Scholar] [CrossRef]
- Yaoqiang, H.; Ningsheng, Z.; Chengtun, Q.; Fei, H.; Yongli, Y. Removal of hydrogen sulphide from high salinity wastewater by emulsion liquid membrane. Can. J. Chem. Eng. 2012, 90, 120–125. [Google Scholar] [CrossRef]
- Akhmetshina, A.I.; Yanbikov, N.R.; Atlaskin, A.A.; Trubyanov, M.M.; Mechergui, A.; Otvagina, K.V.; Razov, E.N.; Mochalova, A.E.; Vorotyntsev, I.V. Acidic Gases Separation from Gas Mixtures on the Supported Ionic Liquid Membranes Providing the Facilitated and Solution-Diffusion Transport Mechanisms. Membranes 2019, 9, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, V.C.; Han, W.; Zhang, X.; Zhang, S.; Yeung, K.L. Supported ionic liquids for air purification. Curr. Opin. Green Sustain. Chem. 2020, 25, 100391. [Google Scholar] [CrossRef]
- Bazhenov, S.D.; Bildyukevich, A.V.; Volkov, A.V. Gas-Liquid Hollow Fiber Membrane Contactors for Different Applications. Fibers 2018, 6, 76. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Khan, A.; Nakhjiri, A.T.; Albadarin, A.B.; Kurniawan, T.A.; Rezakazemi, M. Recent advancements in molecular separation of gases using microporous membrane systems: A comprehensive review on the applied liquid absorbents. J. Mol. Liq. 2021, 337, 116439. [Google Scholar] [CrossRef]
- Tilahun, E.; Bayrakdar, A.; Sahinkaya, E.; Çalli, B. Performance of polydimethylsiloxane membrane contactor process for selective hydrogen sulfide removal from biogas. Waste Manag. 2017, 61, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Nakhjiri, A.T.; Heydarinasab, A.; Bakhtiari, O.; Mohammadi, T. Influence of non-wetting, partial wetting and complete wetting modes of operation on hydrogen sulfide removal utilizing monoethanolamine absorbent in hollow fiber membrane contactor. Sustain. Environ. Res. 2018, 28, 186–196. [Google Scholar] [CrossRef]
- Tilahun, E.; Sahinkaya, E.; Çalli, B. A hybrid membrane gas absorption and bio-oxidation process for the removal of hydrogen sulfide from biogas. Int. Biodeterior. Biodegrad. 2018, 127, 69–76. [Google Scholar] [CrossRef]
- Yildiz, Y. A New Approach to Hydrogen Sulfide Removal. J. Chem. Soc. Pak. 2022, 44, 17. [Google Scholar] [CrossRef]
- Okoro, O.V.; Sun, Z. Desulphurisation of Biogas: A Systematic Qualitative and Economic-Based Quantitative Review of Alternative Strategies. ChemEngineering 2019, 3, 76. [Google Scholar] [CrossRef] [Green Version]
- Alcheikhhamdon, Y.; Hoorfar, M. Natural gas purification from acid gases using membranes: A review of the history, features, techno-commercial challenges, and process intensification of commercial membranes. J. Chem. Eng. Process. Process Intensif. 2017, 120, 105–113. [Google Scholar] [CrossRef]
- Wysocka, I.; Gębicki, J.; Namieśnik, J. Technologies for deodorization of malodorous gases. Environ. Sci. Pollut. Res. 2019, 26, 9409–9434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iulianelli, A.; Drioli, E. Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. Fuel Process. Technol. 2020, 206, 106464. [Google Scholar] [CrossRef]
- Drioli, E.; Stankiewicz, A.I.; Macedonio, F. Membrane engineering in process intensification—An overview. J. Membr. Sci. 2011, 380, 1–8. [Google Scholar] [CrossRef]
- Abdelnabi, M.M.; Cordova, K.E.; Abdulazeez, I.; Alloush, A.M.; Al-Maythalony, B.A.; Mankour, Y.; Alhooshani, K.; Saleh, T.A.; Al Hamouz, O.C.S. A Novel Porous Organic Polymer for the Concurrent and Selective Removal of Hydrogen Sulfide and Carbon Dioxide from Natural Gas Streams. ACS Appl. Mater. Interfaces 2020, 12, 47984–47992. [Google Scholar] [CrossRef] [PubMed]
- Samimi, A.; Zarinabadi, S.; Bozorgian, A.; Amosoltani, A.; Esfahani, M.S.T.; Kavousi, M.K. Advances of Membrane Technology in Acid Gas Removal in Industries. Prog. Chem. Biochem. Res. 2020, 3, 46–54. [Google Scholar] [CrossRef]
- Alqaheem, Y.; Alomair, A.; Vinoba, M.; Pérez, A. Polymeric Gas-Separation Membranes for Petroleum Refining. Int. J. Polym. Sci. 2017, 2017, 4250927. [Google Scholar] [CrossRef]
- Quinn, R.; Appleby, J.B.; Pez, G.P. Hydrogen sulfide separation from gas streams using salt hydrate chemical absorbents and immobilized liquid membranes. Sep. Sci. Technol. 2002, 37, 627–638. [Google Scholar] [CrossRef]
- Karimi, M.B.; Khanbabaei, G.; Sadeghi, G.M.M. Vegetable oil-based polyurethane membrane for gas separation. J. Membr. Sci. 2017, 527, 198–206. [Google Scholar] [CrossRef]
- Bernardo, P.; Iulianelli, A.; Macedonio, F.; Drioli, E. Membrane technologies for space engineering. J. Membr. Sci. 2021, 626, 119177. [Google Scholar] [CrossRef]
- Shah, M.S.; Tsapatsis, M.; Siepmann, J.I. Hydrogen Sulfide Capture: From Absorption in Polar Liquids to Oxide, Zeolite, and Metal–Organic Framework Adsorbents and Membranes. Chem. Rev. 2017, 117, 9755–9803. [Google Scholar] [CrossRef] [PubMed]
- Nechifor, A.C.; Goran, A.; Grosu, V.-A.; Bungău, C.; Albu, P.C.; Grosu, A.R.; Oprea, O.; Păncescu, F.M.; Nechifor, G. Improving the Performance of Composite Hollow Fiber Membranes with Magnetic Field Generated Convection Application on pH Correction. Membranes 2021, 11, 445. [Google Scholar] [CrossRef] [PubMed]
- Batista, M.; Pinto, M.L.; Antunes, F.; Pires, J.; Carvalho, S. Chitosan Biocomposites for the Adsorption and Release of H2S. Materials 2021, 14, 6701. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Yin, M.; Chen, H. Insights into the role of chitosan in hydrogen production by dark fermentation of waste activated sludge. Sci. Total Environ. 2023, 859, 160401. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Gómez, C.P.; Cecilia, J.A. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules 2020, 25, 3981. [Google Scholar] [CrossRef] [PubMed]
- Nhung, L.T.T.; Kim, I.Y.; Yoon, Y.S. Quaternized Chitosan-Based Anion Exchange Membrane Composited with Quaternized Poly(vinylbenzyl chloride)/Polysulfone Blend. Polymers 2020, 12, 2714. [Google Scholar] [CrossRef]
- Pal, K.; Bharti, D.; Sarkar, P.; Anis, A.; Kim, D.; Chałas, R.; Maksymiuk, P.; Stachurski, P.; Jarzębski, M. Selected Applications of Chitosan Composites. Int. J. Mol. Sci. 2021, 22, 10968. [Google Scholar] [CrossRef]
- Otvagina, K.V.; Atlaskin, A.A.; Trubyanov, M.M.; Kryuchkov, S.S.; Smorodin, K.A.; Mochalova, A.E.; Vorotyntsev, I.V. Effect of moisture presence on gas permeability through gas separation membranes based on poly (vinyltrimethylsilane) and quaternized chitosan. Membr. Membr. Technol. 2020, 2, 125–131. [Google Scholar] [CrossRef]
- Kireev, S.V.; Kondrashov, A.A.; Rybakov, M.A.; Shnyrev, S.L.; Sultangulova, A.I. Real-time methods of hydrogen sulfide detection. Laser Phys. Lett. 2022, 19, 075604. [Google Scholar] [CrossRef]
- Hidayati, N.; Harmoko, T.; Mujiburohman, M.; Purnama, H. Characterization of sPEEK/chitosan membrane for the direct methanol fuel cell. AIP Conf. Proc. 2019, 2114, 060008. [Google Scholar] [CrossRef]
- Cimbru, A.M.; Rikabi, A.A.K.K.; Oprea, O.; Grosu, A.R.; Tanczos, S.-K.; Simonescu, M.C.; Pașcu, D.; Grosu, V.-A.; Dumitru, F.; Nechifor, G. pH and pCl Operational Parameters in Some Metallic Ions Separation with Composite Chitosan/Sulfonated Polyether Ether Ketone/Polypropylene Hollow Fibers Membranes. Membranes 2022, 12, 833. [Google Scholar] [CrossRef] [PubMed]
- Din, I.S.; Cimbru, A.M.; Rikabi, A.A.K.K.; Tanczos, S.K.; Ticu Cotorcea, S.; Nechifor, G. Iono-molecular Separation with Composite Membranes VI. Nitro-phenol separation through sulfonated polyether ether ketone on capillary polypropylene membranes. Rev. Chim. 2018, 69, 1603–1607. [Google Scholar] [CrossRef]
- Nechifor, A.C.; Pîrțac, A.; Albu, P.C.; Grosu, A.R.; Dumitru, F.; Dimulescu (Nica), I.A.; Oprea, O.; Pașcu, D.; Nechifor, G.; Bungău, S.G. Recuperative Amino Acids Separation through Cellulose Derivative Membranes with Microporous Polypropylene Fiber Matrix. Membranes 2021, 11, 429. [Google Scholar] [CrossRef] [PubMed]
- Păncescu, F.M.; Rikabi, A.A.K.K.; Oprea, O.C.; Grosu, A.R.; Nechifor, A.C.; Grosu, V.-A.; Tanczos, S.-K.; Dumitru, F.; Nechifor, G.; Bungău, S.G. Chitosan–sEPDM and Melatonin–Chitosan–sEPDM Composite Membranes for Melatonin Transport and Release. Membranes 2023, 13, 282. [Google Scholar] [CrossRef]
- Nafliu, I.M.; Ani, H.N.A.A.; Grosu (Miron), A.R.; Tanczos, S.K.; Maior, I.; Nechifor, A.C. Iono-molecular Separation with Composite Membranes. VII. Nitrophenols pertraction on capilary polypropylene S-EPDM composite membranes. Mater. Plast. 2018, 55, 511–516. [Google Scholar] [CrossRef]
- Dimulescu, I.A.; Nechifor, A.C.; Bǎrdacǎ, C.; Oprea, O.; Paşcu, D.; Totu, E.E.; Albu, P.C.; Nechifor, G.; Bungău, S.G. Accessible Silver-Iron Oxide Nanoparticles as a Nanomaterial for Supported Liquid Membranes. Nanomaterials 2021, 11, 1204. [Google Scholar] [CrossRef]
- Nechifor, G.; Păncescu, F.M.; Grosu, A.R.; Albu, P.C.; Oprea, O.; Tanczos, S.-K.; Bungău, C.; Grosu, V.-A.; Pîrțac, A.; Nechifor, A.C. Osmium Nanoparticles-Polypropylene Hollow Fiber Membranes Applied in Redox Processes. Nanomaterials 2021, 11, 2526. [Google Scholar] [CrossRef]
- Nechifor, A.C.; Goran, A.; Grosu, V.-A.; Pîrțac, A.; Albu, P.C.; Oprea, O.; Grosu, A.R.; Pașcu, D.; Păncescu, F.M.; Nechifor, G.; et al. Reactional Processes on Osmium–Polymeric Membranes for 5–Nitrobenzimidazole Reduction. Membranes 2021, 11, 633. [Google Scholar] [CrossRef]
- Nafliu, I.M.; Al-Ani, H.N.A.; Grosu, A.R.; Albu, P.C.; Nechifor, G.; Iono-molecular separation with composite membranes. VIII. Recuperative aluminium ions separation on capilary polypropylene S–EPDM composite membranes. Mat. Plast. 2019, 56, 32–36. [Google Scholar] [CrossRef]
- Hancock, J.T. Hydrogen sulfide and environmental stresses. Environ. Exp. Bot. 2019, 161, 50–56. [Google Scholar] [CrossRef]
- Windholz, M. (Ed.) Hydrogen Sulfide. In Merck Index, 9th ed.; Merck & Co. Inc.: Rahway, NJ, USA, 1976; pp. 633–634. [Google Scholar]
- Grosu (Miron), A.R.; Nafliu, I.M.; Din, I.S.; Cimbru, A.M.; Nechifor, G. Neutralization with simultaneous separation of aluminum and copper ions from condensed water through capillary polypropylene and cellulose. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2020, 82, 25–34. [Google Scholar]
- Chircov, C.; Bejenaru, I.T.; Nicoară, A.I.; Bîrcă, A.C.; Oprea, O.C.; Tihăuan, B. Chitosan-Dextran-Glycerol Hydrogels Loaded with Iron Oxide Nanoparticles for Wound Dressing Applications. Pharmaceutics 2022, 14, 2620. [Google Scholar] [CrossRef]
- Nechifor, A.C.; Goran, A.; Tanczos, S.-K.; Păncescu, F.M.; Oprea, O.-C.; Grosu, A.R.; Matei, C.; Grosu, V.-A.; Vasile, B.Ș.; Albu, P.C. Obtaining and Characterizing the Osmium Nanoparticles/n–Decanol Bulk Membrane Used for the p–Nitrophenol Reduction and Separation System. Membranes 2022, 12, 1024. [Google Scholar] [CrossRef]
- Nechifor, G.; Grosu, A.R.; Ferencz, A.; Tanczos, S.-K.; Goran, A.; Grosu, V.-A.; Bungău, S.G.; Păncescu, F.M.; Albu, P.C.; Nechifor, A.C. Simultaneous Release of Silver Ions and 10–Undecenoic Acid from Silver Iron–Oxide Nanoparticles Impregnated Membranes. Membranes 2022, 12, 557. [Google Scholar] [CrossRef] [PubMed]
- Bărdacă Urducea, C.; Nechifor, A.C.; Dimulescu, I.A.; Oprea, O.; Nechifor, G.; Totu, E.E.; Isildak, I.; Albu, P.C.; Bungău, S.G. Control of Nanostructured Polysulfone Membrane Preparation by Phase Inversion Method. Nanomaterials 2020, 10, 2349. [Google Scholar] [CrossRef]
- Wiheeb, A.D.; Shamsudin, I.K.; Ahmad, M.A.; Murat, M.N.; Kim, J.; Othman, M.R. Present technologies for hydrogen sulfide removal from gaseous mixtures. Rev. Chem. Eng. 2013, 29, 449–470. [Google Scholar] [CrossRef]
- Shah, M.S.; Tsapatsis, M.; Siepmann, J.I. Development of the transferable potentials for phase equilibria model for hydrogen sulfide. J. Phys. Chem. B 2015, 119, 7041–7052. [Google Scholar] [CrossRef] [PubMed]
- Atlaskin, A.A.; Kryuchkov, S.S.; Yanbikov, N.R.; Smorodin, K.A.; Petukhov, A.N.; Trubyanov, M.M.; Vorotyntsev, V.M.; Vorotyntsev, I.V. Comprehensive experimental study of acid gases removal process by membrane-assisted gas absorption using imidazolium ionic liquids solutions absorbent. Sep. Pur. Technol. 2020, 239, 116578. [Google Scholar] [CrossRef]
- Rai, V.; Liu, D.; Xia, D.; Jayaraman, Y.; Gabriel, J.-C.P. Electrochemical Approaches for the Recovery of Metals from Electronic Waste: A Critical Review. Recycling 2021, 6, 53. [Google Scholar] [CrossRef]
- Ghimire, H.; Ariya, P.A. E-Wastes: Bridging the Knowledge Gaps in Global Production Budgets, Composition, Recycling and Sustainability Implications. Sustain. Chem. 2020, 1, 154–182. [Google Scholar] [CrossRef]
- Ciocanea, A.; Sauciuc, R.; Cristescu, C.; Budea, S.; Dumitrescu, L. The influence of hydrodynamic cavitation on cleaning of hollow fiber membranes used for ultrafiltration. In Proceedings of the International Multidisciplinary Scientific Geo Conference: SGEM, Vienna, Austria, 27–29 November 2017; Volume 17. [Google Scholar] [CrossRef]
Hydrogen Sulfide Removal Processes | Characteristics | Efficiency (%) | Specific Applications | Refs. |
---|---|---|---|---|
Precipitation | pH = 2–4, metal ions solution | >90% | metals recovery from mine water | [11] |
Adsorption | 200–1500 ppm H2S, 200–1200 mL/min | >70% | adsorption with biochar from synthetic mixture | [12] |
Absorption (Scrubbing) | natural or synthetic zeolites, activated carbons, and metal oxides | 80–95% | H2S capture | [13] |
Chemosorption | iron oxides and polymer composites | >95% | biogas purification | [14] |
Extraction | various systems | >80% | H2S removing | [15] |
Oxidative degradation | Fenton reagents | depends on applications | H2S recovery as sulfuric acid or elemental sulfur | [16] |
Electrochemical degradation | membrane and electrochemical systems | >90% | thermochemical processing of contaminated biomass | [17] |
Photo-catalytic degradation | TiO2 and non-TiO2 based catalysts | depends on applications | hydrogen production and environmental remediation | [18] |
Catalytic degradation | ZnO–MgO/activated carbon | 113.4 mg/g–96.5 mg/g | [19] | |
Biological degradation | 2000 ppm H2S, low pH, pilot scale | >97% | H2S green removal from a gas mixture | [20] |
Polymeric membranes | various conditions | depends on applications | natural gas purification | [21] |
Emulsion liquid membrane | high salinity wastewater | >97% | H2S removal from sea water | [22] |
Supported liquid membrane | ionic liquid membrane on inorganic support | depends on applications | acid gases separation from gas mixtures | [23,24] |
Membrane contactor | various porous membrane contactors | depends on applications | gases removal or recovery | [25,26] |
Hollow fiber contactor | polydimethylsiloxane | 98% H2S and 59% CO2 | biogas purification | [27] |
Hollow fiber contactor | mono-ethanolamine | >95% | H2S removal from gas mixture | [28] |
Hybrid processes | membrane separation and oxidation | 97% removing, 74% conversion | H2S removal and degradation | [29] |
Polymers | Name and Symbol | Molar Mass (g/mol) | Solubility in Water (g/L) | pKa |
---|---|---|---|---|
Chitosan (Chi) | 1526.5 | soluble in acid media (0.5 M HCl: 50 mg/mL) | 6.2 to 7.0 | |
sulfonated ethylene– propylene–diene terpolymer (sEPDM) | 3500–5500 | soluble in toluene | 1.9 to 2.2 |
Experimental Test | Membrane | Hydrogen Sulfide Feed | Flow Rate of Source Phase | Receiving Phase | Flow Rate of Receiving Phase | pM | Pertraction Experiment |
---|---|---|---|---|---|---|---|
I | Chi/sEPDM/PPy | 20 ppm | 10 L/min | 5.0 L, pH 0.5 | 100 mL/min | 3–7 | 5 h |
II | Chi/sEPDM/PPy | 20 ppm | 2 L/min | pH 0.5–2.0 | 300 mL/min | 3 | 5 h |
III | Chi/sEPDM/PPy | 20–120 ppm | 4 L/min | pH 1 | 500 mL/min | 3 | 5 h |
IV | Chi/sEPDM/PPy | 40 ppm | 2–20 L/min | pH 1 | 500 mL/min | 3 | 5 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pașcu, D.; Nechifor, A.C.; Grosu, V.-A.; Oprea, O.C.; Tanczos, S.-K.; Man, G.T.; Dumitru, F.; Grosu, A.R.; Nechifor, G. Hydrogen Sulphide Sequestration with Metallic Ions in Acidic Media Based on Chitosan/sEPDM/Polypropylene Composites Hollow Fiber Membranes System. Membranes 2023, 13, 350. https://doi.org/10.3390/membranes13030350
Pașcu D, Nechifor AC, Grosu V-A, Oprea OC, Tanczos S-K, Man GT, Dumitru F, Grosu AR, Nechifor G. Hydrogen Sulphide Sequestration with Metallic Ions in Acidic Media Based on Chitosan/sEPDM/Polypropylene Composites Hollow Fiber Membranes System. Membranes. 2023; 13(3):350. https://doi.org/10.3390/membranes13030350
Chicago/Turabian StylePașcu, Dumitru, Aurelia Cristina Nechifor, Vlad-Alexandru Grosu, Ovidiu Cristian Oprea, Szidonia-Katalin Tanczos, Geani Teodor Man, Florina Dumitru, Alexandra Raluca Grosu, and Gheorghe Nechifor. 2023. "Hydrogen Sulphide Sequestration with Metallic Ions in Acidic Media Based on Chitosan/sEPDM/Polypropylene Composites Hollow Fiber Membranes System" Membranes 13, no. 3: 350. https://doi.org/10.3390/membranes13030350
APA StylePașcu, D., Nechifor, A. C., Grosu, V. -A., Oprea, O. C., Tanczos, S. -K., Man, G. T., Dumitru, F., Grosu, A. R., & Nechifor, G. (2023). Hydrogen Sulphide Sequestration with Metallic Ions in Acidic Media Based on Chitosan/sEPDM/Polypropylene Composites Hollow Fiber Membranes System. Membranes, 13(3), 350. https://doi.org/10.3390/membranes13030350