Electrodialysis Metathesis (EDM) Desalination for the Effective Removal of Chloride and Nitrate from Tobacco Extract: The Effect of Membrane Type
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemical and Materials
2.2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EDM | Electrodialysis Metathesis |
ED | Electrodialysis |
DI | Deionized water |
ACS | A type of anion exchange membrane from Astom Crop. Japan |
A3 | A type of anion exchange membrane from Zhongke Xinyang Membrane Technology Co., Ltd. China |
TW-A | A type of anion exchange membrane from Shandong Tianwei Membrane Technology Co., Ltd. China |
AEM 1 | Anion exchange membrane located between a dilute room and a metathesis room |
AEM 2 | Anion exchange membrane located between metathesis room and concentrated room |
U | Permeation coefficient |
Mi | Permeation molar quantity of ion i |
A | Membrane area in diffusion experiment |
t | Time in diffusion experiment |
ΔC | Concentration difference between the feed side and waterside |
J_i | Ion flux |
D_i | Diffusion coefficient of ions i |
Concentration gradient | |
C2 | Ion concentration on the waterside |
C1 | Ion concentration on the material side |
l | The thickness of the membrane |
zi | The valence of ion i |
Ci | The concentration of ion i in the metathesis room |
F | Faraday`s constant |
R | Molar gas constant |
T | Experiment temperature |
Potential difference |
References
- Banožić, M.; Babić, J.; Jokić, S. Recent advances in extraction of bioactive compounds from tobacco industrial waste-a review. Ind. Crops Prod. 2020, 144, 112009. [Google Scholar] [CrossRef]
- Hu, T.-w.; Lee, A.H. Commentary: Tobacco control and tobacco farming in African countries. J. Public Health Policy 2015, 36, 41–51. [Google Scholar] [PubMed]
- Ge, S.; Li, W.; Zhang, Z.; Li, C.; Wang, Y. Desalting of tobacco extract using electrodialysis. Membr. Water Treat. 2016, 7, 341–353. [Google Scholar] [CrossRef]
- Commoner, B.; Lippincott, J.A.; Shearer, G.B.; Richman, E.E.; Wu, J.-H. Reconstitution of tobacco mosaic virus components. Nature 1956, 178, 767–771. [Google Scholar] [CrossRef] [PubMed]
- Gang, W.; Shuangshuang, W.; Huaicheng, Z.; Yichen, L.; Yiming, Z.; Wei, Z. Intelligent Prediction and Optimization of Extraction Process Parameters for Paper-Making Reconstituted Tobacco. In Proceedings of the International Conference on Bio-Inspired Computing: Theories and Applications, Qingdao, China, 23–25 October 2020; Springer: Singapore, 2020; pp. 60–68. [Google Scholar]
- Brown, J. Tobacco Marketing; United States Department of Agriculture, Economic Research Service: Washington, DC, USA, 1966.
- Zou, X.; Amrit, B.; Abu-Izneid, T.; Aziz, A.; Devnath, P.; Rauf, A.; Mitra, S.; Emran, T.B.; Mujawah, A.A.; Lorenzo, J.M. Current advances of functional phytochemicals in Nicotiana plant and related potential value of tobacco processing waste: A review. Biomed. Pharmacother. 2021, 143, 112191. [Google Scholar] [CrossRef]
- Marinello, S.; Lolli, F.; Gamberini, R.; Rimini, B. A second life for cigarette butts? A review of recycling solutions. J. Hazard. Mater. 2020, 384, 121245. [Google Scholar] [PubMed]
- Seyler, T.H.; Kim, J.G.; Hodgson, J.A.; Cowan, E.A.; Blount, B.C.; Wang, L. Quantitation of urinary volatile nitrosamines from exposure to tobacco smoke. J. Anal. Toxicol. 2013, 37, 195–202. [Google Scholar] [CrossRef]
- Svenningsson, B.; Rissler, J.; Swietlicki, E.; Mircea, M.; Bilde, M.; Facchini, M.; Decesari, S.; Fuzzi, S.; Zhou, J.; Mønster, J. Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance. Atmos. Chem. Phys. 2006, 6, 1937–1952. [Google Scholar] [CrossRef]
- Antin, T.M.J.; Hunt, G.; Annechino, R. Tobacco Harm Reduction as a Path to Restore Trust in Tobacco Control. Int. J. Environ. Res. Public Health 2021, 18, 5560. [Google Scholar] [CrossRef]
- Kniess, J. Tobacco and the Harms of Trade. J. Political Philos. 2018, 28, 296–306. [Google Scholar] [CrossRef]
- Parker, M.A.; Villanti, A.C.; Quisenberry, A.J.; Stanton, C.A.; Doogan, N.J.; Redner, R.; Gaalema, D.E.; Kurti, A.N.; Nighbor, T.; Roberts, M.E.; et al. Tobacco Product Harm Perceptions and New Use. Pediatrics 2018, 142, e20181505. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.R.; Bishop, L.J. The pyrolysis of tobacco ingredients. J. Anal. Appl. Pyrolysis 2004, 71, 223–311. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, C.; Xu, Y.; Hu, Y. The pyrolysis of cigarette paper under the conditions that simulate cigarette smouldering and puffing. J. Therm. Anal. Calorim. 2011, 104, 1097–1106. [Google Scholar] [CrossRef]
- Reisenauer, H.M.; Colwell, W.E. Some Factors Affecting the Absorption of Chlorine by Tobacco1. Soil Sci. Soc. Am. J. 1951, 15, 222–229. [Google Scholar] [CrossRef]
- Li, L.; Zhang, H.; Wen, J.; Shen, Y.; Li, D.; Luo, C.; Zheng, J.; Yang, J. Direct Determination of Free Nicotine Content in Tobacco. ACS Omega 2022, 7, 23061–23068. [Google Scholar] [CrossRef]
- Nie, J.; Yu, G.; Song, Z.; Wang, X.; Li, Z.; She, Y.; Lee, M. Microwave-assisted deep eutectic solvent extraction coupled with headspace solid-phase microextraction followed by GC-MS for the analysis of volatile compounds from tobacco†. Anal. Methods 2016, 9, 856–863. [Google Scholar] [CrossRef]
- Zeng, G.; Ran, Y.; Huang, X.; Li, Y.; Zhang, M.; Ding, H.; Ma, Y.; Ma, H.; Jin, L.; Sun, D. Optimization of Ultrasonic-Assisted Extraction of Chlorogenic Acid from Tobacco Waste. Int. J. Environ. Res. Public Health 2022, 19, 1555. [Google Scholar] [CrossRef]
- Bazinet, L.; Degrandpre, Y.; Porter, A. Enhanced tobacco polyphenol electromigration and impact on membrane integrity. J. Membr. Sci. 2005, 254, 111–118. [Google Scholar] [CrossRef]
- Bazinet, L.; DeGrandpré, Y.; Porter, A. Electromigration of tobacco polyphenols. Sep. Purif. Technol. 2005, 41, 101–107. [Google Scholar] [CrossRef]
- Ge, S.; Chen, Q.; Zhang, Z.; She, S.; Xu, B.; Liu, F.; Afsar, N.U. A Comprehensive Analysis of Inorganic Ions and Their Selective Removal from the Reconstituted Tobacco Extract Using Electrodialysis. Membranes 2022, 12, 597. [Google Scholar] [CrossRef]
- Ge, S.; Li, W.; Zhang, Z.; Li, C.; Wang, Y. A high-effective method to separate nicotine from the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) mixtures using electrodialysis. Membr. Water Treat. 2017, 8, 245–257. [Google Scholar] [CrossRef]
- Chen, Q.-B.; Ren, H.; Tian, Z.; Sun, L.; Wang, J. Conversion and pre-concentration of SWRO reject brine into high solubility liquid salts (HSLS) by using electrodialysis metathesis. Sep. Purif. Technol. 2019, 213, 587–598. [Google Scholar] [CrossRef]
- Shahid, M.K.; Kashif, A.; Fuwad, A.; Choi, Y. Current advances in treatment technologies for removal of emerging contaminants from water—A critical review. Coord. Chem. Rev. 2021, 442, 213993. [Google Scholar] [CrossRef]
- Zhang, Y.; Van der Bruggen, B.; Pinoy, L.; Meesschaert, B. Separation of nutrient ions and organic compounds from salts in RO concentrates by standard and monovalent selective ion-exchange membranes used in electrodialysis. J. Membr. Sci. 2009, 332, 104–112. [Google Scholar] [CrossRef]
- Rout, P.R.; Shahid, M.K.; Dash, R.R.; Bhunia, P.; Liu, D.; Varjani, S.; Zhang, T.C.; Surampalli, R.Y. Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced technologies. J. Environ. Manag. 2021, 296, 113246. [Google Scholar] [CrossRef]
- Zhang, W.; Miao, M.; Pan, J.; Sotto, A.; Shen, J.; Gao, C.; der Bruggen, B.V. Separation of divalent ions from seawater concentrate to enhance the purity of coarse salt by electrodialysis with monovalent-selective membranes. Desalination 2017, 411, 28–37. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Y.; Wu, G.; Luo, J.; Wang, S. Development of a selective electrodialysis for nutrient recovery and desalination during secondary effluent treatment. Chem. Eng. J. 2017, 322, 224–233. [Google Scholar] [CrossRef]
- Camacho, L.M.; Fox, J.A.; Ajedegba, J.O. Optimization of electrodialysis metathesis (EDM) desalination using factorial design methodology. Desalination 2017, 403, 136–143. [Google Scholar] [CrossRef]
- Cappelle, M.; Walker, W.S.; Davis, T.A. Improving Desalination Recovery Using Zero Discharge Desalination (ZDD): A Process Model for Evaluating Technical Feasibility. Ind. Eng. Chem. Res. 2017, 56, 10448–10460. [Google Scholar] [CrossRef]
Parameters | Variables | Other Conditions | |
---|---|---|---|
Membrane Type | AEM1 | AEM2 | Diluted chamber: 0.2 mol/L K3 Cit. Voltage: 7 V Flow velocity: 3 cm/s |
ACS | A3 | ||
TW-A | A3 | ||
A3 | A3 |
ACS | A3 | TW-A | |
---|---|---|---|
Cl− Removal rate (%) | 87.15 | 96.97 | 92.28 |
NO3− Removal rate (%) | 90.39 | 96.11 | 99.28 |
K+ Retention rate (%) | 14.51 | 77.12 | 42.17 |
Cit3− Introduction rate (%) | -78.00 | 249.75 | 241.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Zhou, Y.; Ge, S.; Liang, G.; Afsar, N.U. Electrodialysis Metathesis (EDM) Desalination for the Effective Removal of Chloride and Nitrate from Tobacco Extract: The Effect of Membrane Type. Membranes 2023, 13, 214. https://doi.org/10.3390/membranes13020214
Chen Q, Zhou Y, Ge S, Liang G, Afsar NU. Electrodialysis Metathesis (EDM) Desalination for the Effective Removal of Chloride and Nitrate from Tobacco Extract: The Effect of Membrane Type. Membranes. 2023; 13(2):214. https://doi.org/10.3390/membranes13020214
Chicago/Turabian StyleChen, Qian, Yue Zhou, Shaolin Ge, Ge Liang, and Noor Ul Afsar. 2023. "Electrodialysis Metathesis (EDM) Desalination for the Effective Removal of Chloride and Nitrate from Tobacco Extract: The Effect of Membrane Type" Membranes 13, no. 2: 214. https://doi.org/10.3390/membranes13020214
APA StyleChen, Q., Zhou, Y., Ge, S., Liang, G., & Afsar, N. U. (2023). Electrodialysis Metathesis (EDM) Desalination for the Effective Removal of Chloride and Nitrate from Tobacco Extract: The Effect of Membrane Type. Membranes, 13(2), 214. https://doi.org/10.3390/membranes13020214