Comparison of Kinetic Models Applied for Transport Description in Polymer Inclusion Membranes
Abstract
:1. Introduction
1.1. Model No. 1
1.2. Model No. 2
1.3. Model No. 3
1.4. Model No. 4
1.5. Model No. 5
2. Experimental
2.1. Membrane Preparation
2.2. Model Calculations
3. Results
3.1. Influence of the Feed and Stripping Solution Volume Changes
3.2. TOPO as a Carrier
3.3. Aliquat 336 as a Carrier
3.4. Cyphos IL 101 as a Carrier
3.5. D2EHPA as a Carrier
3.6. Reactive Ionic Liquid (RILC8_Br) as a Carrier
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Almeida, I.M.G.S.; Cattrall, R.W.; Kolev, S.D. Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs). J. Membr. Sci. 2012, 415–416, 9–23. [Google Scholar] [CrossRef]
- Almeida, I.M.G.S.; Cattrall, R.W.; Kolev, S.D. Polymer inclusion membranes (PIMs) in chemical analysis—A review. Anal. Chim. Acta 2017, 987, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Maiphetlho, K.; Chimuka, L.; Tutu, H.; Richards, H. Technical design and optimisation of polymer inclusion membranes (PIMs) for sample pre-treatment and passive sampling—A review. Sci. Total Environ. 2021, 799, 149483. [Google Scholar] [CrossRef]
- Keskin, B.; Zeytuncu-Gökoğlu, B.; Koyuncu, I. Polymer inclusion membrane applications for transport of metal ions: A critical review. Chemosphere 2021, 279, 130604. [Google Scholar] [CrossRef] [PubMed]
- López-Guerrero, M.M.; Granado-Castro, M.D.; Díaz-de-Alba, M.; Lande-Durán, J.; Casanueva-Marenco, M.J. A polymer inclusion membrane for the simultaneous determination of Cu(II), Ni(II) and Cd(II) ions from natural waters. Microchem. J. 2020, 157, 104980. [Google Scholar] [CrossRef]
- Chimuka, L.; Cukrowska, E.; Michel, M.; Buszewski, B. Advances in sample preparation using membrane-based liquid-phase microextraction techniques. TrAC Trends Anal. Chem. 2011, 30, 1781–1792. [Google Scholar] [CrossRef]
- Danesi, P.R. Separation of metal species by supported liquid membranes. Sep. Sci. Technol. 1984, 19, 857–894. [Google Scholar] [CrossRef]
- Alcalde, B.; Anticó, E.; Fontàs, C. Fluoride removal from natural waters by polymer inclusion membranes. J. Membr. Sci. 2022, 644, 120161. [Google Scholar] [CrossRef]
- Kiswandono, A.A.; Nusantari, C.S.; Rinawati, R.; Hadi, S. Optimization and Evaluation of Polymer Inclusion Membranes Based on PVC Containing Copoly-EDVB 4% as a Carrier for the Removal of Phenol Solutions. Membranes 2022, 12, 295. [Google Scholar] [CrossRef]
- Zawierucha, I.; Nowik-Zajac, A.; Lagiewka, J.; Malina, G. Separation of Mercury(II) from Industrial Wastewater through Polymer Inclusion Membranes with Calix[4]pyrrole Derivative. Membranes 2022, 12, 492. [Google Scholar] [CrossRef]
- Xu, L.; Zeng, X.; He, Q.; Deng, T.; Zhang, C.; Zhang, W. Stable ionic liquid-based polymer inclusion membranes for lithium and magnesium separation. Sep. Purif. Technol. 2022, 288, 120626. [Google Scholar] [CrossRef]
- Zeng, X.; Xu, L.; Deng, T.; Zhang, C.; Xu, W.; Zhang, W. Polymer Inclusion Membranes with P507-TBP Carriers for Lithium Extraction from Brines. Membranes 2022, 12, 839. [Google Scholar] [CrossRef] [PubMed]
- Meziani, R.; Mitiche, L.; Fontàs, C.; Sahmoune, A. Polymer inclusion membranes with ionic liquids for the recovery of the technology-critical element Bi(III). Chem. Eng. Process. Process Intensif. 2022, 175, 108911. [Google Scholar] [CrossRef]
- Hedwig, S.; Kraus, M.; Amrein, M.; Stiehm, J.; Constable, E.C.; Lenz, M. Recovery of scandium from acidic waste solutions by means of polymer inclusion membranes. Hydrometallurgy 2022, 213, 105916. [Google Scholar] [CrossRef]
- Govindappa, H.; Bhat, M.P.; Uthappa, U.T.; Sriram, G.; Altalhi, T.; Prasanna Kumar, S.; Kurkuri, M. Fabrication of a novel polymer inclusion membrane from recycled polyvinyl chloride for the real-time extraction of arsenic (V) from water samples in a continuous process. Chem. Eng. Res. Des. 2022, 182, 145–156. [Google Scholar] [CrossRef]
- Radzyminska-Lenarcik, E.; Kwiatkowska-Marks, S.; Kosciuszko, A. Transport of Heavy Metals Pb(II), Zn(II), and Cd(II) Ions across CTA Polymer Membranes Containing Alkyl-Triazole as Ions Carrier. Membranes 2022, 12, 1068. [Google Scholar] [CrossRef]
- Olasupo, A.; Sadiq, A.C.; Suah, F.B.M. A novel approach in the removal of ciprofloxacin antibiotic in an aquatic system using polymer inclusion membrane. Environ. Technol. Innov. 2022, 27, 102523. [Google Scholar] [CrossRef]
- Szczepański, P.; Guo, H.; Dzieszkowski, K.; Rafiński, Z.; Wolan, A.; Fatyeyeva, K.; Kujawa, J.; Kujawski, W. New reactive ionic liquids as carriers in polymer inclusion membranes for transport and separation of Cd(II), Cu(II), Pb(II), and Zn(II) ions from chloride aqueous solutions. J. Membr. Sci. 2021, 638, 119674. [Google Scholar] [CrossRef]
- Szczepański, P. Some Critical Remarks about Mathematical Model Used for the Description of Transport Kinetics in Polymer Inclusion Membrane Systems. Membranes 2020, 10, 411. [Google Scholar] [CrossRef]
- Konczyk, J.; Ciesielski, W. Calixresorcin[4]arene-Mediated Transport of Pb(II) Ions through Polymer Inclusion Membrane. Membranes 2021, 11, 285. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, J.; Ren, Z.; Wang, S.; Du, C.; Ma, J. Kinetic study of chromium(VI) facilitated transport through a bulk liquid membrane using tri-n-butyl phosphate as carrier. Chem. Eng. J. 2009, 150, 83–89. [Google Scholar] [CrossRef]
- Alpaydin, S.; Saf, A.Ö.; Bozkurt, S.; Sirit, A. Kinetic study on removal of toxic metal Cr(VI) through a bulk liquid membrane containing p-tert-butylcalix[4]arene derivative. Desalination 2011, 275, 166–171. [Google Scholar] [CrossRef]
- Religa, P.; Gawroński, R.; Gierycz, P. Kinetics of Chromium(III) Transport Through a Liquid Membrane Containing DNNSA as a Carrier. Int. J. Mol. Sci. 2009, 10, 964–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alpoguz, H.K.; Kaya, A.; Sener, I. Carrier-Mediated Transport of Hg(II) through Bulk and Supported Liquid Membranes. J. Macromol. Sci. Part A Pure Appl. Chem. 2007, 44, 1061–1068. [Google Scholar] [CrossRef]
- Ersoz, M. Transport of mercury through liquid membranes containing calixarene carriers. Adv. Colloid Interface Sci. 2007, 134–135, 96–104. [Google Scholar] [CrossRef]
- León, G.; Guzmán, M.A. Kinetic study of the effect of carrier and stripping agent concentrations on the facilitated transport of cobalt through bulk liquid membranes. Desalination 2005, 184, 79–87. [Google Scholar] [CrossRef]
- He, D.; Ma, M. Effect of paraffin and surfactant on coupled transport of cadmium(II) ions through liquid membranes. Hydrometallurgy 2000, 56, 157–170. [Google Scholar] [CrossRef]
- Aydiner, C.; Kobya, M.; Demirbas, E. Cyanide ions transport from aqueous solutions by using quaternary ammonium salts through bulk liquid membranes. Desalination 2005, 180, 139–150. [Google Scholar] [CrossRef]
- Kobya, M.; Demirbas, E.; Dernircioglu, N.; Yildirimd, Y.; Yildiz, Y.S. Effect of carrier type on coupled transport kinetics of thiocyanate ions through liquid membranes. Desalination 2004, 160, 253–262. [Google Scholar] [CrossRef]
- Cichy, W.; Schlosser, Š.; Szymanowski, J. Extraction and pertraction of phenol through bulk liquid membranes. J. Chem. Technol. Biotechnol. 2004, 80, 189–197. [Google Scholar] [CrossRef]
- Ma, M.; He, D.; Liao, S.; Zeng, Y.; Xie, Q.; Yao, S. Kinetic study of L-isoleucine transport through a liquid membrane containing di(2-ethylhexyl) phosphoric acid in kerosene. Anal. Chim. Acta 2002, 456, 157–165. [Google Scholar] [CrossRef]
- Rajec, P.; Mikulaj, V.; Mackova, J. Pertraction of strontium in bulk liquid membrane systems using crown ether as a carrier. J. Radioanal. Nucl. Chem. 1991, 150, 315–323. [Google Scholar] [CrossRef]
- Hoque, B.; Almeida, M.I.G.S.; Cattrall, R.W.; Gopakumar, T.G.; Kolev, S.D. Effect of cross-linking on the performance of polymer inclusion membranes (PIMs) for the extraction, transport and separation of Zn(II). J. Membr. Sci. 2019, 589, 117256. [Google Scholar] [CrossRef]
- St John, A.M.; Cattrall, R.W.; Kolev, S.D. Determination of the initial flux of polymer inclusion membranes. Sep. Purif. Technol. 2013, 116, 41–45. [Google Scholar] [CrossRef]
- O’Bryan, Y.; Cattrall, R.W.; Truong, Y.B.; Kyratzis, I.L.; Kolev, S.D. The use of poly(vinylidenefluoride-co-hexafluoropropylene) for the preparation of polymer inclusion membranes. application to the extraction of thiocyanate. J. Membr. Sci. 2016, 510, 481–488. [Google Scholar] [CrossRef]
- Croft, C.F.; Almeida, M.I.G.S.; Cattrall, R.W.; Kolev, S.D. Separation of lanthanum(III), gadolinium(III) and ytterbium(III) from sulfuric acid solutions by using a polymer inclusion membrane. J. Membr. Sci. 2018, 545, 259–265. [Google Scholar] [CrossRef]
- Bonggotgetsakul, Y.Y.N.; Cattrall, R.W.; Kolev, S.D. The Effect of Surface Confined Gold Nanoparticles in Blocking the Extraction of Nitrate by PVC-Based Polymer Inclusion Membranes Containing Aliquat 336 as the Carrier. Membranes 2018, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Voss, D.A.; Khaliq, A.Q.M. Parallel Rosenbrock methods for chemical systems. Comput. Chem. 2001, 25, 101–107. [Google Scholar] [CrossRef]
- Ostermann, A.; Roche, M. Rosenbrock methods for partial differential equations and fractional orders of convergence. SIAM J. Numer. Anal. 1993, 30, 1084–1098. Available online: http://www.jstor.org/stable/2158191 (accessed on 2 January 2023). [CrossRef]
- Spiess, A.-N.; Neumeyer, N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. BMC Pharmacol. 2010, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Ayalew, S.; Chitti Babu, M.; Mohana Rao, L.K. Comparison of New Approach Criteria for Estimating the Order of Autoregressive Process. IOSR J. Math. (IOSRJM) 2012, 1, 10–20. Available online: https://iosrjournals.org/iosr-jm/papers/vol1-issue3/C0131020.pdf (accessed on 2 January 2023).
- Janke, S.J.; Tinsley, F.C. Introduction to Linear Models and Statistical Inference; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 191–194. [Google Scholar]
Carrier Type | Membrane Composition [wt%] | Thickness [mm] | ||
---|---|---|---|---|
Carrier | NPOE | CTA | ||
TOPO | 52 | 30 | 18 | 0.100 (±0.005) |
Aliquat 336 | 44 | 31 | 25 | 0.149 (±0.011) |
Cyphos IL 101 | 49 | 19 | 32 | 0.1498 (±0.0014) |
D2EHPA | 46 | 29 | 25 | 0.199 (±0.043) |
RILC8_Br | 50 | 20 | 30 | 0.0972 (±0.0074) |
Ion | No. | Scheme | V = f(t) | Randomness in Data (Runs Test) | sy × 105 | AIC | BIC | HQC | JM × 1010 [mol/cm2·s] |
---|---|---|---|---|---|---|---|---|---|
Cd (II) | 1 | A→B | NO | NO | 7.97 | −288.76 | −287.87 | −339.72 | 3.006 |
1a | A→B | YES | NO | 6.49 | −296.16 | −295.27 | −347.12 | 2.926 | |
2 | A↔B | YES | NO | 6.70 | −294.18 | −292.40 | −345.01 | 2.924 | |
3 | A→B→C | YES | YES | 3.67 | −315.82 | −311.15 | −366.66 | 3.036 | |
4 | A↔B→C | YES | YES | 3.21 | −319.94 | −317.27 | −370.65 | 2.989 | |
Zn (II) | 1 | A→B | NO | NO | 9.66 | −281.85 | −280.96 | −332.81 | 3.400 |
1a | A→B | YES | NO | 7.52 | −290.86 | −289.97 | −341.82 | 3.332 | |
2 | A↔B | YES | NO | 7.77 | −288.86 | −287.08 | −339.69 | 3.332 | |
3 | A→B→C | YES | NO | 5.57 | −300.85 | −296.18 | −351.69 | 3.477 | |
4 | A↔B→C | YES | YES | 2.87 | −324.00 | −321.33 | −374.71 | 3.400 | |
Pb (II) | 1 | A→B | NO | YES | 1.68 | −344.75 | −343.86 | −395.71 | 0.2411 |
1a | A→B | YES | YES | 1.52 | −348.50 | −347.61 | −399.46 | 0.2342 | |
2 | A↔B | YES | YES | 1.26 | −354.47 | −352.69 | −405.31 | 0.2485 | |
3 | A→B→C | YES | YES | 1.57 | −346.50 | −341.83 | −397.33 | 0.2342 | |
4 | A↔B→C | YES | YES | 1.61 | −344.82 | −342.15 | −395.54 | 0.2342 |
Ion | No. | Scheme | V = f(t) | Randomness in Data (Runs Test) | Sy × 105 | AIC | BIC | HQC | JM × 1010 [mol/cm2·s] |
---|---|---|---|---|---|---|---|---|---|
Cd (II) | 1 | A→B | NO | NO | 13.1 | −301.06 | −300.07 | −357.62 | 3.476 |
1a | A→B | YES | YES | 12.2 | −303.68 | −302.69 | −360.25 | 3.347 | |
2 | A↔B | YES | YES | 12.6 | −301.71 | −302.72 | −358.08 | 3.345 | |
3 | A→B→C | YES | YES | 4.53 | −342.57 | −343.57 | −398.94 | 3.718 | |
4 | A↔B→C | YES | YES | 4.67 | −340.57 | −343.57 | −396.74 | 3.718 | |
Zn (II) | 1 | A→B | NO | NO | 14.8 | −295.99 | −294.99 | −352.55 | 1.512 |
1a | A→B | YES | NO | 13.6 | −299.52 | −298.52 | −356.08 | 1.473 | |
2 | A↔B | YES | NO | 14.0 | −297.52 | −298.52 | −353.89 | 1.473 | |
3 | A→B→C | YES | YES | 8.59 | −316.98 | −317.99 | −373.35 | 1.680 | |
4 | A↔B→C | YES | YES | 6.36 | −328.20 | −331.21 | −384.38 | 1.620 | |
Pb (II) | 1 | A→B | NO | NO | 3.06 | −359.07 | −358.07 | −415.63 | 0.3340 |
1a | A→B | YES | YES | 2.82 | −362.46 | −361.46 | −419.02 | 0.3265 | |
2 | A↔B | YES | YES | 2.90 | −360.46 | −361.46 | −416.83 | 0.3265 | |
3 | A→B→C | YES | YES | 2.18 | −371.92 | −372.92 | −428.29 | 0.3363 | |
4 | A↔B→C | YES | YES | 2.01 | −374.30 | −377.30 | −430.47 | 0.3424 |
Ion | No. | Scheme | V = f(t) | Randomness in Data (Runs Test) | sy × 105 | AIC | BIC | HQC | JM × 1010 [mol/cm2·s] |
---|---|---|---|---|---|---|---|---|---|
Cd (II) | 1 | A→B | NO | NO | 9.53 | −313.70 | −312.70 | −370.26 | 3.206 |
1a | A→B | YES | NO | 8.96 | −316.14 | −315.15 | −372.70 | 3.067 | |
2 | A↔B | YES | YES | 9.22 | −314.15 | −312.15 | −370.51 | 3.067 | |
3 | A→B→C | YES | YES | 3.30 | −355.19 | −350.21 | −411.56 | 3.240 | |
4 | A↔B→C | YES | YES | 3.41 | −353.20 | −350.22 | −409.38 | 3.241 | |
Zn (II) | 1 | A→B | NO | NO | 10.6 | −309.47 | −308.48 | −366.03 | 2.254 |
1a | A→B | YES | NO | 8.95 | −316.17 | −315.18 | −372.74 | 2.190 | |
2 | A↔B | YES | NO | 9.21 | −314.17 | −312.18 | −372.73 | 2.190 | |
3 | A→B→C | YES | NO | 5.00 | −338.60 | −333.61 | −397.16 | 2.307 | |
4 | A↔B→C | YES | YES | 4.00 | −346.78 | −343.79 | −407.34 | 2.234 | |
Pb (II) | 1 | A→B | NO | NO | 26.9 | −272.21 | −271.21 | −328.77 | 0.7189 |
1a | A→B | YES | NO | 3.79 | −350.57 | −349.57 | −407.13 | 0.7000 | |
2 | A↔B | YES | NO | 3.90 | −348.57 | −346.57 | −404.93 | 0.7000 | |
3 | A→B→C | YES | YES | 3.03 | −358.61 | −353.63 | −414.98 | 0.7170 | |
4 | A↔B→C | YES | YES | 3.09 | −356.98 | −353.99 | −413.15 | 0.7168 | |
Cu (II) | 1 | A→B | NO | NO | 0.312 | −225.39 | −225.09 | −254.10 | 0.007139 |
1a | A→B | YES | NO | 0.322 | −224.73 | −224.42 | −253.44 | 0.006916 | |
2 | A↔B | YES | YES | 0.132 | −241.96 | −241.36 | −271.01 | 0.01110 | |
3 | A→B→C | YES | NO | 0.345 | −222.73 | −219.82 | −251.77 | 0.006916 | |
4 | A↔B→C | YES | NO | 0.373 | −220.73 | −219.83 | −250.11 | 0.006917 |
Ion | No. | Scheme | V = f(t) | Randomness in Data (Runs Test) | sy × 105 | AIC | BIC | HQC | JM × 1010 [mol/cm2·s] |
---|---|---|---|---|---|---|---|---|---|
Cd (II) | 1 | A→B | NO | YES | 4.10 | −347.39 | −346.39 | −403.95 | 0.4684 |
1a | A→B | YES | YES | 4.29 | −345.58 | −344.58 | −402.14 | 0.4548 | |
2 | A↔B | YES | YES | 4.43 | −343.49 | −341.50 | −399.86 | 0.4579 | |
3 | A→B→C | YES | YES | 2.90 | −360.39 | −355.41 | −416.76 | 0.4757 | |
4 | A↔B→C | YES | YES | 3.38 | −353.53 | −350.54 | −409.71 | 0.4652 | |
Zn (II) | 1 | A→B | NO | NO | 6.36 | −329.88 | −328.89 | −386.44 | 3.514 |
1a | A→B | YES | NO | 5.24 | −337.63 | −336.63 | −394.19 | 3.413 | |
2 | A↔B | YES | NO | 5.42 | −335.39 | −333.40 | −391.76 | 3.421 | |
3 | A→B→C | YES | YES | 3.44 | −353.59 | −348.61 | −409.96 | 3.527 | |
4 | A↔B→C | YES | YES | 3.51 | −352.03 | −349.04 | −408.21 | 3.512 | |
Pb (II) | 1 | A→B | NO | NO | 10.3 | −310.67 | −309.68 | −367.24 | 2.792 |
1a | A→B | YES | YES | 7.91 | −321.14 | −320.15 | −377.71 | 2.747 | |
2 | A↔B | YES | YES | 8.14 | −319.14 | −320.15 | −375.51 | 2.747 | |
3 | A→B→C | YES | NO | 5.75 | −333.02 | −334.03 | −389.39 | 2.881 | |
4 | A↔B→C | YES | YES | 2.37 | −367.68 | −370.68 | −423.85 | 2.822 | |
Cu (II) | 1 | A→B | NO | YES | 2.27 | −371.02 | −370.02 | −427.58 | 0.2180 |
1a | A→B | YES | NO | 2.29 | −370.80 | −369.81 | −427.37 | 0.2121 | |
2 | A↔B | YES | YES | 1.31 | −392.16 | −393.16 | −448.53 | 0.2425 | |
3 | A→B→C | YES | NO | 2.35 | −368.80 | −369.81 | −425.17 | 0.2121 | |
4 | A↔B→C | YES | NO | 2.42 | −366.88 | −369.89 | −423.06 | 0.2122 |
Ion | No. | Scheme | V = f(t) | Randomness in Data (Runs Test) | sy × 105 | AIC | BIC | HQC | JM × 1011 [mol/cm2·s] |
---|---|---|---|---|---|---|---|---|---|
Cd (II) | 1 | A→B | NO | NO | 7.19 | −322.84 | −321.95 | −379.41 | 7.499 |
1a | A→B | YES | NO | 7.04 | −323.72 | −322.82 | −380.28 | 7.260 | |
2 | A↔B | YES | YES | 2.286 | −367.70 | −365.93 | −424.08 | 9.190 | |
3 | A→B→C | YES | NO | 8.74 | −314.07 | −309.40 | −370.44 | 7.260 | |
4 | A↔B→C | YES | NO | 9.00 | −311.99 | −309.32 | −368.16 | 7.260 | |
Zn (II) | 1 | A→B | NO | NO | 4.99 | −337.41 | −336.52 | −393.97 | 1.386 |
1a | A→B | YES | NO | 5.09 | −336.61 | −335.72 | −393.17 | 1.345 | |
2 | A↔B | YES | YES | 1.66 | −380.57 | −378.79 | −436.95 | 2.414 | |
3 | A→B→C | YES | NO | 5.23 | −334.61 | −329.94 | −390.98 | 1.345 | |
4 | A↔B→C | YES | NO | 5.69 | −332.61 | −329.94 | −388.78 | 1.346 | |
Pb (II) | 1 | A→B | NO | YES | 1.79 | −378.51 | −377.62 | −435.07 | 1.075 |
1a | A→B | YES | YES | 1.84 | −377.49 | −376.59 | −434.05 | 1.049 | |
2 | A↔B | YES | YES | 0.651 | −417.98 | −416.19 | −474.34 | 1.344 | |
3 | A→B→C | YES | YES | 1.88 | −375.49 | −370.81 | −431.86 | 1.049 | |
4 | A↔B→C | YES | YES | 1.93 | −373.53 | −370.86 | −429.70 | 1.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepański, P. Comparison of Kinetic Models Applied for Transport Description in Polymer Inclusion Membranes. Membranes 2023, 13, 236. https://doi.org/10.3390/membranes13020236
Szczepański P. Comparison of Kinetic Models Applied for Transport Description in Polymer Inclusion Membranes. Membranes. 2023; 13(2):236. https://doi.org/10.3390/membranes13020236
Chicago/Turabian StyleSzczepański, Piotr. 2023. "Comparison of Kinetic Models Applied for Transport Description in Polymer Inclusion Membranes" Membranes 13, no. 2: 236. https://doi.org/10.3390/membranes13020236
APA StyleSzczepański, P. (2023). Comparison of Kinetic Models Applied for Transport Description in Polymer Inclusion Membranes. Membranes, 13(2), 236. https://doi.org/10.3390/membranes13020236