Cationised Fibre-Based Cellulose Multi-Layer Membranes for Sterile and High-Flow Bacteria Retention and Inactivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Amino-Hydrophobised CNF (aCNF)
2.3. Assessment of Hydrodynamic Size and Zeta Potential of the qCNF, aCNF, and PS Particles
2.4. Preparation of Fibre Membranes
2.5. Characterisation of the Fibre Membranes
2.5.1. Membrane Mass, Thickness, and Density
2.5.2. Membranes’ Morphology
2.6. Membranes’ Filtration Performance Using Micro-Spherical Polystyrene (PS) Particles
2.7. Membranes’ Filtration Performance Using Bacteria Cell Suspensions
2.7.1. Preparation of Bacterial Cell Suspensions
2.7.2. Filtration Performance Assay with Bacterial Cell Suspensions
2.8. Assessment of Antibacterial Properties
2.8.1. Assessment of the Antibacterial Properties of qCNF and aCNF Suspensions
2.8.2. Assessment of Antibacterial Properties of the Selected Fibre Membranes
3. Results and Discussion
3.1. Affinity of Bacteria to a qCNF and aCNF Infused Fibre Membrane
3.2. Filtration Performance of Spherical PS Microparticles Using Single-Layer Membranes with Different aCNF Content
3.3. Water Permeation Using Individual Membranes with Different aCNF Content
3.4. Retention Efficacy of Bacteria Using Individual Membranes with Different aCNF Content
3.5. Retention Efficacy of E. coli Using Multi-Layer Sandwich-Structured Membranes with Different aCNF Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norrrahim, M.N.F.; Mohd Kasim, N.A.; Knight, V.F.; Ong, K.K.; Mohd Noor, S.A.; Abdul Halim, N.; Ahmad Shah, N.A.; Jamal, S.H.; Janudin, N.; Misenan, M.S.M.; et al. Emerging developments regarding nanocellulose-based membrane filtration material against microbes. Polymers 2021, 13, 3249. [Google Scholar] [CrossRef]
- Nnadozie, C.F.; Lin, J.; Govinden, R. Selective isolation of bacteria for metagenomic analysis: Impact of membrane characteristics on bacterial filterability. Biotechnol. Prog. 2015, 31, 853–866. [Google Scholar]
- Rathore, A.S.; Kumar, D.; Kateja, N. Recent developments in chromatographic purification of biopharmaceuticals. Biotechnol. Lett. 2018, 40, 895–905. [Google Scholar] [CrossRef]
- Boller, M.A.; Kavanaugh, M.C. Particle characteristics and headless increase in granular media filtration. Water Res. 1995, 29, 1139–1149. [Google Scholar] [CrossRef]
- Desai, K.; Kit, K.; Li, J.; Davidson, P.M.; Zivanovic, S.; Meyer, H. Nanofibrous chitosan nonwovens for filtration applications. Polymer 2009, 50, 3661–3669. [Google Scholar] [CrossRef]
- Bates, I.I.C.; Carrillo, I.B.S.; Germain, H.; Loranger, É.; Chabot, B. Antibacterial electrospun chitosan-PEO/TEMPO-oxidized cellulose composite for water filtration. J. Environ. Chem. Eng. 2021, 9, 106204. [Google Scholar] [CrossRef]
- Naragund, V.S.; Panda, P.K. Electrospinning of polyacrylonitrile nanofiber membrane for bacteria removal. J. Mater. Sci. Appl. 2018, 4, 68–74. [Google Scholar]
- Fahimirad, S.; Fahimirad, Z.; Sillanpää, M. Efficient removal of water bacteria and viruses using electrospun nanofibers. Sci. Total Environ. 2021, 751, 141673–141691. [Google Scholar] [CrossRef]
- Gobi, N.; Evangelin, S.; Kasthuri, R.; Nivetha, D. Multilayer nonwoven fabrics for filtration of micron and submicron particles. J. Tex. Eng. Fashion Technol. 2019, 5, 81–84. [Google Scholar]
- Lee, J.; Johir, M.A.H.; Chinu, K.; Shon, H.K.; Vigneswaran, S. Novel pre-treatment method for seawater reverse osmosis: Fibre media filtration. Desalination 2010, 250, 557–561. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Ghosh, S.; Bhowmick, N. Application of colloidal filtration theory on textile fibrous media: Effect of fiber orientation on bacterial removal efficiency and attachment. J. Inst. Eng. India Ser. E 2018, 99, 111–117. [Google Scholar] [CrossRef]
- Suman, K.A.; Gera, M.; Jain, V.K. A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles. Environ. Technol. 2014, 36, 706–714. [Google Scholar] [CrossRef]
- Gounda, M.; Hebeish, A.A.; Omair, M.A.A. Development of silver-containing nanocellulosics for effective water disinfection. Cellulose 2014, 21, 1965–1974. [Google Scholar]
- Metreveli, G.; Wågberg, L.; Emmoth, E.; Belák, S.; Strømme, M.; Mihranyan, A. Size-exclusion nanocellulose filter paper for virus removal. Adv. Healthc. Mater. 2014, 3, 1546–1550. [Google Scholar] [CrossRef]
- Hassan, M.; Abou-Zeid, R.; Hassan, E.; Berglund, L.; Aitomäki, Y.; Oksman, K. Membranes based on cellulose nanofibers and activated carbon for removal of Escherichia coli bacteria from water. Polymers 2017, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.L.; Fadel, S.M.; Abouzeid, R.E.; Elseoud, W.S.A.; Hassan, E.A.; Berglund, L.; Oksman, K. Water purification ultrafiltration membranes using nanofibers from unbleached and bleached rice straw. Sci. Rep. 2020, 10, 11278. [Google Scholar] [CrossRef]
- Voisin, H.; Bergström, L.; Liu, P.; Mathew, A. Nanocellulose-based materials for water purification. Nanomaterials 2017, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Mautner, A.; Bismarck, A. Bacterial nanocellulose papers with high porosity for optimized permeance and rejection of nm-sized pollutants. Carbohydr. Polym. 2021, 251, 117130. [Google Scholar] [CrossRef]
- Manukyan, L.; Li, P.; Gustafsson, S.; Mihranyan, A. Growth media filtration using nanocellulose-based virus removal filter for upstream biopharmaceutical processing. J. Membr. Sci. 2019, 572, 464–474. [Google Scholar]
- Gustafsson, O.; Manukyan, L.; Mihranyan, A. High-performance virus removal filter paper for drinking water purification. Glob. Chall. 2018, 2, 31. [Google Scholar] [CrossRef] [Green Version]
- Ottenhall, A.; Henschen, J.; Illergård, J.; Ek, M. Cellulose-based water purification using paper filters modified with polyelectrolyte multilayers to remove bacteria from water through electrostatic interactions. Environ. Sci. Water Res. Technol. 2018, 4, 2070–2079. [Google Scholar] [CrossRef] [Green Version]
- Quellmalz, A.; Mihranyan, A. Citric acid cross-linked nanocellulose-based paper for size-exclusion nanofiltration. ACS Biomater. Sci. Eng. 2015, 1, 271–276. [Google Scholar] [CrossRef]
- Wang, R.; Guan, S.; Sato, A.; Wang, X.; Wang, Z.; Yang, R.; Hsiao, B.S.; Chu, B. Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J. Membr. Sci. 2013, 446, 376–382. [Google Scholar] [CrossRef]
- Otoni, C.G.; Figueiredo, J.S.L.; Capeletti, L.B.; Cardoso, M.B.; Bernardes, J.S.; Loh, W. Tailoring the antimicrobial response of cationic nanocellulose-based foams through cryo-templating. ACS Appl. Bio Mater. 2019, 2, 1975–1986. [Google Scholar] [CrossRef]
- Kokol, V.; Novak, S.; Kononenko, V.; Kos, M.; Vivod, V.; Gunde-Cimerman, N.; Drobne, D. Antibacterial and Degradation Properties of Dialdehyded and Aminohexamethylated Nanocelluloses. Carbohydr. Polym. 2023, 120603. [Google Scholar] [CrossRef]
- Laukkanen, A.; Mckee, J.; Saarinen, T.; Mertaniemi, H. Cationic Parenchymal Cellulose. Patent No. WO/2016/075370, 19 May 2016. [Google Scholar]
- Vivod, V.; Neral, B.; Mihelič, A.; Kokol, V. Highly efficient film-like nanocellulose-based adsorbents for the removal of loose reactive dye during textile laundering. Text. Res. J. 2019, 89, 975–988. [Google Scholar] [CrossRef]
- ISO 139:2005. Textiles—Standard Atmospheres for Conditioning and Testing, 2nd ed. International Standard Organization: Geneva, Switzerland, 2005.
- ISO 5084:1996. Textiles—Determination of Thickness of Textiles and Textile Products, 2nd ed. International Standard Organization: Geneva, Switzerland, 1996.
- Cushnie, T.P.; Cushnie, B.; Echeverría, J.; Fowsantear, W.; Thammawat, S.; Dodgson, J.L.; Law, S.; Clow, S.M. Bioprospecting for antibacterial drugs: A multidisciplinary perspective on natural product source material, bioassay selection and avoidable pitfalls. Pharm. Res. 2020, 37, 125. [Google Scholar] [CrossRef] [PubMed]
- ISO 20743:2013. Textiles—Determination of Antibacterial Activity of Textile Products, Second Edition. International Standard Organization: Geneva, Switzerland, 2013.
- Kaisersberger-Vincek, M.; Štrancar, J.; Kokol, V. Antibacterial activity of chemically versus enzymatic functionalized wool with ε-poly-L-lysine. Tex. Res. J. 2017, 87, 1604–1619. [Google Scholar] [CrossRef]
- Saini, S.; Yücel, F.; Belgacem, M.N.; Bras, J. Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces. Carbohydr. Polym. 2016, 136, 239–247. [Google Scholar] [CrossRef]
- Li, M.; Liu, X.; Liu, N.; Guo, Z.; Singh, P.K.; Fu, S. Effect of surface wettability on the antibacterial activity of nanocellulose-based material with quaternary ammonium groups. Colloids Surf. A Physicochem. Eng. Asp. 2018, 554, 122–128. [Google Scholar] [CrossRef]
- Silhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef]
- Rajagopal, M.; Walker, S. Envelope structures of Gram-positive bacteria. Protein and sugar export and assembly in Gram-positive bacteria. Curr. Top. Microbiol. Immunol. 2017, 404, 1–44. [Google Scholar] [PubMed] [Green Version]
- Rojas, E.R.; Billings, G.; Odermatt, P.D.; Auer, G.K.; Zhu, L.; Miguel, A.; Chang, F.; Weibel, D.B.; Theriot, J.A.; Huang, K.C. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature 2018, 559, 617–621. [Google Scholar] [CrossRef]
- Pasquina-Lemonche, L.; Burns, J.; Turner, R.D.; Kumar, S.; Tank, R.; Mullin, N.; Wilson, J.S.; Chakrabarti, B.; Bullough, P.A.; Foster, S.J.; et al. The architecture of the Gram-positive bacterial cell wall. Nature 2020, 582, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Messner, P.; Schaeffer, C.; Kosma, P. Bacterial cell-envelope glycoconjugates. Adv. Carbohydr. Chem. Biochem. 2013, 69, 209–272. [Google Scholar]
- Halder, S.; Yadav, K.K.; Sarkar, R.; Mukherjee, S.; Saha, P.; Haldar, S.; Karmakar, S.; Sen, T. Alteration of zeta potential and membrane permeability in bacteria: A study with cationic agents. SpringerPlus 2015, 4, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, J.K.; Yegin, Y.; Yang, F.; Zhang, M.; Li, J.; Huang, S.; Verkhotourov, S.V.; Schweikert, E.A.; Periz-Lewis, K.; Scholar, E.T.; et al. The influence of surface chemistry on the kinetics and thermodynamics of bacterial adhesion. Sci. Rep. 2018, 8, 17247. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, F.; Liu, Q.; Du, J. Antibacterial polymeric nanostructures for biomedicalapplications. Chem. Commun. 2014, 50, 14482–14493. [Google Scholar] [CrossRef]
- Pletnev, P.; Osterman, I.; Sergiev, P.; Bogdanov, A.; Dontsova, O. Survival guide: Escherichia coli in the stationary phase. Acta Naturae 2015, 7, 22–33. [Google Scholar] [CrossRef]
- Monteiro, J.M.; Fernandes, P.B.; Vaz, F.; Pereira, A.R.; Tavares, A.C.; Ferreira, M.T.; Pereira, P.M.; Veiga, H.; Kuru, E.; VanNieuwenhze, M.S.; et al. Cell shape dynamics during the staphylococcal cell cycle. Nat. Commun. 2015, 17, 8055. [Google Scholar] [CrossRef] [Green Version]
- Gangan, M.S.; Athale, C.A. Threshold effect of growth rate on population variability of Escherichia coli cell lengths. R. Soc. Open Sci. 2017, 4, 160417. [Google Scholar] [CrossRef] [Green Version]
- Kokol, V.; Vivod, V.; Peršin, Z.; Čolić, M.; Kolar, M. Antimicrobial properties of viscose yarns ring-spun with integrated amino-functionalized nanocellulose. Cellulose 2021, 28, 6545–6565. [Google Scholar] [CrossRef]
- Goetz, L.A.; Naseri, N.; Nair, S.S.; Karim, Z.; Mathew, A.P. All cellulose electrospun water purification membranes nanotextured using cellulose nanocrystals. Cellulose 2018, 25, 3011–3023. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Zhu, C.; Mathew, A.P. Mechanically robust high flux graphene oxide—Nanocellulose membranes for dye removal from water. J. Hazard. Mater. 2019, 371, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Sanchez, A.; Jalvo, B.; Mautner, A.; Nameer, S.; Pöhler, T.; Tammelin, T.; Mathew, A.P. Waterborne nanocellulose coatings for improving the antifouling and antibacterial properties of polyethersulfone membranes. J. Memb. Sci. 2021, 620, 118842. [Google Scholar] [CrossRef]
- Rakhashiya, P.M.; Patel, P.P.; Thaker, V.S. Whole genome sequences and annotation of Micrococcus luteus SUBG006, a novel phytopathogen of mango. Genom. Data 2015, 6, 10–11. [Google Scholar] [CrossRef] [Green Version]
- Delebecque, N.; Causseranda, C.; Roques, C.; Aimara, P. Membrane processes for water disinfection: Investigation on bacterial transfer mechanisms. Desalination 2006, 199, 81–83. [Google Scholar] [CrossRef]
- Wang, Y.; Hammes, F.; Duggelin, M.; Egli, T. Influence of size, shape, and flexibility on bacterial passage through micropore membrane filters. Environ. Sci. Technol. 2008, 42, 6749–6754. [Google Scholar] [CrossRef]
- Onyango, L.; Dunstan, R.; Roberts, T. Filterability of Staphylococcal species through membrane filters following application of stressors. BMC Res. Notes 2010, 3, 152. [Google Scholar] [CrossRef]
- Lebleu, N.; Roques, C.; Aimar, P.; Causserand, C. Role of the cell wall structure in the retention of bacteria by microfiltration membranes. J. Membr. Sci. 2009, 326, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Onur, A.; Ng, A.; Batchelor, W.; Garnier, G. Multi-layer filters: Adsorption and filtration mechanisms for improved separation. Front Chem. 2018, 6, 417. [Google Scholar] [CrossRef]
- Koch, E. Multi-Layer Filter. US Patent No. US4483771A, 8 August 1983. [Google Scholar]
- Wertz, J.A.; Guimond, D.M. Filter Media with a Multi-Layer Structure. US Patent No. US20140144113A1, 31 January 2014. [Google Scholar]
- Griffiths, I.M.; Kumar, A.; Stewart, P.S. Designing asymmetric multilayered membrane filters with improved performance. J. Memb. Sci. 2016, 511, 108–118. [Google Scholar] [CrossRef] [Green Version]
(Total) Content (wt%,) of aCNF in Each Membrane Layer (or a VIS Sliver in a MIX), Stacked from Top to Bottom | ||||
---|---|---|---|---|
1-Layer/ Individual | 2-Layer | 3-Layer | 4-Layer | 1-Layer MIX |
0 | 0 + 0 | 0 + 0 + 0 | 0 + 0 + 0 + 0 | / |
0.1 | (0.3) 0.1 + 0.2 | (0.3) 0 + 0.1 + 0.2 | (0.6) 0 + 0.1 + 0.2 + 0.3 | (0.6) 0 + 0.1 + 0.2 + 0.3 |
0.2 | (0.6) 0.3 + 0.3 | (0.3) 0.1 + 0.1 + 0.1 | (0.6) 0 + 0.2 + 0.2 + 0.2 | (0.6) 0.3 + 0.2 + 0.1 + 0 |
0.3 | (0.6) 0.2 + 0.4 | (0.6) 0 + 0.3 + 0.3 | ||
0.4 | (0.6) 0.4 + 0.2 | (0.6) 0.2 + 0.2 + 0.2 | ||
0.5 | (0.8) 0.3 + 0.5 | (0.6) 0.1 + 0.2 + 0.3 | ||
(0.8) 0.5 + 0.3 | (0.6) 0.2 + 0.2 + 0.2 | |||
(0.9) 0.1 + 0.3 + 0.5 | ||||
(0.9) 0.5 + 0.3 + 0.1 | ||||
(0.9) 0.4 + 0.3 + 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokol, V.; Kos, M.; Vivod, V.; Gunde-Cimerman, N. Cationised Fibre-Based Cellulose Multi-Layer Membranes for Sterile and High-Flow Bacteria Retention and Inactivation. Membranes 2023, 13, 284. https://doi.org/10.3390/membranes13030284
Kokol V, Kos M, Vivod V, Gunde-Cimerman N. Cationised Fibre-Based Cellulose Multi-Layer Membranes for Sterile and High-Flow Bacteria Retention and Inactivation. Membranes. 2023; 13(3):284. https://doi.org/10.3390/membranes13030284
Chicago/Turabian StyleKokol, Vanja, Monika Kos, Vera Vivod, and Nina Gunde-Cimerman. 2023. "Cationised Fibre-Based Cellulose Multi-Layer Membranes for Sterile and High-Flow Bacteria Retention and Inactivation" Membranes 13, no. 3: 284. https://doi.org/10.3390/membranes13030284
APA StyleKokol, V., Kos, M., Vivod, V., & Gunde-Cimerman, N. (2023). Cationised Fibre-Based Cellulose Multi-Layer Membranes for Sterile and High-Flow Bacteria Retention and Inactivation. Membranes, 13(3), 284. https://doi.org/10.3390/membranes13030284