A Deeper Insight into the Interfacial Behavior and Structural Properties of Mixed DPPC/POPC Monolayers: Implications for Respiratory Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Langmuir Film Experiments
2.3. Calculation of Compressional Modulus
2.4. Calculation of Excess Areas and Intermolecular Force
2.5. Virial State Equation
2.6. BAM Experiments
2.7. Raman Spectroscopy
3. Results and Discussion
3.1. The Phase Behavior and Compressibility of the Mixed DPPC/POPC Monolayers
3.2. Homogeneous Analysis of the Mixed DPPC/POPC Monolayers
3.3. The Intermolecular Interaction between DPPC and POPC Molecules
3.4. Micromorphology of the Mixed DPPC/POPC Monolayers
3.5. The Structure and Conformation of Phospholipid Molecules
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daniher, D.; Mccaig, L.; Ye, Y.; Veldhuizen, R.; Lewis, J.; Ma, Y.; Zhu, J. Protective effects of aerosolized pulmonary surfactant powder in a model of ventilator-induced lung injury. Int. J. Pharm. 2020, 583, 119359–119369. [Google Scholar] [CrossRef]
- Sun, H.H.; Resmini, M.; Zarbakhsh, A. Interaction of thermal responsive NIPAM nanogels with model lipid monolayers at the air-water interface. J. Colloid Interface Sci. 2018, 519, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.; Nylander, T.; Foged, C.; Yang, M.S.; Stefania, G.; Baldursdottir, S.G.; Nielsen, H.M. Qualitative and quantitative analysis of the biophysical interaction of inhaled nanoparticles with pulmonary surfactant by using quartz crystal microbalance with dissipation monitoring. J. Colloid Interface Sci. 2019, 545, 162–171. [Google Scholar] [CrossRef]
- Goh, B.C.; Wu, H.; Rynkiewicz, M.J.; Schulten, K.; Seaton, B.A.; Mccormack, F.X. Elucidation of lipid binding sites on lung surfactant protein A using X-ray crystallography, mutagenesis, and molecular dynamics simulations. Biochemistry 2016, 55, 3692–3701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olżyńska, A.; Delcroix, P.; Dolejšová, T.; Krzaczek, K.; Cwiklik, L. Properties of lipid models of lung surfactant containing cholesterol and oxidized lipids: A mixed experimental and computational study. Langmuir 2020, 36, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Bernardino de la Serna, J.; Hansen, S.; Berzina, Z.; Simonsen, A.C.; Hannibal-Bach, H.K.; Knudsen, J.; Ejsing, C.S.; Bagatolli, L.A. Compositional and structural characterization of monolayers and bilayers composed of native pulmonary surfactant from wild type mice. Biochim. Biophys. Acta Biomembr. 2013, 1829, 2450–2459. [Google Scholar] [CrossRef] [Green Version]
- Olżyńska, A.; Zubek, M.; Roeselova, M.; Korchowiec, J.; Cwiklik, L. Mixed DPPC/POPC monolayers: All-atom molecular dynamics simulations and langmuir monolayer experiments. Biochim. Biophys. Acta Biomembr. 2016, 1858, 3120–3130. [Google Scholar] [CrossRef]
- Michael, J.R.; Wu, H.X.; Tanya, R.C.; Nikolaos, M.N.; James, F.H.; Barbara, A.S.; Francis, X.M. Differential ligand binding specificities of the pulmonary collectins are determined by the conformational freedom of a surface loop. Biochemistry 2017, 56, 4095–4105. [Google Scholar]
- Schumann-Gillett, A.; O’Mara, M.L. The effects of oxidised phospholipids and cholesterol on the biophysical properties of POPC bilayers. Biochim. Biophys. Acta Biomembr. 2019, 1861, 210–219. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, Q.; Wang, Y.E.; Neal, C.R.; Zuo, Y.Y. Comparative study of clinical pulmonary surfactants using atomic force microscopy. Biochim. Biophys. Acta Biomembr. 2011, 1808, 1832–1842. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.; Meier, U.; Yabut-Perez, M.; Walmrath, D.; Grimminger, F.; Seeger, W.; Günther, A. Atomic force microscopy studies of functional and dysfunctional pulmonary surfactant films. I. Micro- and nanostructures of functional pulmonary surfactant films and the effect of SP-A. Biophys. J. 2008, 94, 3549–3564. [Google Scholar]
- Alonso, C.; Alig, T.; Yoon, J.; Bringezu, F.; Warriner, H.; Zasadzinski, J.A. More than a monolayer: Relating lung surfactant structure and mechanics to composition. Biophys. J. 2004, 87, 4188–4202. [Google Scholar] [CrossRef] [PubMed]
- Ziblat, R.; Leiserowitz, L.; Addadi, L. Crystalline domain structure and cholesterol crystal nucleation in single hydrated DPPC:Cholesterol:POPC bilayers. J. Am. Chem. Soc. 2010, 132, 9920–9927. [Google Scholar] [CrossRef] [Green Version]
- Stachowicz-Kuśnierz, A.; Cwiklik, L.; Korchowiec, J.; Rogalska, E.; Korchowiec, B. The impact of lipid oxidation on the functioning of a lung surfactant model. Phys. Chem. Chem. Phys. 2018, 20, 24968–24978. [Google Scholar] [CrossRef]
- Schmidt, R.; Meier, U.; Yabut-Perez, M.; Walmrath, D.; Grimminger, F.; Seeger, W.; Günther, A. Alteration of fatty acid profiles in different pulmonary surfactant phospholipids in acute respiratory distress syndrome and severe pneumonia. Am. J. Respir. Crit. Care Med. 2001, 163, 95–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashton, M.R.; Postle, A.D.; Hall, M.A.; Smith, S.L.; Kelly, F.J.; Normand, I.C. Phosphatidylcholine composition of endotracheal tube aspirates of neonates and subsequent respiratory disease. Arch. Dis. Child. 1992, 6, 378–382. [Google Scholar] [CrossRef]
- Hunt, A.N.; Hall, M.A.; Kelly, F.J.; Normand, I.C.S.; Postle, A.D. Individual molecular species of phosphatidylcholine from fetal and neonatal lung. Prog. Respir. Res. 1990, 25, 196–199. [Google Scholar]
- Zhao, Q.; Li, Y.J.; Chai, X.L.; Zhang, L.F.; Xu, L.Z.; Huang, J.H.; Ning, P.; Tian, S.L. Interaction of nano carbon particles and anthracene with pulmonary surfactant: The potential hazards of inhaled nanoparticles. Chemosphere 2019, 215, 746–752. [Google Scholar] [CrossRef]
- Rojewska, M.; Skrzypiec, M.; Prochaska, K. Surface properties and morphology of mixed POSS-DPPC monolayers at the air/water interface. Colloids Surf. B 2016, 150, 334–343. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Hao, C.C.; Qu, H.J.; Sun, R.G. Studied on the dynamic adsorption process of lycium barbarum polysaccharide in the POPC/DPPC monolayers. Colloids Surf. B 2019, 178, 38–43. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Cheng, S.; Tsona, N.T.; Du, L. Emerging investigator series: Exploring the surface properties of aqueous aerosols coated with mixed surfactants. Environ. Sci. Proc. Imp. 2018, 20, 1491–1632. [Google Scholar] [CrossRef] [PubMed]
- Doménech, O.; Torrent-Burgués, J.; Merino, S.; Sanz, F.; Montero, M.T.; Hernández -Borrell, J. Surface thermodynamics study of monolayers formed with heteroacid phospholipids of biological interest. Colloids Surf. B. 2005, 41, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Barnes, G. On the calculation of excess areas of mixing in two-component monolayers. J. Colloid Interface Sci. 1991, 144, 299–300. [Google Scholar] [CrossRef]
- Dörfler, H.D. Mixing behavior of binary insoluble phospholipid monolayers analysis of the mixing properties of binary lecithin and cephalin systems by application of several surface and spreading techniques. Adv. Colloid Interface Sci. 1990, 31, 1–110. [Google Scholar] [CrossRef]
- Mladenova, K.; Petrova, S.D.; Georgiev, G.A.; Moskova-Doumanova, V.; Lalchev, Z.; Doumanov, J.A. Interaction of Bestrophin-1 with 1-palmitoyl-2-oleoyl-sn-glycero- 3-phosphocholine (POPC) in surface films. Colloids Surf. B. 2014, 122, 432–438. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, Y.J.; Chai, X.L.; Xu, L.Z.; Zhang, L.F.; Ning, P.; Huang, J.H.; Tian, S.L. Interaction of inhalable volatile organic compounds and pulmonary surfactant: Potential hazards of VOCs exposure to lung. J. Hazard. Mater. 2019, 369, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Guzman, E.; Liggieri, L.; Santini, E.; Ferrari, M.; Ravera, F. Effect of hydrophilic and hydrophobic nanoparticles on the surface pressure response of DPPC monolayers. J. Phys. Chem. C. 2011, 115, 21715–21722. [Google Scholar] [CrossRef]
- Carolo, D.R.J.; Luciano, C. Adsorption and enzyme activity of asparaginase at lipid Langmuir and Langmuir-Blodgett films. Mater. Sci. Eng. C. 2017, 73, 579–584. [Google Scholar]
- Möbius, D.; Mohwald, H. Structural characterization of monolayers at the air-water interface. Adv. Mater. 1991, 3, 19–24. [Google Scholar] [CrossRef]
- Zhai, X.H.; Brezesinski, G.; Mohwald, H.; Li, J.B. Thermodynamics and structures of amide phospholipid monolayers. J. Phys. Chem. B 2004, 108, 13475–13480. [Google Scholar] [CrossRef]
- Lakhdar-Ghazal, F.; Tocanne, J.F. Phase behaviour in monolayers and in water dispersions of mixtures of dimannosyl diacylglycerol with phosphatidylglycerol effect of monovalent and bivalent cations. Biochim. Biophys. Acta Biomembr. 1981, 644, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Zaborowska, M.; Broniatowski, M.; Wydro, P.; Matyszewska, D.; Bilewicz, R. Structural modifications of lipid membranes exposed to statins-Langmuir monolayer and PM-IRRAS study. J. Mol. Liq. 2020, 313, 113570–113581. [Google Scholar] [CrossRef]
- Xie, B.; Hao, C.C.; Zhang, Z.Y.; Sun, R.G. Studies on the interfacial behavior of DPPC/DPPG mixed monolayers in the presence of fluoxetine. J. Mol. Model. 2020, 26, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Fainerman, V.B.; Vollhardt, D. Equations of state for langmuir monolayers with two-dimensional phase transitions. J. Phys. Chem. B. 1999, 103, 145–150. [Google Scholar] [CrossRef]
- Anton, N.; Pierrat, P.; Lebeau, L.; Vandamme, T.F.; Bouriat, P. A study of insoluble monolayers by deposition at a bubble interface. Soft Matter 2013, 9, 10081–10091. [Google Scholar] [CrossRef]
- Guntupalli, R.; Sorokulova, I.; Long, R.; Olsen, E.; Neely, W.; Vodyanoy, V. Phage Langmuir monolayers and Langmuir-Blodgett films. Colloids Surf. B. 2011, 82, 182–189. [Google Scholar] [CrossRef]
- Torrent-Burgués, J. Thermodynamic behaviour of mixed films of an unsaturated and a saturated polar lipid. (Oleic Acid-Stearic Acid and POPC-DPPC). Colloids Interfaces 2018, 2, 17. [Google Scholar] [CrossRef] [Green Version]
- Ohta, Y.; Yokoyama, S.; Sakai, H.; Abe, M. Membrane properties of binary and ternary systems of ganglioside GM1/dipalmitoylphosphatidylcholine/dioleoylphosphatidyl choline. Colloids Surf. B. 2004, 34, 147–153. [Google Scholar] [CrossRef]
- McConlogue, C.W.; Vanderlick, T.K. A close look at domain formation in DPPC monolayers. Langmuir 1997, 13, 7158–7164. [Google Scholar] [CrossRef]
- Huynh, L.; Perrot, N.; Beswick, V.; Rosilio, V.; Curmi, P.A.; Sanson, A.; Jamin, N. Structural properties of POPC monolayers under lateral compression: Computer simulations analysis. Langmuir 2014, 30, 564–573. [Google Scholar] [CrossRef]
- An, H.H.; Kim, Y.; Han, W.B.; Kim, H.S.; Lee, S.; Yi, S.C.; Kim, D.H.; Yoon, C.S. Surface-enhanced raman scattering substrate based on silver nanoparticle-deposited phospholipid multilayer. Appl. Surf. Sci. 2013, 287, 369–374. [Google Scholar] [CrossRef]
- Dmitriev, A.A.; Surovtsev, N.V. Temperature-dependent hydrocarbon chain disorder in phosphatidylcholine bilayers studied by Raman spectroscopy. J. Phys. Chem. B 2015, 119, 15613–15622. [Google Scholar] [CrossRef] [PubMed]
- Gardikis, K.; Hatziantoniou, S.; Viras, K.; Wagner, M.; Demetzos, C. A DSC and Raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes. Int. J. Pharm. 2006, 318, 118–123. [Google Scholar] [CrossRef]
- Kitt, J.P.; Bryce, D.A.; Minteer, S.D.; Harris, J.M. Raman spectroscopy reveals selective interactions of cytochrome c with cardiolipin that correlate with membrane permeability. J. Am. Chem. Soc. 2017, 139, 3851–3860. [Google Scholar] [CrossRef] [PubMed]
- Surovtsev, N.V.; Ivanisenko, N.V.; Kirillov, K.Y.; Dzuba, S.A. Low-temperature dynamical and structural properties of saturated and monounsaturated phospholipid bilayers revealed by Raman and Spin-Label EPR spectroscopy. J. Phys. Chem. B. 2012, 116, 8139–8144. [Google Scholar] [CrossRef]
- Akesson, A.; Lind, T.; Ehrlich, N.; Stamou, D.; Wacklinc, H.; Cardenas, M. Composition and structure of mixed phospholipid supported bilayers formed by POPC and DPPC. Soft Matter 2012, 8, 5658–5665. [Google Scholar] [CrossRef]
- Mou, J.; Yang, J.; Shao, Z. Atomic force microscopy of cholera Toxin B-oligomers bound to bilayers of biologically relevant lipids. J. Mol. Biol. 1995, 248, 507–512. [Google Scholar] [CrossRef]
XPOPC | ||||||
---|---|---|---|---|---|---|
0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 | |
Ac (Å2) | 63.68 | 54.56 | 59.94 | 62.19 | 74.93 | 72.68 |
b0 | 0.0310 | 0.0696 | 0.0417 | 0.0243 | 0.1138 | 0.1101 |
b1 | 0.2292 | 0.2328 | 0.2372 | 0.2545 | 0.2843 | 0.2847 |
b2 | −0.0041 | −0.0025 | −0.0024 | −0.0025 | −0.0028 | −0.0029 |
(b1)12 | / | 0.2335 | 0.2274 | 0.2403 | 0.2966 | / |
R2 | 0.9991 | 0.9985 | 0.9989 | 0.9992 | 0.9979 | 0.9992 |
Sample | I1126/1096 | I1062/1096 | I2882/2849 | I1443/1455 |
---|---|---|---|---|
DPPC | 1.00 | 1.07 | 1.16 | 1.22 |
DPPC/POPC (XPOPC = 0.4) | 0.92 | 1.04 | 1.14 | 1.18 |
DPPC/POPC (XPOPC = 0.6) | 0.80 | 1.03 | 1.15 | 1.17 |
POPC | 0.77 | 0.98 | 1.15 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, Y.; Cao, Y.; Li, Y.; Zhao, Q.; Liu, D.; Fan, G.; Tian, S. A Deeper Insight into the Interfacial Behavior and Structural Properties of Mixed DPPC/POPC Monolayers: Implications for Respiratory Health. Membranes 2023, 13, 33. https://doi.org/10.3390/membranes13010033
Geng Y, Cao Y, Li Y, Zhao Q, Liu D, Fan G, Tian S. A Deeper Insight into the Interfacial Behavior and Structural Properties of Mixed DPPC/POPC Monolayers: Implications for Respiratory Health. Membranes. 2023; 13(1):33. https://doi.org/10.3390/membranes13010033
Chicago/Turabian StyleGeng, Yingxue, Yan Cao, Yingjie Li, Qun Zhao, Dan Liu, Ge Fan, and Senlin Tian. 2023. "A Deeper Insight into the Interfacial Behavior and Structural Properties of Mixed DPPC/POPC Monolayers: Implications for Respiratory Health" Membranes 13, no. 1: 33. https://doi.org/10.3390/membranes13010033
APA StyleGeng, Y., Cao, Y., Li, Y., Zhao, Q., Liu, D., Fan, G., & Tian, S. (2023). A Deeper Insight into the Interfacial Behavior and Structural Properties of Mixed DPPC/POPC Monolayers: Implications for Respiratory Health. Membranes, 13(1), 33. https://doi.org/10.3390/membranes13010033