Impact of Pollutant Ozone on the Biophysical Properties of Tear Film Lipid Layer Model Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Mixtures, Solutions and Subphases
2.3. Langmuir Film Balance
2.4. Ozone Exposure
2.5. Brewster Angle Microscopy
2.6. Profile Analysis Tensiometry
2.7. Mass Spectrometry
3. Results
3.1. Surface Activity and Morphology of TFLL Model Membranes
3.2. Compression-Expansion Cycles of TFLL Model Membranes
3.3. Rheological Parameters of TFLL Model Membranes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cwiklik, L. Tear Film Lipid Layer: A Molecular Level View. Biochim. Biophys. Acta Biomembr. 2016, 1858, 2421–2430. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, G.A.; Eftimov, P.; Yokoi, N. Structure-Function Relationship of Tear Film Lipid Layer: A Contemporary Perspective. Exp. Eye Res. 2017, 163, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Butovich, I.A. Tear Film Lipids. Exp. Eye Res. 2013, 117, 4–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCulley, J.P.; Shine, W.E. The Lipid Layer: The Outer Surface of the Ocular Surface Tear Film. Biosci. Rep. 2001, 21, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Millar, T.J.; Schuett, B.S. The Real Reason for Having a Meibomian Lipid Layer Covering the Outer Surface of the Tear Film—A Review. Exp. Eye Res. 2015, 137, 125–138. [Google Scholar] [CrossRef]
- Butovich, I.A. The Meibomian Puzzle: Combining Pieces Together. Prog. Retin. Eye Res. 2009, 28, 483–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pucker, A.D.; Nichols, J.J. Analysis of Meibum and Tear Lipids. Ocul. Surf. 2012, 10, 230–250. [Google Scholar] [CrossRef]
- Brown, S.H.J.; Kunnen, C.M.E.; Duchoslav, E.; Dolla, N.K.; Kelso, M.J.; Papas, E.B.; Lazon de la Jara, P.; Willcox, M.D.P.; Blanksby, S.J.; Mitchell, T.W. A Comparison of Patient Matched Meibum and Tear Lipidomes. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7417–7423. [Google Scholar] [CrossRef] [Green Version]
- McCulley, J.P.; Shine, W.; Smith, R.E. A Compositional Based Model for the Tear Film Lipid Layer. Trans. Am. Ophthalmol. Soc. 1997, 95, 79–93. [Google Scholar]
- Mathers, W.D.; Lane, J.A. Meibomian Gland Lipids, Evaporation, and Tear Film Stability. Lacrimal Gland. Tear Film. Dry Eye Syndr. 1998, 2, 349–360. [Google Scholar]
- Nicolaides, N.; Kaitaranta, J.K.; Rawdah, T.N.; Macy, J.I.; Boswell, F.M.; Smith, R.E. Meibomian Gland Studies: Comparison of Steer and Human Lipids. Investig. Ophthalmol. Vis. Sci. 1981, 20, 522–536. [Google Scholar]
- Schuett, B.S.; Millar, T.J. An Investigation of the Likely Role of (O-Acyl) ω-Hydroxy Fatty Acids in Meibomian Lipid Films Using (O-Oleyl) ω-Hydroxy Palmitic Acid as a Model. Exp. Eye Res. 2013, 115, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, G.A. Controversies Regarding the Role of Polar Lipids in Human and Animal Tear Film Lipid Layer. Ocul. Surf. 2015, 3, 176–178. [Google Scholar] [CrossRef] [PubMed]
- Rantamäki, A.H.; Seppänen-Laakso, T.; Oresic, M.; Jauhiainen, M.; Holopainen, J.M. Human Tear Fluid Lipidome: From Composition to Function. PLoS ONE 2011, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Miller, D. Measurement of the Surface Tension of Tears. Arch. Ophthalmol. 1969, 82, 368–371. [Google Scholar] [CrossRef] [PubMed]
- King-Smith, P.E.; Bailey, M.D.; Braun, R.J. Four Characteristics and a Model of an Effective Tear Film Lipid Layer (Tfll). Ocul. Surf. 2013, 11, 236–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrov, P.G.; Thompson, J.M.; Rahman, I.B.A.; Ellis, R.E.; Green, E.M.; Miano, F.; Winlove, C.P. Two-Dimensional Order in Mammalian Pre-Ocular Tear Film. Exp. Eye Res. 2007, 84, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Leiske, D.L.; Miller, C.E.; Rosenfeld, L.; Cerretani, C.; Ayzner, A.; Lin, B.; Meron, M.; Senchyna, M.; Ketelson, H.A.; Meadows, D.; et al. Molecular Structure of Interfacial Human Meibum Films. Langmuir 2012, 28, 11858–11865. [Google Scholar] [CrossRef] [PubMed]
- Kulovesi, P.; Telenius, J.; Koivuniemi, A.; Brezesinski, G.; Vattulainen, I.; Holopainen, J.M. The Impact of Lipid Composition on the Stability of the Tear Fluid Lipid Layer. Soft Matter 2012, 8, 5826–5834. [Google Scholar] [CrossRef]
- Kulovesi, P.; Telenius, J.; Koivuniemi, A.; Brezesinski, G.; Rantamäki, A.; Viitala, T.; Puukilainen, E.; Ritala, M.; Wiedmer, S.K.; Vattulainen, I.; et al. Molecular Organization of the Tear Fluid Lipid Layer. Biophys. J. 2010, 99, 2559–2567. [Google Scholar] [CrossRef] [Green Version]
- Rantamäki, A.H.; Telenius, J.; Koivuniemi, A.; Vattulainen, I.; Holopainen, J.M. Lessons from the Biophysics of Interfaces: Lung Surfactant and Tear Fluid. Prog. Retin. Eye Res. 2011, 30, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Tiffany, J.M.; Todd, B.S.; Baker, M.R. Computer-Assisted Calculation of Exposed Area of the Human Eye. In Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 1998; pp. 433–439. [Google Scholar]
- Pucker, A.D.; Haworth, K.M. The Presence and Significance of Polar Meibum and Tear Lipids. Ocul. Surf. 2015, 13, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.P.; Nelson, J.D.; Azar, D.T.; Belmonte, C.; Bron, A.J.; Chauhan, S.K.; de Paiva, C.S.; Gomes, J.A.P.; Hammitt, K.M.; Jones, L.; et al. TFOS DEWS II Report Executive Summary. Ocul. Surf. 2017, 15, 802–812. [Google Scholar] [CrossRef]
- Lemp, M.A.; Crews, L.A.; Bron, A.J.; Foulks, G.N.; Sullivan, B.D. Distribution of Aqueous-Deficient and Evaporative Dry Eye in a Clinic-Based Patient Cohort: A Retrospective Study. Cornea 2012, 31, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Guillon, M. Tear Film Examination of the Contact Lens Patient. Opt. Sutton 1993, 206, 21. [Google Scholar]
- Korb, D.R.; Baron, D.F.; Herman, J.P.; Finnemore, V.M.; Exford, J.M.; Hermosa, J.L.; Leahy, C.D.; Glonek, T.; Greiner, J.V. Tear Film Lipid Layer Thickness as a Function of Blinking. Cornea 1994, 13, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, N.; Takehisa, Y.; Kinoshita, S. Correlation of Tear Lipid Layer Interference Patterns with the Diagnosis and Severity of Dry Eye. Am. J. Ophthalmol. 1996, 122, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, G.A.; Yokoi, N.; Ivanova, S.; Tonchev, V.; Nencheva, Y.; Krastev, R. Surface Relaxations as a Tool to Distinguish the Dynamic Interfacial Properties of Films Formed by Normal and Diseased Meibomian Lipids. Soft Matter 2014, 10, 5579–5588. [Google Scholar] [CrossRef] [Green Version]
- Gayton, J.L. Etiology, Prevalence, and Treatment of Dry Eye Disease. Clin. Ophthalmol. 2009, 3, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Asche, C.V.; Fairchild, C.J. The Economic Burden of Dry Eye Disease in the United States: A Decision Tree Analysis. Cornea 2011, 30, 379–387. [Google Scholar] [CrossRef]
- McDonald, M.; Patel, D.A.; Keith, M.S.; Snedecor, S.J. Economic and Humanistic Burden of Dry Eye Disease in Europe, North America, and Asia: A Systematic Literature Review. Ocul. Surf. 2016, 14, 144–167. [Google Scholar] [CrossRef] [Green Version]
- Caffery, B.; Srinivasan, S.; Reaume, C.J.; Fischer, A.; Cappadocia, D.; Siffel, C.; Chan, C.C. Prevalence of Dry Eye Disease in Ontario, Canada: A Population-Based Survey. Ocul. Surf. 2019, 17, 526–531. [Google Scholar] [CrossRef]
- Chan, T.C.Y.; Chow, S.S.W.; Wan, K.H.N.; Yuen, H.K.L. Update on the Association between Dry Eye Disease and Meibomian Gland Dysfunction. Hong Kong Med. J. 2019, 25, 38–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moss, S.E.; Klein, R.; Klein, B.E.K. Prevalance of and Risk Factors for Dry Eye Syndrome. Arch. Ophthalmol. 2000, 118, 1264–1268. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-Y.; Tsai, S.-Y.; Cheng, C.-Y.; Liu, J.-H.; Chou, P.; Hsu, W.-M. Prevalence of Dry Eye among an Elderly Chinese Population in Taiwan: The Shihpai Eye Study. Ophthalmology 2003, 110, 1096–1101. [Google Scholar] [CrossRef]
- Yu, D.; Deng, Q.; Wang, J.; Chang, X.; Wang, S.; Yang, R.; Yu, J.; Yu, J. Air Pollutants Are Associated with Dry Eye Disease in Urban Ophthalmic Outpatients: A Prevalence Study in China. J. Transl. Med. 2019, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Schaumberg, D.A.; Sullivan, D.A.; Buring, J.E.; Dana, M.R. Prevalence of Dry Eye Syndrome among US Women. Am. J. Ophthalmol. 2003, 136, 318–326. [Google Scholar] [CrossRef]
- Mo, Z.; Fu, Q.; Lyu, D.; Zhang, L.; Qin, Z.; Tang, Q.; Yin, H.; Xu, P.; Wu, L.; Wang, X.; et al. Impacts of Air Pollution on Dry Eye Disease among Residents in Hangzhou, China: A Case-Crossover Study. Environ. Pollut. 2019, 246, 183–189. [Google Scholar] [CrossRef]
- Ashraf, A.; Butt, A.; Khalid, I.; Alam, R.U.; Ahmad, S.R. Smog Analysis and Its Effect on Reported Ocular Surface Diseases: A Case Study of 2016 Smog Event of Lahore. Atmos. Environ. 2019, 198, 257–264. [Google Scholar] [CrossRef]
- Hwang, S.H.; Choi, Y.H.; Paik, H.J.; RyangWee, W.; KumKim, M.; Kim, D.H. Potential Importance of Ozone in the Association between Outdoor Air Pollution and Dry Eye Disease in South Korea. JAMA Ophthalmol. 2016, 134, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Galor, A.; Kumar, N.; Feuer, W.; Lee, D.J. Environmental Factors Affect the Risk of Dry Eye Syndrome in a United States Veteran Population. Ophthalmology 2014, 121, 972–974. [Google Scholar] [CrossRef]
- Ong, E.S.; Alghamdi, Y.A.; Levitt, R.C.; McClellan, A.L.; Lewis, G.; Sarantopoulos, C.D.; Felix, E.R.; Galor, A. Longitudinal Examination of Frequency of and Risk Factors for Severe Dry Eye Symptoms in Us Veterans. JAMA Ophthalmol. 2017, 135, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Choi, Y.-H.; Kim, M.K.; Paik, H.J.; Kim, D.H. Different Adverse Effects of Air Pollutants on Dry Eye Disease: Ozone, PM2.5, and PM10. Environ. Pollut. 2020, 265, 115039. [Google Scholar] [CrossRef]
- Lee, H.; Kim, E.K.; Kang, S.W.; Kim, J.H.; Hwang, H.J.; Kim, T.I. Effects of Ozone Exposure on the Ocular Surface. Free Radic. Biol. Med. 2013, 63, 78–89. [Google Scholar] [CrossRef]
- Hao, R.; Wan, Y.; Zhao, L.; Liu, Y.; Sun, M.; Dong, J.; Xu, Y.; Wu, F.; Wei, J.; Xin, X.; et al. The Effects of Short-Term and Long-Term Air Pollution Exposure on Meibomian Gland Dysfunction. Sci. Rep. 2022, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Selladurai, S. Airborne Pollutants and Lung Surfactant: Biophysical Impacts of Surface Oxidation Reactions. Master’s Thesis, Concordia University, Montreal, QC, Canada, 2015. [Google Scholar]
- Jacob, D.J. Heterogeneous Chemistry and Tropospheric Ozone. Atmos. Environ. 2000, 34, 2131–2159. [Google Scholar] [CrossRef]
- Finlayson-Pitts, B.J.; Pitts, J.N. Tropospheric Air Pollution: Ozone, Airborne Toxics, Polycyclic Aromatic Hydrocarbons, and Particles. Science 1997, 276, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Crutzen, P.J. Introductory Lecture. Overview of Tropospheric Chemistry: Developments during the Past Quarter Century and a Look Ahead. Faraday Discuss. 1995, 100, 1–21. [Google Scholar] [CrossRef]
- Hough, A.M.; Derwent, R.G. Changes in the Global Concentration of Tropospheric Ozone Due to Human Activities. Nature 1990, 344, 645–648. [Google Scholar] [CrossRef]
- Gomez, A.L.; Lewis, T.L.; Wilkinson, S.A.; Nizkorodov, S.A. Stoichiometiy of Ozonation of Environmentally Relevant Olefins in Saturated Hydrocarbon Solvents. Environ. Sci. Technol. 2008, 42, 3582–3587. [Google Scholar] [CrossRef] [PubMed]
- Haagen-Smit, A.J. Chemistry and Physiology of Los Angeles Smog. Ind. Eng. Chem. 1952, 44, 1342–1346. [Google Scholar] [CrossRef]
- Ma, J.; Xu, X.; Zhao, C.; Yan, P. A Review of Atmospheric Chemistry Research in China: Photochemical Smog, Haze Pollution, and Gas-Aerosol Interactions. Adv. Atmos. Sci. 2012, 29, 1006–1026. [Google Scholar] [CrossRef]
- Paananen, R.O.; Rantamäki, A.H.; Parshintsev, J.; Holopainen, J.M. The Effect of Ambient Ozone on Unsaturated Tear Film Wax Esters. Investig. Ophthalmol. Vis. Sci. 2015, 56, 8054–8062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamins, J.; Cagna, A.; Lucassen-Reynders, E.H. Viscoelastic Properties of Triacylglycerol/Water Interfaces Covered by Proteins. Colloids Surf. A Physicochem. Eng. Asp. 1996, 114, 245–254. [Google Scholar] [CrossRef]
- Monteux, C.; Fuller, G.G.; Bergeron, V. Shear and Dilational Surface Rheology of Oppositely Charged Polyelectrolyte/Surfactant Microgels Adsorbed at the Air-Water Interface. Influence on Foam Stability. J. Phys. Chem. B 2004, 108, 16473–16482. [Google Scholar] [CrossRef]
- Miano, F.; Winlove, C.P.; Lambusta, D.; Marletta, G. Viscoelastic Properties of Insoluble Amphiphiles at the Air/Water Interface. J. Colloid Interface Sci. 2006, 296, 269–275. [Google Scholar] [CrossRef]
- Conway, J.W. The Surface Activity And Rheological Changes Induced In Lung Surfactant Resulting From Ozone Exposure. Master’s Thesis, Concordia University, Montreal, QC, Canada, 2009. [Google Scholar]
- Krägel, J.; Kretzschmar, G.; Li, J.B.; Loglio, G.; Miller, R.; Möhwald, H. Surface Rheology of Monolayers. Thin Solid Films 1996, 284, 361–364. [Google Scholar] [CrossRef]
- Miller, R.; Wüstneck, R.; Krägel, J.; Kretzschmar, G. Dilational and Shear Rheology of Adsorption Layers at Liquid Interfaces. Colloids Surfaces A Physicochem. Eng. Asp. 1996, 111, 75–118. [Google Scholar] [CrossRef]
- Moebius, R.M. Novel Methods to Study Interfacial Layers; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Miller, R.; Ferri, J.K.; Javadi, A.; Krägel, J.; Mucic, N.; Wüstneck, R. Rheology of Interfacial Layers. Colloid Polym. Sci. 2010, 288, 937–950. [Google Scholar] [CrossRef]
- Pereira, L.S.A.; Camacho, S.A.; Almeida, A.M.J.; Gonçalves, R.S.; Caetano, W.; DeWolf, C.; Aoki, P.H.B. Mechanisms of Hypericin Incorporation to Explain the Photooxidation Outcomes in Phospholipid Biomembrane Models. Chem. Phys. Lipids 2022, 244, 105181. [Google Scholar] [CrossRef]
- Vrânceanu, M.; Winkler, K.; Nirschl, H.; Leneweit, G. Surface Rheology of Monolayers of Phospholipids and Cholesterol Measured with Axisymmetric Drop Shape Analysis. Colloids Surfaces A Physicochem. Eng. Asp. 2007, 311, 140–153. [Google Scholar] [CrossRef] [Green Version]
- Wüstneck, R.; Perez-Gil, J.; Wüstneck, N.; Cruz, A.; Fainerman, V.B.; Pison, U. Interfacial Properties of Pulmonary Surfactant Layers. Adv. Colloid Interface Sci. 2005, 117, 33–58. [Google Scholar] [CrossRef] [PubMed]
- Veldhuizen, E.J.A.; Haagsman, H.P. Role of Pulmonary Surfactant Components in Surface Film Formation and Dynamics. Biochim. Biophys. Acta Biomembr. 2000, 1467, 255–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, A.; Rahaman, N.; Ahad, M. A Study on Tiredness Assessment by Using Eye Blink Detection. J. Kejuruter. 2019, 31, 209–214. [Google Scholar]
- Keramatnejad, M.; Dewolf, C. A Biophysical Study of Tear Film Lipid Layer Model Membranes. Biochim. Biophys. Acta Biomembr. 2023, 1865, 184102. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.C.; Jones, S.H.; Rennie, A.R.; King, M.D.; Ward, A.D.; Hughes, B.R.; Lucas, C.O.M.; Campbell, R.A.; Hughes, A.V. Degradation and Rearrangement of a Lung Surfactant Lipid at the Air—Water Interface during Exposure to the Pollutant Gas Ozone. Langmuir 2013, 14, 4594–4602. [Google Scholar] [CrossRef] [PubMed]
- Pryor, W.A.; Das, B.; Church, D.F. The Ozonation of Unsaturated Fatty Acids: Aldehydes and Hydrogen Peroxide as Products and Possible Mediators of Ozone Toxicity. Chem. Res. Toxicol. 1991, 4, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Pryor, W.A.; Church, D.F. Aldehydes, Hydrogen Peroxide, and Organic Radicals as Mediators of Ozone Toxicity. Free Radic. Biol. Med. 1991, 11, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Salgo, M.G.; Cueto, R.; Pryor, W.A. Effect of Lipid Ozonation Products on Liposomal Membranes Detected by Laurdan Fluorescence. Free Radic. Biol. Med. 1995, 19, 609–616. [Google Scholar] [CrossRef]
- Santrock, J.; Gorski, R.A.; O’Gara, J.F. Products and Mechanism of the Reaction of Ozone with Phospholipids in Unilamellar Phospholipid Vesicles. Chem. Res. Toxicol. 1992, 5, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Neeb, P.; Sauer, F.; Horie, O.; Moortgat, G.K. Formation of Hydroxymethyl Hydroperoxide and Formic Acid in Alkene Ozonolysis in the Presence of Water Vapour. Atmos. Environ. 1997, 31, 1417–1423. [Google Scholar] [CrossRef]
- Stegemann, J.P. Time Resolved Studies of Interfacial Reactions of Ozone with Pulmonary Phospholipid Surfactants Using Field Induced Droplet Ionization Mass Spectrometry. Tissue Eng. 2007, 23, 1–7. [Google Scholar] [CrossRef]
- Wadia, Y.; Tobias, D.J.; Stafford, R.; Finlayson-Pitts, B.J. Real-Time Monitoring of the Kinetics and Gas-Phase Products of the Reaction of Ozone with an Unsaturated Phospholipid at the Air-Water Interface. Langmuir 2000, 16, 9321–9330. [Google Scholar] [CrossRef]
- Mitsche, M.A.; Wang, L.; Small, D.M. Adsorption of Egg Phosphatidylcholine to an Air/Water and Triolein/Water Bubble Interface: Use of the 2-Dimensional Phase Rule to Estimate the Surface Composition of a Phospholipid/Triolein/Water Surface as a Function of Surface Pressure. J. Phys. Chem. B 2010, 114, 3276–3284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olyńskaż, A.; Wizert, A.; Štefl, M.; Iskander, D.R.; Cwiklik, L. Mixed Polar-Nonpolar Lipid Films as Minimalistic Models of Tear Film Lipid Layer: A Langmuir Trough and Fluorescence Microscopy Study. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183300. [Google Scholar] [CrossRef] [PubMed]
- Bron, A.J.; Tiffany, J.M.; Gouveia, S.M.; Yokoi, N.; Voon, L.W. Functional Aspects of the Tear Film Lipid Layer. Exp. Eye Res. 2004, 78, 347–360. [Google Scholar] [CrossRef]
- Yoshida, M.; Yamaguchi, M.; Sato, A.; Tabuchi, N.; Kon, R.; Iimura, K.I. Role of Endogenous Ingredients in Meibum and Film Structures on Stability of the Tear Film Lipid Layer against Lateral Compression. Langmuir 2019, 35, 8445–8451. [Google Scholar] [CrossRef]
- Mudgil, P.; Millar, T.J. Surfactant Properties of Human Meibomian Lipids. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1661–1670. [Google Scholar] [CrossRef] [PubMed]
- Millar, T.J.; King-Smith, P.E. Analysis of Comparison of Human Meibomian Lipid Films and Mixtures with Cholesteryl Esters in Vitro Films Using High Resolution Color Microscopy. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4710–4719. [Google Scholar] [CrossRef] [Green Version]
- Leiske, D.L.; Raju, S.R.; Ketelson, H.A.; Millar, T.J.; Fuller, G.G. The Interfacial Viscoelastic Properties and Structures of Human and Animal Meibomian Lipids. Exp. Eye Res. 2010, 90, 598–604. [Google Scholar] [CrossRef]
- Pérez-gil, J. Structure of Pulmonary Surfactant Membranes and Films: The Role of Proteins and Lipid Protein Interactions. Biochim. Biophys. Acta (BBA) Biomembr. 2008, 1778, 1676–1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, Y.Y.; Veldhuizen, R.A.W.; Neumann, A.W.; Petersen, N.O.; Possmayer, F. Current Perspectives in Pulmonary Surfactant Inhibition, Enhancement and Evaluation. Biochim. Biophys. Acta Biomembr. 2008, 1778, 1947–1977. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Hall, S.B.; Notter, R.H. Dynamic Surface Activity of Films of Lung Surfactant Phospholipids, Hydrophobic Proteins, and Neutral Lipids. J. Lipid Res. 1995, 36, 1283–1293. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keramatnejad, M.; DeWolf, C. Impact of Pollutant Ozone on the Biophysical Properties of Tear Film Lipid Layer Model Membranes. Membranes 2023, 13, 165. https://doi.org/10.3390/membranes13020165
Keramatnejad M, DeWolf C. Impact of Pollutant Ozone on the Biophysical Properties of Tear Film Lipid Layer Model Membranes. Membranes. 2023; 13(2):165. https://doi.org/10.3390/membranes13020165
Chicago/Turabian StyleKeramatnejad, Mahshid, and Christine DeWolf. 2023. "Impact of Pollutant Ozone on the Biophysical Properties of Tear Film Lipid Layer Model Membranes" Membranes 13, no. 2: 165. https://doi.org/10.3390/membranes13020165
APA StyleKeramatnejad, M., & DeWolf, C. (2023). Impact of Pollutant Ozone on the Biophysical Properties of Tear Film Lipid Layer Model Membranes. Membranes, 13(2), 165. https://doi.org/10.3390/membranes13020165