A Thermodynamic Perspective of Cancer Cells’ Volume/Area Expansion Ratio
Abstract
:1. Introduction
- The Krebs cycle, characteristic of normal cells, which is based on the oxidation of acetyl-CoA, and derived from carbohydrates, lipids, and proteins;
- The Warburg cycle, found in cancer cells, which is based on fermentation over the aerobic respiratory pathway.
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bejan, A. Street Network Theory of Organization in Nature. J. Adv. Transp. 1996, 30, 85–107. [Google Scholar] [CrossRef]
- Bejan, A. Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume. Int. J. Heat Mass Transf. 1997, 40, 799–816. [Google Scholar] [CrossRef]
- Bejan, A.; Lorente, S. Constructal law of design and evolution: Physics, biology, technology, and society. J. Appl. Phys. 2013, 113, 151301. [Google Scholar] [CrossRef]
- Bejan, A. Constructal design evolution versus topology optimization. Int. Commun. Heat Mass Transf. 2023, 141, 106567. [Google Scholar] [CrossRef]
- Bejan, A. Advanced Engineering Thermodynamics, 2nd ed.; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Katchalsky, A.; Kedem, O. Thermodynamics of Flow Processes in Biological Systems. Biophys. J. 1962, 2, 53–78. [Google Scholar] [CrossRef] [PubMed]
- Voet, D.; Voet, J.G. Biochemistry, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Schrödinger, E. What is Life? The Physical Aspect of the Living Cell; Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
- Callen, H.B. Thermodynamics; Wiley: New York, NY, USA, 1960. [Google Scholar]
- Lucia, U. Irreversibility in biophysical and biochemical engineering. Phys. A Stat. Mech. Its Appl. 2012, 391, 5997–6007. [Google Scholar] [CrossRef]
- Zivieri, A.; Pacini, N.; Finocchio, G.; Carpentieri, M. Rate of entropy model for irreversible processes in living systems. Sci. Rep. 2017, 7, 9134. [Google Scholar] [CrossRef]
- Zivieri, A.; Pacini, N. Is an Entropy-Based Approach Suitable for an Understanding of the Metabolic Pathways of Fermentation and Respiration? Entropy 2017, 19, 662. [Google Scholar] [CrossRef]
- Zivieri, A.; Pacini, N. Entropy Density Acceleration and Minimum Dissipation Principle: Correlation with Heat and Matter Transfer in Glucose Catabolism. Entropy 2018, 20, 929. [Google Scholar] [CrossRef]
- Norton, L.; Simon, R. Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat. Rep. 1977, 61, 1307–1317. [Google Scholar]
- Norton, L.; Simon, R. The Norton-Simon hypothesis revisited. Cancer Treat. Rep. 1986, 61, 163–169. [Google Scholar]
- Norton, L. Conceptual and Practical Implications of Breast Tissue Geometry: Toward a More Effective, Less Toxic Therapy. Oncologist 2005, 10, 370–381. [Google Scholar] [CrossRef]
- Lucia, U.; Ponzetto, A.; Deisboeck, T.S. Constructal approach to cell membranes transport: Amending the ‘Norton-Simon’ hypothesis for cancer treatment. Sci. Rep. 2016, 6, 19451. [Google Scholar] [CrossRef]
- Piccart-Gebhart, M.J. Mathematics and oncology: A match for life? J. Clin. Oncol. 2003, 21, 1425–1428. [Google Scholar] [CrossRef]
- Lucia, U.; Ponzetto, A.; Deisboeck, T.S. A thermodynamic approach to the ‘mitosis/apoptosis’ ratio in cancer. Phys. A Stat. Mech. Its Appl. 2015, 436, 246–255. [Google Scholar] [CrossRef]
- Cross, S.S. Fractals in pathology. J. Pathol. 1997, 182, 1–8. [Google Scholar] [CrossRef]
- Warburg, O.; Wind, F.; Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 1927, 8, 519. [Google Scholar] [CrossRef]
- Weinhouse, S. On respiratory impairment in cancer cells. Science 1956, 22, 267–269. [Google Scholar] [CrossRef]
- Warburg, O. On the Origin of Cancer Cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Burk, D.; Schade, A.L. On respiratory impairment in cancer cells. Science 1956, 124, 270–272. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Thermal resonance in living cells to control their heat exchange: Possible applications in cancer treatment. Int. Commun. Heat Mass Transf. 2022, 131, 105842. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Thermal resonance and cell behaviour. Entropy 2020, 22, 774. [Google Scholar] [CrossRef]
- Bejan, A. Shape and Structure, from Engineering to Nature; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Nag, P.K. Heat and Mass Transfer, 3rd ed.; Mc-Graw Hill: New Dahli, India, 2009. [Google Scholar]
- Namvar, A.; Blanch, A.J.; Dixon, M.W.; Carmo, O.M.S.; Liu, B.; Tiash, S.; Looker, O.; Andrew, D.; Chan, L.J.; Tham, W.H.; et al. Surface area-to-volume ratio, not cellular viscoelasticity, is the major determinant of red blood cell traversal through small channels. Cell. Microbiol. 2021, 23, 13270. [Google Scholar] [CrossRef]
- Lucia, U.; Deisboeck, T.S.; Ponzetto, A.; Grisolia, G. A Thermodynamic Approach to the Metaboloepigenetics of Cancer. Int. J. Mol. Sci. 2023, 24, 3337. [Google Scholar] [CrossRef]
- D’Anselmia, F.; Valerio, M.; Cucina, A.; Galli, L.; Proietti, S.; Dinicola, S.; Pasqualato, A.; Manetti, C.; Ricci, G.; Giuliani, A.; et al. Metabolism and cell shape in cancer: A fractal analysis. Int. J. Biochem. Cell Biol. 2011, 43, 1052–1058. [Google Scholar] [CrossRef]
- Deisboeck, T.S.; Wang, Z. Cancer dissemination: A consequence of limited carrying capacity? Med. Hypotheses 2007, 69, 173–177. [Google Scholar] [CrossRef]
- Muthuswamy, S.K.; Xue, B. Cell Polarity As A Regulator of Cancer Cell Behavior Plasticity. Annu. Rev. Cell Dev. Biol. 2012, 28, 599–625. [Google Scholar] [CrossRef]
- Pelling, A.E.; Sehati, S.; Gralla, E.B.; Valentine, J.S.; Gimzewski, J.K. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 2004, 305, 1147–1150. [Google Scholar] [CrossRef]
- Bustamante, C.; Chemla, Y.R.; Forde, N.R.; Izhaky, D. Mechanical Processes in Biochemistry. Annu. Rev. Biochem. 2004, 73, 705–748. [Google Scholar] [CrossRef]
- Arcangeli, A.; Crociani, O.; Lastraioli, E.; Masi, A.; Pillozzi, S.; Becchetti, A. Targeting ion channels in cancer: A novel frontier in antineoplastic therapy. Curr. Med. Chem. 2009, 16, 66–93. [Google Scholar] [CrossRef]
- Becchetti, A.; Munaron, L.; Arcangeli, A. The role of ion channels and transporters in cell proliferation and cancer. Front. Physiol. 2013, 4, 312. [Google Scholar] [CrossRef] [PubMed]
- Becchetti, A. Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer. Am. J. Physiol. 2011, 301, C255–C265. [Google Scholar] [CrossRef] [PubMed]
- Becchetti, A.; Arcangeli, A. Integrins and ion channels in cell migration: Implications for neuronal development, wound healing and metastatic spread. Adv. Exp. Med. Biol. 2010, 107–123, C255–C265. [Google Scholar] [CrossRef]
- Coughlin, M.F.; Fredberg, J.J. Changes in cytoskeletal dynamics and nonlinear rheology with metastatic ability in cancer cell lines. Phys. Biol. 2013, 10, 065001. [Google Scholar] [CrossRef] [PubMed]
- Lervik, A.; Bresme, F.; Kjelstrup, S.; Bedeaux, D.; Rubi, J.M. Heat transfer in protein-water interfaces. Phys. Chem. Chem. Phys. 2010, 12, 1610–1617. [Google Scholar] [CrossRef] [PubMed]
- Lervik, A.; Bresme, F.; Kjelstrup, S. Heat transfer in soft nanoscale interfaces: The influence of interface curvature. Soft Matter 2009, 5, 2407–2414. [Google Scholar] [CrossRef]
- Cone, C.D. Electroosmotic interactions accompanying mitosis initiation in sarcoma cells in vitro. Trans. N. Y. Acad. Sci. 1969, 31, 404–427. [Google Scholar] [CrossRef]
- Cone, C.D. Variation of the transmembrane potential level as a basic mechanism of mitosis control. Oncology 1970, 24, 438–470. [Google Scholar] [CrossRef]
- Cone, C.D. Unified theory on the basic mechanism of normal mitotic control and oncogenesis. J. Theor. Biol. 1971, 30, 151–181. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucia, U.; Fino, D.; Deisboeck, T.S.; Grisolia, G. A Thermodynamic Perspective of Cancer Cells’ Volume/Area Expansion Ratio. Membranes 2023, 13, 895. https://doi.org/10.3390/membranes13120895
Lucia U, Fino D, Deisboeck TS, Grisolia G. A Thermodynamic Perspective of Cancer Cells’ Volume/Area Expansion Ratio. Membranes. 2023; 13(12):895. https://doi.org/10.3390/membranes13120895
Chicago/Turabian StyleLucia, Umberto, Debora Fino, Thomas S. Deisboeck, and Giulia Grisolia. 2023. "A Thermodynamic Perspective of Cancer Cells’ Volume/Area Expansion Ratio" Membranes 13, no. 12: 895. https://doi.org/10.3390/membranes13120895
APA StyleLucia, U., Fino, D., Deisboeck, T. S., & Grisolia, G. (2023). A Thermodynamic Perspective of Cancer Cells’ Volume/Area Expansion Ratio. Membranes, 13(12), 895. https://doi.org/10.3390/membranes13120895