Electrospun Silica-Polyacrylonitrile Nanohybrids for Water Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Membrane Fabrication
2.3. Characterization of ENAMs
2.4. Filtration Tests
3. Results and Discussion
3.1. Morphology and Surface Analysis
3.2. Filtration Performances of PAN-Si
4. Discussion
5. Future Direction
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alsawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G. A Comprehensive Review on Membrane Fouling: Mathematical. Water 2021, 13, 1327. [Google Scholar] [CrossRef]
- Gadkari, S. Influence of Polymer Relaxation Time on the Electrospinning Process: Numerical Investigation. Polymers 2017, 9, 501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravishankar, P.; Khang, A.; Laredo, M.; Balachandran, K. Using Dimensionless Numbers to Predict Centrifugal Jet-Spun Nanofiber Morphology. J. Nanomater. 2019, 2019, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.M.; Wang, C.C.; Chen, C.Y. The Combination of Electrospinning and Forcespinning: Effects on a Viscoelastic Jet and a Single Nanofiber. Chem. Eng. J. 2014, 244, 540–551. [Google Scholar] [CrossRef]
- Nurwaha, D.; Han, W.; Wang, X. Effects of Processing Parameters on Electrospun Fiber Morphology. J. Text. Inst. 2013, 104, 419–425. [Google Scholar] [CrossRef]
- Huang, C.; Xu, X.; Fu, J.; Yu, D.G.; Liu, Y. Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing. Polymers 2022, 14, 3266. [Google Scholar] [CrossRef]
- Zelca, Z.; Krumme, A.; Kukle, S.; Viirsalu, M.; Vilcena, L. Effect of Electrode Type on Electrospun Membrane Morphology Using Low-Concentration PVA Solutions. Membranes 2022, 12, 609. [Google Scholar] [CrossRef]
- Nauman, S.; Lubineau, G.; Alharbi, H.F. Post Processing Strategies for the Enhancement of Mechanical Properties of Enms (Electrospun Nanofibrous Membranes): A Review. Membranes 2021, 11, 39. [Google Scholar] [CrossRef]
- Bortolassi, A.C.C.; Guerra, V.G.; Aguiar, M.L.; Soussan, L.; Cornu, D.; Miele, P.; Bechelany, M. Composites Based on Nanoparticle and Pan Electrospun Nanofiber Membranes for Air Filtration and Bacterial Removal. Nanomaterials 2019, 9, 1740. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Cai, Z.; Sun, X.; Chong, C.; Yan, X.; Li, M.; Xu, J. Electrospun Nanofiber-Based Membranes for Water Treatment. Polymers 2022, 14, 2004. [Google Scholar] [CrossRef]
- Jose Varghese, R.; Sakho, E.H.M.; Parani, S.; Thomas, S.; Oluwafemi, O.S.; Wu, J. Introduction to Nanomaterials: Synthesis and Applications. In Nanomaterials for Solar Cell Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 75–95. [Google Scholar] [CrossRef]
- Wang, N.; Si, Y.; Wang, N.; Sun, G.; El-Newehy, M.; Al-Deyab, S.S.; Ding, B. Multilevel Structured Polyacrylonitrile/Silica Nanofibrous Membranes for High-Performance Air Filtration. Sep. Purif. Technol. 2014, 126, 44–51. [Google Scholar] [CrossRef]
- Shalaby, T.; Hamad, H.; Ibrahim, E.; Mahmoud, O.; Al-Oufy, A. Electrospun Nanofibers Hybrid Composites Membranes for Highly Efficient Antibacterial Activity. Ecotoxicol. Environ. Saf. 2018, 162, 354–364. [Google Scholar] [CrossRef]
- Vanangamudi, A.; Hamzah, S.; Singh, G. Synthesis of Hybrid Hydrophobic Composite Air Filtration Membranes for Antibacterial Activity and Chemical Detoxification with High Particulate Filtration Efficiency (PFE). Chem. Eng. J. 2015, 260, 801–808. [Google Scholar] [CrossRef]
- Sanaeepur, H.; Ebadi Amooghin, A.; Shirazi, M.M.A.; Pishnamazi, M.; Shirazian, S. Water Desalination and Ion Removal Using Mixed Matrix Electrospun Nanofibrous Membranes: A Critical Review. Desalination 2022, 521, 115350. [Google Scholar] [CrossRef]
- Wu, Q.Y.; Wan, L.S.; Xu, Z.K. Structure and Performance of Polyacrylonitrile Membranes Prepared via Thermally Induced Phase Separation. J. Memb. Sci. 2012, 409–410, 355–364. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, D.; Zhang, B.; Xing, W. Membrane Surface Roughness Characterization and Its Influence on Ultrafine Particle Adhesion. Sep. Purif. Technol. 2012, 90, 140–146. [Google Scholar] [CrossRef]
- Miyauchi, Y.; Ding, B.; Shiratori, S. Fabrication of a Silver-Ragwort-Leaf-like Super-Hydrophobic Micro/Nanoporous Fibrous Mat Surface by Electrospinning. Nanotechnology 2006, 17, 5151–5156. [Google Scholar] [CrossRef]
- Soberman, M.J.; Farnood, R.R.; Tabe, S. Functionalized Powdered Activated Carbon Electrospun Nanofiber Membranes for Adsorption of Micropollutants. Sep. Purif. Technol. 2020, 253, 117461. [Google Scholar] [CrossRef]
- Liwen, J.; Xiangwu, Z. Ultrafine Polyacrylonitrile/Silica Composite Fibers via Electrospinning Liwen. Mater. Lett. 2008, 62, 2161–2164. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, W.; Zhou, J.; Yu, D.G.; Liu, H. The Applications of Ferulic-Acid-Loaded Fibrous Films for Fruit Preservation. Polymers 2022, 14, 4947. [Google Scholar] [CrossRef]
- Soto-Salcido, L.A.; Anugwom, I.; Mänttäri, M.; Kallioinen-Mänttäri, M. Cellulose Nanofibers Derived Surface Coating in Enhancing the Dye Removal with Cellulosic Ultrafiltration Membrane. Membranes 2022, 12, 1082. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, G.B.; de Lima, F.A.; de Almeida, D.S.; Guerra, V.G.; Aguiar, M.L. Modification and Functionalization of Fibers Formed by Electrospinning: A Review. Membranes 2022, 12, 861. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Chen, W.; Feng, Z.; Liu, Y.; Liu, P.; Xie, Y.; Yu, D.G. Electrospun Nanofibers for Periodontal Treatment: A Recent Progress. Int. J. Nanomed. 2022, 17, 4137–4162. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An Open-Source Software for SPM Data Analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Hartati, S.; Zulfi, A.; Maulida, P.Y.D.; Yudhowijoyo, A.; Dioktyanto, M.; Saputro, K.E.; Noviyanto, A.; Rochman, N.T. Synthesis of Electrospun PAN/TiO2/Ag Nanofibers Membrane As Potential Air Filtration Media with Photocatalytic Activity. ACS Omega 2022, 7, 10516–10525. [Google Scholar] [CrossRef] [PubMed]
- Khalili, S.; Chenari, H.M. Successful Electrospinning Fabrication of ZrO2 Nanofibers: A Detailed Physical–Chemical Characterization Study. J. Alloys Compd. 2020, 828, 154414. [Google Scholar] [CrossRef]
- Dong, Z.-Q.; Ma, X.-H.; Xu, Z.; Gu, Z.-Y. Superhydrophobic Modification of PVDF–SiO2 Electrospun Nanofiber Membranes for Vacuum Membrane Distillation. RSC 2015, 5, 67962–67970. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Nabavi, S.R.; Omrani, A. Fabrication of Hydrophilic Hierarchical PAN/SiO2 Nanofibers by Electrospray Assisted Electrospinning for Efficient Removal of Cationic Dyes. Environ. Technol. Innov. 2022, 25, 102258. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, D.; Kang, D.; Xiang, X. Fabrication of Necklace-like Structures via Electrospinning. Langmuir 2010, 26, 1186–1190. [Google Scholar] [CrossRef]
- Hou, D.; Lin, D.; Ding, C.; Wang, D.; Wang, J. Fabrication and Characterization of Electrospun Superhydrophobic PVDF-HFP/SiNPs Hybrid Membrane for Membrane Distillation. Sep. Purif. Technol. 2017, 189, 82–89. [Google Scholar] [CrossRef]
- Rasekh, A.; Raisi, A. Electrospun Nanofibrous Polyether-Block-Amide Membrane Containing Silica Nanoparticles for Water Desalination by Vacuum Membrane Distillation. Sep. Purif. Technol. 2021, 275, 119149. [Google Scholar] [CrossRef]
- Liu, Y.; He, L.; Mustapha, A.; Li, H.; Hu, Z.Q.; Lin, M. Antibacterial Activities of Zinc Oxide Nanoparticles against Escherichia Coli O157:H7. J. Appl. Microbiol. 2009, 107, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Liu, B.; Zhang, Z.; Pawar, R.; Yan, Z.; Crittenden, J.C.; Vidic, R.D. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. Environ. Sci. Technol. 2021, 55, 1395–1418. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.R.; Mukherjee, M.; De, S. Preparation, Characterization and Humic Acid Removal Capacity of Chitosan Coated Iron-Oxide- Polyacrylonitrile Mixed Matrix Membrane. J. Water Process Eng. 2015, 6, 93–104. [Google Scholar] [CrossRef]
- Wang, D.; Mhatre, S.; Chen, J.; Shi, X.; Yang, H.; Cheng, W.; Yue, Y.; Han, G.; Rojas, O.J. Composites Based on Electrospun Fibers Modified with Cellulose Nanocrystals and SiO2 for Selective Oil/Water Separation. Carbohydr. Polym. 2023, 299, 120119. [Google Scholar] [CrossRef]
- Klapetek, P.; Nečas, D.; Anderson, C. One-Dimensional Roughness Parameters. Gwyddion User Guide. 2021. Available online: http://gwyddion.net/documentation/user-guide-en/ (accessed on 11 December 2022).
- Lochyński, P.; Charazińska, S.; Łyczkowska-Widłak, E.; Sikora, A. Electropolishing of Stainless Steel in Laboratory and Industrial Scale. Metals 2019, 9, 854. [Google Scholar] [CrossRef] [Green Version]
- Czylkowski, D.; Hrycak, B.; Sikora, A.; Moczała-Dusanowska, M.; Dors, M.; Jasiński, M. Surface Modification of Polycarbonate by an Atmospheric Pressure Argon Microwave Plasma Sheet. Materials 2019, 12, 2418. [Google Scholar] [CrossRef] [Green Version]
- Iwan, A.; Sikora, A.; Hamplová, V.; Bubnov, A. AFM Study of Advanced Composite Materials for Organic Photovoltaic Cells with Active Layer Based on P3HT:PCBM and Chiral Photosensitive Liquid Crystalline Dopants. Liq. Cryst. 2015, 42, 964–972. [Google Scholar] [CrossRef]
- Bharati, A.; Hejmady, P.; Van Der Donck, T.; Seo, J.W.; Cardinaels, R. Developing Conductive Immiscible Polystyrene/Polypropylene Blends with a Percolated Conducting Polyaniline/Polyamide ?Ller by Tuning Its Specific Interactions with the Styrene-Based Triblock Compatibilizer Grafted with Maleic Anhydride. J. Appl. Polym. Sci. 2019, 137, 48433. [Google Scholar] [CrossRef]
- Iwan, A.; Boharewicz, B.; Parafiniuk, K.; Igor, T.; Gorecki, L.; Sikora, A.; Filapek, M.; Schab-Balcerzak, E. New Air-Stable Aromatic Polyazomethines with Triphenylamine or Phenylenevinylene Moieties Tow Photovoltaic Application. Synth. Met. 2014, 195, 341–349. [Google Scholar] [CrossRef]
- Qu, F.; Yang, Z.; Gao, S.; Yu, H.; He, J.; Rong, H.; Tian, J. Impacts of Natural Organic Matter Adhesion on Irreversible Membrane Fouling during Surface Water Treatment Using Ultrafiltration. Membranes 2020, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Sutzkover-Gutman, I.; Hasson, D.; Semiat, R. Humic Substances Fouling in Ultrafiltration Processes. Desalination 2010, 261, 218–231. [Google Scholar] [CrossRef]
- Cui, X.; Choo, K.H. Natural Organic Matter Removal and Fouling Control in Low-Pressure Membrane Filtration for Water Treatment. Environ. Eng. Res. 2014, 19, 1–8. [Google Scholar] [CrossRef]
- Hidane, T.; Kitani, H.; Morisada, S.; Ohto, K.; Kawakita, H.; Furuta, S. Filtration of Elastic Polymers and Spherical Gels through a Silica-Deposited Layer on a Porous Membrane. Membranes 2021, 11, 22. [Google Scholar] [CrossRef]
- Cevallos-Mendoza, J.; Amorim, C.G.; Rodríguez-Díaz, J.M.; Montenegro, M.d.C.B.S.M. Removal of Contaminants from Water by Membrane Filtration: A Review. Membranes 2022, 12, 570. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, Y.; Zhang, M.; Feng, Z.; Yu, D.G.; Wang, K. Electrospun Nanofiber Membranes for Air Filtration: A Review. Nanomaterials 2022, 12, 1077. [Google Scholar] [CrossRef]
- Reyes-Aguilera, J.A.; Villafaña-López, L.; Rentería-Martínez, E.C.; Anderson, S.M.; Jaime-Ferrer, J.S. Electrospinning of Polyepychlorhydrin and Polyacrylonitrile Anionic Exchange Membranes for Reverse Electrodialysis. Membranes 2021, 11, 717. [Google Scholar] [CrossRef]
- Deng, L.; Liu, K.; Li, P.; Sun, D.; Ding, S.; Wang, X.; Hsiao, B.S. Engineering Construction of Robust Superhydrophobic Two-Tier Composite Membrane with Interlocked Structure for Membrane Distillation. J. Memb. Sci. 2020, 598, 117813. [Google Scholar] [CrossRef]
- Kim, Y.J.; Ahn, C.H.; Lee, M.B.; Choi, M.S. Characteristics of Electrospun PVDF/SiO2 Composite Nanofiber Membranes as Polymer Electrolyte. Mater. Chem. Phys. 2011, 127, 137–142. [Google Scholar] [CrossRef]
- Ullah, S.; Hashmi, M.; Kharaghani, D.; Khan, M.Q.; Saito, Y.; Yamamoto, T.; Lee, J.; Kim, I.S. Antibacterial Properties of in Situ and Surface Functionalized Impregnation of Silver Sulfadiazine in Polyacrylonitrile Nanofiber Mats. Int. J. Nanomedicine 2019, 14, 2693–2703. [Google Scholar] [CrossRef] [Green Version]
- Varfolomeeva, L.A.; Skvortsov, I.Y.; Kuzin, M.S.; Kulichikhin, V.G. Silica-Filled Polyacrylonitrile Solutions: Rheology, Morphology, Coagulation, and Fiber Spinning. Polymers Basel 2022, 14, 4548. [Google Scholar] [CrossRef]
- Acarer, S.; Pir, İ.; Tüfekci, M.; Erkoç, T.; Öztekin, V.; Dikicioğlu, C.; Demirkol, G.T.; Durak, S.G.; Özçoban, M.Ş.; Çoban, T.Y.T.; et al. Characterisation and Mechanical Modelling of Polyacrylonitrile-Based Nanocomposite Membranes Reinforced with Silica Nanoparticles. Nanomaterials 2022, 12, 3721. [Google Scholar] [CrossRef]
- Diogo Januário, E.F.; de Camargo Lima Beluci, N.; Vidovix, T.B.; Vieira, M.F.; Bergamasco, R.; Salcedo Vieira, A.M. Functionalization of Membrane Surface by Layer-by-Layer Self-Assembly Method for Dyes Removal. Process Saf. Environ. Prot. 2020, 134, 140–148. [Google Scholar] [CrossRef]
- Wågberg, L.; Erlandsson, J. The Use of Layer-by-Layer Self-Assembly and Nanocellulose to Prepare Advanced Functional Materials. Adv. Mater. 2021, 33, 1–13. [Google Scholar] [CrossRef]
- Koenig, K.; Beukenberg, K.; Langensiepen, F.; Seide, G. A New Prototype Melt-Electrospinning Device for the Production of Biobased Thermoplastic Sub-Microfibers and Nanofibers. Biomater. Res. 2019, 23, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, S.; Gil, M.; Lee, K.J. Syringeless Electrospinning toward Versatile Fabrication of Nanofiber Web. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, K.J. Colloid Syringeless Electrospinning toward Nonwoven Nanofiber Web Containing a Massive Amount of Inorganic Fillers. Macromol. Mater. Eng. 2022, 307, 2100818. [Google Scholar] [CrossRef]
- Bah, J.O.; De Andrade, L.R.M.; Crivellin, S.; Khouri, N.G.; Sousa, S.O.; Fernandes, L.M.I.; Souza, S.D.A.; Luz, S.C.; Schiavon, M.I.R.B.; Benites, C.I.; et al. Rotary Jet Spinning ( RJS ): A Key Process to Produce Biopolymeric Wound Dressings. Pharmaceutics 2022, 14, 2500. [Google Scholar] [CrossRef] [PubMed]
- Vlachou, M.; Kikionis, S.; Siamidi, A.; Kyriakou, S.; Tsotinis, A.; Ioannou, E.; Roussis, V. Development and Characterization of Eudragit®-Based Electrospun Nanofibrous Mats and Their Formulation into Nanofiber Tablets for the Modified Release of Furosemide. Pharmaceutics 2019, 11, 480. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Shen, Y.; Wang, C.; Zhang, Z.; Li, F.; Cheng, J.; Ye, Y.; Shen, R. Fabrication of Energetic Aluminum Core/Hydrophobic Shell Nanofibers via Coaxial Electrospinning. Chem. Eng. J. 2022, 427, 132001. [Google Scholar] [CrossRef]
- Suja, P.S.; Reshmi, C.R.; Sagitha, P.; Sujith, A. Electrospun Nanofibrous Membranes for Water Purification. Polym. Rev. 2017, 57, 467–504. [Google Scholar] [CrossRef]
- Sairiam, S.; Loh, C.H.; Wang, R.; Jiraratananon, R. Surface Modification of PVDF Hollow Fiber Membrane to Enhance Hydrophobicity Using Organosilanes. J. Appl. Polym. Sci. 2013, 130, 610–621. [Google Scholar] [CrossRef]
- Kim, K.C.; Lin, X.; Li, C. Structural Design of the Electrospun Nanofibrous Membrane for Membrane Distillation Application: A Review. Environ. Sci. Pollut. Res. 2022, 29, 82632–82659. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jia, Z.; Liu, T.; Wei, G. Electrospinning Nanoparticles-Based Materials. Sensors 2019, 19, 3977. [Google Scholar] [CrossRef]
Element | At. No. | Netto | Mass [%] | Mass Norm [%] | Atom [%] | Abs. Error [%] | Rel. Error [%] |
---|---|---|---|---|---|---|---|
Carbon | 6 | 2,969,112 | 48.42 | 48.42 | 52.85 | 4.92 | 10.17 |
Nitrogen | 7 | 256,536 | 43.57 | 43.57 | 40.78 | 4.55 | 10.45 |
Oxygen | 8 | 52,436 | 7.47 | 7.47 | 6.12 | 0.84 | 11.21 |
Sodium | 11 | 20,324 | 0.19 | 0.19 | 0.11 | 0.04 | 19.67 |
Sulfur | 16 | 127,571 | 0.34 | 0.34 | 0.14 | 0.04 | 10.98 |
Element | At. No. | Netto | Mass [%] | Mass Norm [%] | Atom [%] | Abs. Error [%] | Rel. Error [%] |
---|---|---|---|---|---|---|---|
Carbon | 6 | 1,949,936 | 54 | 54 | 58.50 | 5.50 | 10.19 |
Nitrogen | 7 | 176,585 | 39.63 | 39.63 | 36.81 | 4.18 | 10.54 |
Oxygen | 8 | 31,439 | 4.98 | 4.98 | 4.05 | 0.58 | 11.63 |
Silicon | 14 | 76,725 | 0.75 | 0.75 | 0.35 | 0.06 | 7.55 |
Sulfur | 16 | 33,412 | 0.39 | 0.39 | 0.16 | 0.04 | 10.00 |
Sodium | 11 | 13,328 | 0.25 | 0.25 | 0.14 | 0.04 | 16.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malczewska, B.; Lochyński, P.; Charazińska, S.; Sikora, A.; Farnood, R. Electrospun Silica-Polyacrylonitrile Nanohybrids for Water Treatments. Membranes 2023, 13, 72. https://doi.org/10.3390/membranes13010072
Malczewska B, Lochyński P, Charazińska S, Sikora A, Farnood R. Electrospun Silica-Polyacrylonitrile Nanohybrids for Water Treatments. Membranes. 2023; 13(1):72. https://doi.org/10.3390/membranes13010072
Chicago/Turabian StyleMalczewska, Beata, Paweł Lochyński, Sylwia Charazińska, Andrzej Sikora, and Ramin Farnood. 2023. "Electrospun Silica-Polyacrylonitrile Nanohybrids for Water Treatments" Membranes 13, no. 1: 72. https://doi.org/10.3390/membranes13010072