The Application of Polymer Inclusion Membranes for the Removal of Emerging Contaminants and Synthetic Dyes from Aqueous Solutions—A Mini Review
Abstract
:1. Introduction
2. Polymer Inclusion Membranes—Short Characteristics
- (a)
- Simple transport;
- (b)
- Assisted transport;
- (c)
- Coupled counter-transport;
- (d)
- Coupled transport co-transport [31].
3. Applications of PIMs for the Removal of Selected Emerging Contaminants
3.1. Removal of Pharmaceuticals and Endocrine-Disrupting Compounds by PIMs
3.2. Removal of Pesticides Using PIMs
4. Use of PIMs for Removal of Synthetic Dyes
5. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
β-CD | Poly(β-cyclodextrin) |
AA | Anacardic Acid |
ACP | 4-Amino-2-chloropyridine |
Aliquat 336 | Trioctylmethylammonium chloride |
APIs | Active Pharmaceutical Ingredients |
APTES | 3-(Aminopropyl)triethoxysilane |
ATN | Atenolol |
BPA | Bisphenol A |
B2EHPA or B2EHPA | Bis-2-(ethylhexyl)phosphate |
4-tert-BP | 4-Tert-butylphenol |
CB | Carbamazepine |
CDP | Cross-linked cyclodextrin polymer |
CIP | Ciprofloxacin |
COFs | Covalent organic frameworks |
CPS | Chlorpyrifos |
CR | Congo red |
CTA | Cellulose Triacetate |
DDL | Dodecanol |
DES | Desipramine |
DIC | Diclofenac |
DIQ | Diquat |
DOP | Dioctyl Phthalate |
D2EHPA | Di(2-ethylhexyl)phosphoric acid |
EDC | calix[4]arene |
ECs | Emerging Contaminants |
EDCs | Endocrine-Disrupting Chemicals |
EME | Electro Membrane Extraction |
GC-MS | The gas chromatography and mass spectrometry detection |
GFZ | Gemfibrozil |
GO | Graphene Oxide |
HF-PIM-LPME | Hollow Fiber Polymer Inclusion Membrane Liquid-Phase Microextraction |
HPIMs | Hollow Polymer Inclusion Membranes |
HF-SLM-LPME | Hollow Fiber Supported Liquid Membrane Liquid-Phase Microextraction |
HRMS | High-Resolution Mass Spectrometry |
KET | Ketoprofen |
IBF | Ibuprofen |
IMI | Imipramine |
LM | Liquid Membrane |
MAAC | Magnetic activated carbon |
MB | Methylene Blue |
MG | Malachite Green |
NAP | Naproxen |
NOR | Nortriptyline |
N503 | N,N-bis(1-methylheptanyl)acetamide |
2-NPOE | 2-Nitrophenyloctyl ether |
OFX | Ofloxacin |
OTC | Oxytetracycline |
PCM | Picloram herbicides (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid) |
PIM | Polymer Inclusion Membrane |
PNP | P-nitrophenol |
PFASs | Perfluoroalkyl and Polyfluoroalkyl Substances |
PQT | Paraquat |
PVC | Poly(vinyl chloride) |
PVDF-co-HFP | Poly(vinylidene fluoride-co-hexafluoropropylene) |
RB | Rhodamine B |
RC8 | calix[4]resorcinarene |
RO16 | Reactive Orange 16 dye |
RXL | Yellow Erionyl (acidic dye) |
SA | Salicylic Acid |
SAs | Sulfonamides |
SE | Solvent Extraction |
SLM | Supported Liquid Membranes |
SMX | Sulfamethoxazole |
SPE | Solid-Phase Extraction |
SPME | Solid-Phase Microextraction |
SPY | Sulfapyridine |
STZ | Sulfathiazole |
TCA | Tricyclic Antidepressants |
TC | Tetracycline |
TPB | Triphenylbenzene |
TRIP | Triptycene |
References
- Kumar, S.; Hashmi, M.Z. Advances in Pollution Research, Biological Approaches to Controlling Pollutants; Woodhead Publishing: Sawston, UK, 2022. [Google Scholar] [CrossRef]
- Gao, B. Emerging Contaminants in Soil and Groundwater Systems Occurrence, Impact, Fate and Transport; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Alam, M.M.; Zhou, J.L.; Xu, B.; Johir, M.A.H.; Karmakar, A.K.; Rahman, M.S.; Hossen, J.; Hasan, A.T.M.K.; Moni, M.A. Advanced treatment technologies efficacies and mechanism of per- and poly-fluoroalkyl substances removal from water. Process Saf. Environ. Prot. 2020, 136, 1–14. [Google Scholar] [CrossRef]
- Chacón, L.; Reyes, L.; Rivera-Montero, L.; Barrantes, K. Chapter 5—Transport, fate, and bioavailability of emerging pollutants in soil, sediment, and wastewater treatment plants: Potential environmental impacts. In Emerging Contaminants in the Environment; Elsevier: Amsterdam, The Netherlands, 2022; pp. 111–136. [Google Scholar] [CrossRef]
- Sanchez, W.; Egea, E. Health and environmental risks associated with emerging pollutants and novel green processes. Environ. Sci. Pollut. Res. 2018, 25, 6085–6086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakari-Jiya, A.; Frazzoli, C.; Obasi, C.N.; Babatunde, B.B.; Patrick-Iwuanyanwu, K.C.; Orisakwe, O.E. Pharmaceutical and personal care products as emerging environmental contaminants in Nigeria: A systematic review. Environ. Toxicol. Pharmacol. 2022, 94, 103914. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, N. Pharmaceuticals and related compounds as emerging pollutants in water: Analytical aspects. Glob. Nest J. 2013, 15, 1–12. [Google Scholar]
- Ahmad, A.L.; Ebenezer, O.I.; Shoparwe, N.F.; Ismali, S. Graphene oxide-doped polymer inclusion membrane for remediation of pharmaceutical contaminant of emerging concern: Ibuprofen. Membranes 2022, 12, 24. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Sanchez-Polo, M.; Ferro-Garcia, M.A.; Prados-Joya, G.; Ocampo-Perez, R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 2013, 93, 1268–1287. [Google Scholar] [CrossRef]
- Berhanu, A.; Mutanda, I.; Taolin, J.; Qaria, M.A.; Yang, B.; Zhu, D. A review of microbial degradation of per- and polyfluoroalkyl substances (PFAS): Biotransformation routes and enzymes. Sci. Total Environ. 2023, 859, 160010. [Google Scholar] [CrossRef]
- Garg, A.; Shetti, N.P.; Basu, S.; Nadagouda, M.N.; Aminabhavi, T.M. Treatment technologies for removal of per- and polyfluoroalkyl substances (PFAS) in biosolids. Chem. Eng. J. 2023, 453, 139964. [Google Scholar] [CrossRef]
- Ryu, H.; Li, B.; De Guise, S.; McCutcheon, J.; Lei, Y. Recent progress in the detection of emerging contaminants PFASs. J. Hazard Mater. 2021, 408, 124437. [Google Scholar] [CrossRef]
- Vagi, M.C.; Petsas, A.S. Advanced oxidation processes for the removal of pesticides from wastewater: Recent review and trends. In Proceedings of the 15th International Conference on Environmental Science and Technology, Rhodes, Greece, 31 August–2 September 2017. [Google Scholar]
- Saleh, I.A.; Zouari, N.; Al-Ghouti, M.A. Removal of pesticides from water and wastewater: Chemical, physical and biological treatment approaches. Environ. Technol. Innov. 2020, 19, 101026. [Google Scholar] [CrossRef]
- Ibrahim, I.H.M.; Gilfoyle, L.; Reynolds, R.; Voulvoulis, N. Integrated catchment management for reducing pesticide levels in water: Engaging with stakeholders in East Anglia to tackle metaldehyde. Sci. Total Environ. 2019, 656, 1436–1447. [Google Scholar] [CrossRef] [PubMed]
- Olasupo, A.; Suah, F.B.M. Recent advances in the removal of pharmaceuticals and endocrine-disrupting compounds in the aquatic system: A case of polymer inclusion membranes. J. Hazard. Mater. 2021, 406, 124317. [Google Scholar] [CrossRef] [PubMed]
- Alazaiza, M.Y.D.; Albahnasawi, A.; Ali, G.A.M.; Bashir, M.J.K.; Nassani, D.E.; Al Maskari, T.; Amr, S.S.A.; Abujazar, M.S.S. Application of Natural Coagulants for Pharmaceutical Removal from Water and Wastewater: A Review. Water 2022, 14, 140. [Google Scholar] [CrossRef]
- Jatoi, A.S.; Hashmi, Z.; Adriyani, R.; Yuniarto, A.; Ali Mazari, S.; Akhter, F.; Mubarak, N.M. Recent trends and future challenges of pesticide removal techniques—A comprehensive review. J. Environ. Chem. Eng. 2021, 9, 105571. [Google Scholar] [CrossRef]
- El-Rahim, W.M.A.; Moawad, H.; Azeiz, A.Z.A.; Sadowsky, M.J. Biodegradation of azo dyes by bacterial or fungal consortium and identification of the biodegradation products. Egypt. J. Aquat. Res. 2021, 47, 269–276. [Google Scholar] [CrossRef]
- Yusuf, M. Synthetic Dyes: A Threat to the Environment and Water Ecosystem. In Textiles and Clothing: Environmental Concerns and Solutions; Shabbir, M., Ed.; Scrivener Publishing LLC.: Beverly, MA, USA, 2019; pp. 11–26. [Google Scholar]
- Ghazal, H.; Koumaki, E.; Hoslett, J.; Malamis, S.; Katsou, E.; Barcelo, D.; Jouhara, H. Insights into current physical, chemical and hybrid technologies used for the treatment of wastewater contaminated with pharmaceuticals. J. Clean. Prod. 2022, 361, 132079. [Google Scholar] [CrossRef]
- Shukla, A.K.; Alam, J.; Ali, F.A.A.; Alhoshan, M. Efficient soluble anionic dye removal and antimicrobial properties of ZnO embedded- Polyphenylsulfone membrane. Water Environ. J. 2021, 35, 670–684. [Google Scholar] [CrossRef]
- Soo, J.A.L.; Makhtar, M.M.Z.; Shoparwe, N.F.; Otitoju, T.A.; Mohamad, M.; Tan, L.S.; Li, S. Characterization and kinetic studies of poly(vinylidene fluoride-co-hexafluoropropylene) polymer inclusion membrane for the malachite green extraction. Membranes 2021, 11, 676. [Google Scholar] [CrossRef]
- Zawierucha, I.; Nowik-Zając, A.; Malina, G. Selective removal of As(V) ions from acid mine drainage using polymer inclusion membrane. Minerals 2020, 10, 909. [Google Scholar] [CrossRef]
- Zulkefeli, N.S.W.; Weng, S.K.; Abdul Halim, N.S. Removal of Heavy Metals by Polymer Inclusion Membranes. Curr. Pollut. Rep. 2018, 4, 84–92. [Google Scholar] [CrossRef]
- Nowik-Zając, A.; Zawierucha, I.; Kozłowski, C. Selective removal silver(I) using polymer inclusion membranes containing calixpyrroles. RSC Adv. 2019, 9, 31122–31132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravi, S.; Shoparwe, N.F.; Abdul-Halim, N.S.; Makhtar, M.M.; Shukor, H. Fabrication and characterization of polyvinylidene fluoride co-hexafluoropropylene polymer inclusion membranes for reactive orange 16 dye removal. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 765, p. 012103. [Google Scholar] [CrossRef]
- Chaouqi, Y.; Ouchn, R.; Touarssi, I.; Mourtah, I.; Bouchti MEl Leburn, L.; Cherkaoui, O.; Hlaibi, M. Polymer inclusion membrane for selective and recovery of hexavalent chromium ions from mixtures containing industrial blue P3R dye. Ind. Eng. Che. Res. 2019, 58, 18798–18809. [Google Scholar] [CrossRef]
- Minhas, M.A.; Rauf, A.; Rauf, S.; Minhas, F.T.; Memon, N.; Jabbar, A.; Bhanger, M.I.; Malik, B.I. Selective and efficient extraction of cationic dyes from industrial effluents through polymer inclusion membrane. Sep. Purif. Technol. 2021, 272, 118883. [Google Scholar] [CrossRef]
- Assis, R.C.; Mageste, A.B.; de Lemos, L.R.; Orlando, R.M.; Rodrigues, G.D. Application of aqueous two-phase system for selective extraction and clean-up of emerging contaminants form aqueous matrices. Talanta 2021, 233, 121697. [Google Scholar] [CrossRef] [PubMed]
- Kislik, V.S. Liquid Membranes. Principles & Application in Chemical. Separation & Wastewater Treatment, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1–45. [Google Scholar]
- Bożejewicz, D.; Ośmiałowski, B.; Kaczorowska, M.A.; Witt, K. 2,6-Bis((benzoyl-R)amino)pyridine (R = H, 4-Me, and 4-Nme2) Derivatives for the Removal of Cu(II), Ni(II), Co(II), and Zn(II) Ions from Aqueous Solutions in Classic Solvent Extraction and a Membrane Extraction. Membranes 2021, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Kocherginsky, N.M.; Yang, Q.; Seelam, L. Recent advances in supported liquid membrane technology. Sep. Purif. Technol. 2007, 53, 171–177. [Google Scholar] [CrossRef]
- Parhi, P.K. Supported Liquid Membrane Principle and Its Practices: A Short Review, Supported Liquid Membrane Principle and Its Practices: A Short Review. J. Chem. 2013, 2013, 618236. [Google Scholar] [CrossRef]
- Fard, A.K.; McKay, G.; Buekenhoudt, A.; Al Sulaiti, H.; Motmans, F.; Khraisheh, M.; Atieh, M. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination. Materials 2018, 11, 74. [Google Scholar] [CrossRef] [Green Version]
- Tabani, H.; Nojavan, S.; Alexovic, M.; Sabo, J. Recent developments in green membrane-based extraction techniques for pharmaceutical and biomedical analysis. J. Pharm. Biomed. Anal. 2018, 160, 244–267. [Google Scholar] [CrossRef]
- Moulahcene, L.; Skiba, M.; Bounoure, F.; Benamor, M.; Milon, N.; Hallouard, F.; Lahiani-Skiba, M. New polymer inclusion membrane containing β-cyclodextrin polymer: Application for pharmaceutical pollutant removal from waste water. Int. J. Environ. Res. Public Health 2019, 16, 414. [Google Scholar] [CrossRef] [Green Version]
- Román-Hidalgo, C.; Martín-Valero MJ Fernández-Torres, R.; Bello-López, M.A. Use of Polymer Inclusion Membranes (PIMs) as support for electromembrane extraction of non-steroidal anti-inflammatory drugs and highly polar acidic drugs. Talanta 2018, 179, 601–607. [Google Scholar] [CrossRef]
- Alnajrani, M.N.; Alsager, O.A. Removal of Antibiotics from Water by Polymer of Intrinsic Microporosity: Isotherms, Kinetics, Thermodynamics, and Adsorption Mechanism. Sci. Rep. 2020, 10, 794. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Rodriguez, A.; Matamoros, V.; Kolev, S.D.; Fontas, C. Development of a polymer inclusion membrane (PIM) for the preconcentration of antibiotics in environmental water sample. J. Membr. Sci. 2015, 492, 32–39. [Google Scholar] [CrossRef]
- Garcia-Rodriguez, A.; Fontas, C.; Matamoros, V.; Almeida, M.I.G.S.; Cattrall, R.W.; Kolev, S.D. Development of a polymer inclusion membrane-based passive sampler for monitoring of sulfamethoxazole in natural waters. Minimizing the effect of the flow pattern of the aquatic system. Microchem. J. 2016, 124, 175–180. [Google Scholar] [CrossRef]
- Olasupo, A.; Suah, F.B.M. Trends in hollow fibre liquid phase microextraction for the preconcentration of pharmaceutically active compounds in aqueous solution: A case for polymer inclusion membrane. J. Hazard. Mater. 2022, 431, 128573. [Google Scholar] [CrossRef] [PubMed]
- Olasupo, A.; Ahmed, N.; Kamil, W.M.W.A.; Suah, F.B.M. Enhanced removal of sulfamethoxazole antibiotics from aquatic samples by electromembrane extraction process. React. Funct. Polym. 2022, 173, 105211. [Google Scholar] [CrossRef]
- Olasupo, A.; Sadiq, A.C.; Suah, F.B.M. A novel approach in the removal of ciprofloxacin antibiotic in an aquatic system using polymer inclusion membrane. Environ. Technol. Innov. 2022, 27, 102523. [Google Scholar] [CrossRef]
- Olasupo, A.; Sadiq, A.C.; Suah, F.B.M. Optimisation of ciprofloxacin removal by using polymer inclusion membrane and its multivariate analysis with half-fractional factorial design. J. Chem. Technol. Biotechnol. 2022, 97, 3489–3497. [Google Scholar] [CrossRef]
- Jiao, P.; Liu, J.; Wang, Z.; Ali, M.; Gu, L.; Gao, S. Mass-Transfer Simulation of Salicylic Acid on Weakly Polar Hyper-cross-linked Resin XDA-200 with Coadsorption of Sodium Ion. ACS Omega 2022, 7, 36679–36688. [Google Scholar] [CrossRef]
- Meng, X.; Liu, T.; Huo, S.; Wang, L. Separation of salicylic acid and two phenols by polyvinyl chloride/N,N-bis (1-methylheptyl) acetamide polymer inclusion membrane. J. Water Process. Eng. 2021, 41, 102015. [Google Scholar] [CrossRef]
- Almakhathi, A.A.S.; Zeeshan, M.; Shah, J.S.; Jan, M.R. Simultaneous Removal and Extraction of Bisphenol A and 4-tert-butylphenol From Water Samples Using Magnetic Chitosan Particles. Front. Mater. 2022, 9, 786581. [Google Scholar] [CrossRef]
- Balahouane, A.M.; Benosmane, N.; Boutemeur, B.; Hamdi, S.M.; Hamdi, M. Removal of Bisphenol A from synthetic wastewater solutions using a polymer inclusion membrane. Desalination Water Treat. 2020, 208, 367–376. [Google Scholar] [CrossRef]
- Campanale, C.; Massarelli, C.; Losacco Bisaccia, D.; Triozzi, M.; Uricchio, V.F. The monitoring of pesticides in water matrice and the analytical criticalities: A review. TrAC Trends Anal. Chem. 2021, 144, 116423. [Google Scholar] [CrossRef]
- Bhattu, M.; Kathuria, D.; Billing, B.K.; Verma, M. Chromatographic techniques for the analysis of organophosphate pesticides with their extraction approach: A review (2015–2020). Anal. Methods 2022, 14, 322–358. [Google Scholar] [CrossRef] [PubMed]
- Vera, R.; Insa, S.; Fontas, C.; Antico, E. A new extraction phase based on a polymer inclusion membrane for the detection of chlopyrifos, diazinon and cypronidinil in natural water samples. Talanta 2018, 185, 291–298. [Google Scholar] [CrossRef]
- Mwakalesi, A.J.; Potter, I.D. Targeting of cationic organic pesticide residues using polymer inclusion membranes containing anacardic acid from cashew nut shell liquid as a green carrier. J. Water Process. Eng. 2021, 43, 102222. [Google Scholar] [CrossRef]
- Mwakalesi, A.J.; Potter, I.D. Removal of picloram herbicide from an aqueous environment using polymer inclusion membranes. J. Environ. Chem. Eng. 2020, 8, 103936. [Google Scholar] [CrossRef]
- Kuswandi, B.; Nitti, F.; Almeida, M.I.G.S.; Kolev, S.D. Water monitoring using polymer inclusion membranes: A review. Environ. Chem. Lett. 2020, 18, 129–150. [Google Scholar] [CrossRef]
- Mamat, N.A.; See, H.H. Simultaneous electromembrane extraction of cationic and anionicherbicides across hollow polymer inclusion membranes with a bubbleless electrode. J. Chromat. A 2017, 1504, 9–16. [Google Scholar] [CrossRef]
- Mamat, N.A.; See, H.H. Development and evaluation of electromembrane extraction across a hollow polymer inclusion membrane. J. Chromatogr. A 2015, 1406, 34–39. [Google Scholar] [CrossRef]
- Kárászová, M.; Bourassi, M.; Gaálová, J. Membrane Removal of Emerging Contaminants from Water: Which Kind of Membranes Should We Use? Membranes 2020, 10, 305. [Google Scholar] [CrossRef] [PubMed]
- Fetimi, A.; Dâas, A.; Benguerba, Y.; Merouani, S.; Hamachi, M.; Kebiche-Senhadji, O.; Hamdaoui, O. Optimization and prediction of safranin-O cationic dye removal from aqueous solution by emulsion liquid membrane (ELM) using artificial neural network-particle swarm optimization (ANN-PSO) hybrid model and response surface methodology (RSM). J. Environ. Chem. Eng. 2021, 9, 105837. [Google Scholar] [CrossRef]
- Salima, A.; Ounissa, K.S.; Fadila, H.; Mohamed, B. Equilibrium and kinetic modeling of acid dye removal from aqueous solution by polymer inclusion membrane (PIMs). Desalination Water Treat. 2016, 57, 3708–3719. [Google Scholar] [CrossRef]
- Ling, Y.Y.; Suah, F.B.M. Extraction of malachite green from wastewater by using polymer inclusion membrane. J. Environ. Chem. Eng. 2017, 5, 785–794. [Google Scholar] [CrossRef]
- Mohd, A.N.H.; Mehamod, F.S.; Mohd Suah, F.B. A novel approach in simultaneous extraction of basic dyes by using a batch reactor consisting a polymer inclusion membrane. Alex. Eng. J. 2019, 58, 929–935. [Google Scholar] [CrossRef]
- Mustafa, K.; Musaddiq, S.; Farrukh, S.; Ahmad, S.; Rasheed, H.; Fayyaz, I. 3-(Aminopropyl)triethoxysilane modified CuO nanoparticles-mediated adsorbent for removal of methylene blue through polymer inclusion membranes transport: Optimization of operational variables. Desalination Water Treat. 2021, 242, 274–282. [Google Scholar] [CrossRef]
- Aitali, S.; Kebiche-Senhadji, O.; Benamor, M. Performance of an acidic extractant (D2EHPA) incorporated in IM used for extraction and separation of Methylene Blue and Rhodamin B. Membr. Water Treat. 2016, 7, 521–537. [Google Scholar] [CrossRef]
- Benosmane, N.; Boutemeur, B.; Hamdi, S.M.; Hamdi, M. Removal of methylene blue dye from aqueous solutions using polymer inclusion membrane technology. Appl. Water Sci. 2022, 12, 104. [Google Scholar] [CrossRef]
- Abdul-Halim, N.S.; Idris, N.S.U.; Tou, Y.G. Cellulose triacetate Polymer Inclusion Membrane (PIM) for dye removal. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 842, p. 012075. [Google Scholar] [CrossRef]
- Gunasegaran, M.; Ravi, S.; Shoparwe, N.F. Kinetic Studies of Reactive Orange 16 (RO16) Dye Removal from Aqueous Solution using PIMs. J. Phys. Conf. Ser. 2020, 1529, 052003. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Govarthanan, M.; Iqbal, J.; Alfadul, S.M. Emerging contaminants of high concern for the environment: Current trends and future research. Environ. Res. 2022, 207, 112609. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S. Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environ. Pollut. 2021, 280, 116995. [Google Scholar] [CrossRef] [PubMed]
- Priya, A.K.; Gnanasekaran, L.; Rajendran, S.; Qiun, J.; Vasseghian, Y. Occurrences and removal of pharmaceutical and personal care products from aquatic systems using advanced treatment—A review. Environ. Res. 2022, 204, 112298. [Google Scholar] [CrossRef] [PubMed]
- Preethi, P.S.; Hariharan, N.M.; Vickram, S.; Rameshpathy, M.; Manikandan, S.; Subbaiya, R.; Karmegam, N.; Yadav, V.; Ravindran, B.; Chang, S.W.; et al. Advences in bioremediation of emerging contaminants from industrial wastewater by oxidoreductase enzymes. Bioresour. Technol. 2022, 359, 127444. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.K.; Kashif, A.; Fuwad, A.; Choo, Y. Current advances in treatment technologies for removal of emerging contaminants from water—A critical review. Coord. Chem. Rev. 2021, 442, 213993. [Google Scholar] [CrossRef]
- Pereira, L.C. de Souza, A.O. Bernardes, M.F.F. Pazin, M. Tasso, M.J. Pereira, P.H. Dorta, D.J. A perspective on the potential risks of emerging contaminants to human and environmental health. Environ. Sci. Pollut. Res. 2015, 22, 13800–13823. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Xia, J.; Liu, D.; Kang, R.; Yu, G.; Deng, S. Synthesis of mixed-linker Zr-MOFs for emerging contaminant adsorption and photodegradation under visible light. Chem. Eng. J. 2019, 378, 122118. [Google Scholar] [CrossRef]
- Aljeboree, A.M.; Alshirifi, A.N. Adsorption of pharmaceuticals as emerging contaminants from aqueous solutions on to friendly surfaces such as activated carbon: A review. J. Pharm. Sci. Res. 2018, 10, 2252–2257. [Google Scholar]
- Khalil, A.M.E.; Memon, F.A.; Tabish, T.A.; Fenton, B.; Salmon, D.; Zhang, S.; Butler, D. Performance evaluation of porous graphene as filter media for the removal of pharmaceutical/emerging contaminants from water and wastewater. Nanomaterials 2021, 11, 79. [Google Scholar] [CrossRef]
- Chang, F.; Memon, N.; Memon, S.; Chang, A.S. Selective adsorption of emerging contaminants from aqueous solution using Cu-based composite by solvothermal. IJEST 2022, 19, 11161–11168. [Google Scholar] [CrossRef]
- Wang, M.; Li, G.; Xia Ch Jing, X.; Wang, R.; Liu, Q.; Cai, X. Facile preparation of cyclodextrin polymer materials with rigid spherical structure and flexible network for sorption of organic contaminants in water. Chem. Eng. J. 2021, 411, 128489. [Google Scholar] [CrossRef]
- Bagher, A.R.; Aramesh, N.; Haddad, P.R. Applications of covalent organic frameworks and their composites in the extraction of pesticides from different samples. J. Chromotogr. A 2022, 1661, 462612. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Szakas, T.; Churley, M.; Lucas, D. Multi-class multi-residue analysis of pesticides in edible oils by bas chromatography-tandem mass spectrometry using liquid-liquid extraction and enhanced matrix removal lipi cartridge cleanup. J. Chromotogr. A 2019, 1584, 1–12. [Google Scholar] [CrossRef]
- Gaetano, Y.D.; Hubert JMohamadou, A.; Boudesocque, S.; Plantier-Royon, R.; Renault, J.-H.; Dupont, L. Removal of pesticides from wastewater by ion pair centrifugal partion extraction using betaine-derived ionic liquids as extractants. Chem. Eng. J. 2016, 285, 596–604. [Google Scholar] [CrossRef]
- Vale, F.; Sousa, C.A.; Sousa, H.; Santos, L.; Simões, M. Parabens as emerging contaminants: Environmental persistence, current practices and treatment processes. J. Clean. Prod. 2022, 347, 131244. [Google Scholar] [CrossRef]
- Kumar, A.; Patra Ch Kumar, S.; Narayanasamy, S. Effect of magnetization on the adsorptive removal of an emerging contaminant ciprofloxacin by magnetic acid activated carbon. Environ. Res. 2022, 206, 112604. [Google Scholar] [CrossRef] [PubMed]
- Bouhcain, B.; Carrillo-Peña, D.; El Mansouri, F.; Ez Zoubi, Y.; Mateos, R.; Morán, A.; Quiroga, J.M.; Zerrouk, M.H. Removal of Emerging Contaminants as Diclofenac and Caffeine Using Activated Carbon Obtained from Argan Fruit Shells. Appl. Sci. 2022, 12, 2922. [Google Scholar] [CrossRef]
The Composition of PIM | Additional Information | Removal Efficiency | References |
---|---|---|---|
PVC/β-CD/DBP | Acidic environment (pH 2) | 50% of IBF | [37] |
PVC/Aliquat 336 + GO | Various feed solutions: at pH 10, at pH 6, and at pH 2 | ~84% of IBF ~83% of IBF ~77% of IBF | [8] |
CTA/Aliquat 336 | Posterior HPLC separation with diode array detection | 34–81% SA, KET, NAP, and IBF | [38] |
CTA/Aliquat 336/2-NPOE | The feed solution was at pH 9, and the stripping solution contained 1.0 M NaCl | 55% of SP, 75% of STZ, and 100% of TC, and OTC | [40] |
CTA/Aliquat 336/2-NPOE | Receiving solution was 2.0 M NaCl | SMX | [41] |
CTA/Aliquat 336/DOP | After 40 h of extraction at pH 9 | 82% of SMX | [43] |
PVC/B2EHP | Extraction at pH 6 | 99.2% of CIP | [44] |
CTA/B2EHP | 95% of CIP | ||
PVC/Aliquat 336 | 60% of CIP | ||
PVC/B2EHP/DOP | An environmental: at pH 6, At pH 12 and 7, and the environmental wastewater and river samples | 90% of CIP 85% of CIP >97% of CIP | [45] |
PVC/N503 | The hydrogen bond mechanism at pH 6 | 7.54 mg/g PNP and 8.88 mg/g SA | [47] |
calix[4]resorcin arene | Separation at pH 4 and stirring at 600 rpm | 90% of BPA | [49] |
The Composition of PIM | Additional Information | Removal Efficiency | References |
---|---|---|---|
CTA/NPOE | GC-MS prior PIM | 93% of CPS | [52] |
CTA/AA/2-NPOE/DDL | An initial flux of 364 (±16) × 10−8 mol m−2 s−1 for transport of ACP | ACP, PQT, and DIQ | [53] |
CTA/Aliquat 336/2-NPOE | Receiving solution was 0.25 M NaCl | 95% of PCM | [54] |
EME-HPIM | From 99.1% to 100% of cationic quaternary ammonium and anionic chlorophenoxy acetic acid herbicides | [55] |
The Composition of PIM | Additional Information | Removal Efficiency | References |
---|---|---|---|
CTA/Aliquat 336/2-NPOE | pH (2–9) of the aqueous solution, the concentration of extractant in the membrane (5–30 μmol/cm2), initial dye concentration (50–250 ppm), and the stirring speed (250–400 rpm) | 99% of red Bordeaux acid and RXL | [60] |
CTA/EDC/2-NPOE | EDC forms inclusion complex with cationic dyes having 1:1 M ratio | ~90% of MB | [29] |
PVC/B2EHP/DOP | The average extraction efficiency was >98% for MG concentration of 20–80 mg/L | >98 of MG from model solution and >96% of MG for wastewater samples | [61] |
PVC/B2EHP/DOP | Receiving solution was 1.0 M HNO3, and 4 h of extraction process (with magnetic stirring). The feed solution was MG, MB, and the mixture of both dyes (all volumes are set to 100 mL) | >97% of MB and MG | [62] |
PIM/APTES-CuO | APTES-modified CuO nanoparticles were integrated with PIM. The PIMs were fabricated with the diffusion-induced phase inversion technique | 97% of MB | [63] |
CTA/D2EHPA/2-NPOE | The feed phase was 20 mg/L MB or RB at pH 6.0. The receiving phase was 1.0 M HNO3 or 1.0 M H2SO4 in the case of the MB or RB transport, respectively | 93% of MB and 97% of RB | [64] |
PVDF-co-HFP/B2EHP/DOP | Feed phase was 120 mL of 10 mg/L of MG, and receiving phase was 1.0 M HNO3 | 97% of MG | [65] |
CTA/RC8/2-NPOE | Feed solution was 100 mg/L of MB, and the receiving solution was 0.3 M HCl (pH 11) | 72.55% of MB | [66] |
CTA/Aliquat 336 | At pH 2, with temperature and stirring speed of 30 °C and 150 rpm | 87% of CR | [67] |
PVDF-co-HFP/Aliquat 336 | Feed solution was 10 mg/L of RO16, and receiving solution was 1.0 M HCl | 99.62% of RO16 | [68] |
PVDF-co-HFP/Aliquat 336 | Feed solution was 10 mg/L of RO16, and receiving solution was solution of HCl | 99.62% of RO16 | [27] |
Method | Active Compound | Contamination | Removal Efficiency | References |
---|---|---|---|---|
Adsorption | Mixed-linker Zr-MOFs | DIC | 2.04 mmol/g | [74] |
Adsorption | Active carbon | TC | 477.1 mg/g | [75] |
Adsorption | Graphene | ATN, CB, CIP, DIC, GFZ, and IBF | >90% | [76] |
Adsorption | Magnetic nanoparticles: Cu-BTC@Fe3O4 | DIC, IBF, CIP, and OFX | IBF 13.38, DIC 12.47, CIP 12.35, OFX 11.14 mg/g | [77] |
Adsorption | CDP | Pesticides | 22.5% | [78] |
Electro membrane extraction | HPIM 1: (CTA + TEHP + DEHPA) HPIM 2: (CTA + TEHP + Aliquat336) | Herbicides | 99.1–100% | [55] |
Extraction | Covalent organic frameworks (COFs) | Pesticides | >80% | [79] |
Dispersive solid phase extraction | EMR-Lipid: mixture of ethyl acetate and acetonitrile | Pesticides from the oil matrix | >95% | [80] |
Solvent extraction | Bio-sourced ionic liquids | Pesticides | >95% | [81] |
Bioremediation | Microalgae | Parabens | Close to 100% | [82] |
Co-precipitation over activated carbon | MAAC | CIP | 81.97 mg/g | [83] |
Adsorption | Activated carbons from argan nutshells | DIC Caffeine | 126 mg/g 210 mg/g | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczorowska, M.A.; Bożejewicz, D.; Witt, K. The Application of Polymer Inclusion Membranes for the Removal of Emerging Contaminants and Synthetic Dyes from Aqueous Solutions—A Mini Review. Membranes 2023, 13, 132. https://doi.org/10.3390/membranes13020132
Kaczorowska MA, Bożejewicz D, Witt K. The Application of Polymer Inclusion Membranes for the Removal of Emerging Contaminants and Synthetic Dyes from Aqueous Solutions—A Mini Review. Membranes. 2023; 13(2):132. https://doi.org/10.3390/membranes13020132
Chicago/Turabian StyleKaczorowska, Małgorzata A., Daria Bożejewicz, and Katarzyna Witt. 2023. "The Application of Polymer Inclusion Membranes for the Removal of Emerging Contaminants and Synthetic Dyes from Aqueous Solutions—A Mini Review" Membranes 13, no. 2: 132. https://doi.org/10.3390/membranes13020132
APA StyleKaczorowska, M. A., Bożejewicz, D., & Witt, K. (2023). The Application of Polymer Inclusion Membranes for the Removal of Emerging Contaminants and Synthetic Dyes from Aqueous Solutions—A Mini Review. Membranes, 13(2), 132. https://doi.org/10.3390/membranes13020132