Features and Possible Applications of Plant Lipid-Binding and Transfer Proteins
Abstract
:1. Introduction
2. Features of Plant Lipid-Binding and Transfer Proteins
2.1. Lipid Transfer Proteins
2.2. Pathogenesis-Related Class 10 (PR-10) Proteins
2.3. Acyl-CoA-Binding Proteins
2.4. Puroindolines
3. Possible Applications of Plant Lipid-Binding Proteins
3.1. Protein-Based Drug Delivery System
3.2. Food Industry
3.3. Plant Stress Tolerance
3.4. Diagnosis and Treatment of Allergic Disease
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li-Beisson, Y.; Neunzig, J.; Lee, Y.; Philippar, K. Plant membrane-protein mediated intracellular traffic of fatty acids and acyl lipids. Curr. Opin. Plant Biol. 2017, 40, 138–146. [Google Scholar] [CrossRef]
- Li, N.; Xu, C.; Li-Beisson, Y.; Philippar, K. Fatty Acid and Lipid Transport in Plant Cells. Trends Plant Sci. 2015, 21, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Park, J.; Choi, H.; Burla, B.; Kretzschmar, T.; Lee, Y.; Martinoia, E. Plant ABC Transporters. Arab. Book 2011, 9, e0153. [Google Scholar] [CrossRef] [Green Version]
- Ung, K.L.; Winkler, M.; Schulz, L.; Kolb, M.; Janacek, D.P.; Dedic, E.; Stokes, D.L.; Hammes, U.Z.; Pedersen, B.P. Structures and mechanism of the plant PIN-FORMED auxin transporter. Nature 2022, 609, 605–610. [Google Scholar] [CrossRef]
- Missaoui, K.; Gonzalez-Klein, Z.; Pazos-Castro, D.; Hernandez-Ramirez, G.; Garrido-Arandia, M.; Brini, F.; Diaz-Perales, A.; Tome-Amat, J. Plant non-specific lipid transfer proteins: An overview. Plant Physiol. Biochem. 2021, 171, 115–127. [Google Scholar] [CrossRef]
- Aglas, L.; Soh, W.T.; Kraiem, A.; Wenger, M.; Brandstetter, H.; Ferreira, F. Ligand Binding of PR-10 Proteins with a Particular Focus on the Bet v 1 Allergen Family. Curr. Allergy Asthma Rep. 2020, 20, 25. [Google Scholar] [CrossRef] [PubMed]
- Kazaz, S.; Miray, R.; Baud, S. Acyl–Acyl Carrier Protein Desaturases and Plant Biotic Interactions. Cells 2021, 10, 674. [Google Scholar] [CrossRef] [PubMed]
- West, G.; Viitanen, L.; Alm, C.; Mattjus, P.; Salminen, T.A.; Edqvist, J. Identification of a glycosphingolipid transfer protein GLTP1 in Arabidopsis thaliana. FEBS J. 2008, 275, 3421–3437. [Google Scholar] [CrossRef] [PubMed]
- Benabdelkader, A.; Mazliak, P. Echanges de lipides entre mitochondries, microsomes et surnageant cytoplasmique de cellules de pomme de terre ou de chou-fleur. J. Biol. Inorg. Chem. 1970, 15, 250–262. [Google Scholar] [CrossRef] [PubMed]
- van Loon, L.; van Strien, E. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 1999, 55, 85–97. [Google Scholar] [CrossRef]
- Kader, J.-C. Lipid-Transfer Proteins in Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 627–654. [Google Scholar] [CrossRef] [Green Version]
- Finkina, E.I.; Melnikova, D.N.; Bogdanov, I.; Ovchinnikova, T.V. Lipid Transfer Proteins as Components of the Plant Innate Immune System: Structure, Functions, and Applications. Acta Nat. 2016, 8. [Google Scholar] [CrossRef]
- Melnikova, D.N.; Finkina, E.I.; Bogdanov, I.V.; Ovchinnikova, T.V. Plant Pathogenesis-Related Proteins Binding Lipids and Other Hydrophobic Ligands. Russ. J. Bioorg. Chem. 2018, 44, 586–594. [Google Scholar] [CrossRef]
- Scheurer, S.; Schülke, S. Interaction of Non-Specific Lipid-Transfer Proteins with Plant-Derived Lipids and Its Impact on Allergic Sensitization. Front. Immunol. 2018, 9, 1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salminen, T.A.; Eklund, D.M.; Joly, V.; Blomqvist, K.; Matton, D.P.; Edqvist, J. Deciphering the Evolution and Development of the Cuticle by Studying Lipid Transfer Proteins in Mosses and Liverworts. Plants 2018, 7, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeats, T.H.; Rose, J.K. The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci. 2008, 17, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Charvolin, D.; Douliez, J.-P.; Marion, D.; Cohen-Addad, C.; Pebay-Peyroula, E. The crystal structure of a wheat nonspecific lipid transfer protein (ns-LTP1) complexed with two molecules of phospholipid at 2.1 A resolution. J. Biol. Inorg. Chem. 1999, 264, 562–568. [Google Scholar] [CrossRef]
- Tassin-Moindrot, S.; Caille, A.; Douliez, J.-P.; Marion, D.; Vovelle, F. The wide binding properties of a wheat nonspecific lipid transfer protein. Solution structure of a complex with prostaglandin B2. J. Biol. Inorg. Chem. 2000, 267, 1117–1124. [Google Scholar] [CrossRef]
- Tassin, S.; Broekaert, W.F.; Marion, D.; Acland, D.P.; Ptak, M.; Vovelle, F.; Sodano, P. Solution Structure of Ace-AMP1, a Potent Antimicrobial Protein Extracted from Onion Seeds. Structural Analogies with Plant Nonspecific Lipid Transfer Proteins. Biochemistry 1998, 37, 3623–3637. [Google Scholar] [CrossRef]
- Cheng, H.-C.; Cheng, P.-T.; Peng, P.; Lyu, P.-C.; Sun, Y.-J. Lipid binding in rice nonspecific lipid transfer protein-1 complexes from Oryza sativa. Protein Sci. 2004, 13, 2304–2315. [Google Scholar] [CrossRef] [PubMed]
- Shenkarev, Z.O.; Melnikova, D.N.; Finkina, E.I.; Sukhanov, S.V.; Boldyrev, I.A.; Gizatullina, A.K.; Mineev, K.S.; Arseniev, A.S.; Ovchinnikova, T.V. Ligand Binding Properties of the Lentil Lipid Transfer Protein: Molecular Insight into the Possible Mechanism of Lipid Uptake. Biochemistry 2017, 56, 1785–1796. [Google Scholar] [CrossRef]
- Douliez, J.-P.; Michon, T.; Marion, D. Steady-state tyrosine fluorescence to study the lipid-binding properties of a wheat non-specific lipid-transfer protein (nsLTP1). Biochim. Biophys. Acta-Biomembr. 2000, 1467, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Salminen, T.A.; Blomqvist, K.; Edqvist, J. Lipid transfer proteins: Classification, nomenclature, structure, and function. Planta 2016, 244, 971–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pato, C.; Le Borgne, M.; Le Baut, G.; Le Pape, P.; Marion, D.; Douliez, J.-P. Potential application of plant lipid transfer proteins for drug delivery. Biochem. Pharmacol. 2001, 62, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Akhiyarova, G.R.; Ivanov, R.S.; Ivanov, I.I.; Finkina, E.I.; Melnikova, D.N.; Bogdanov, I.V.; Nuzhnaya, T.; Ovchinnikova, T.V.; Veselov, D.S.; Kudoyarova, G.R. Effects of Salinity and Abscisic Acid on Lipid Transfer Protein Accumulation, Suberin Deposition and Hydraulic Conductance in Pea Roots. Membranes 2021, 11, 762. [Google Scholar] [CrossRef]
- Melnikova, D.N.; Mineev, K.S.; Finkina, E.I.; Arseniev, A.S.; Ovchinnikova, T.V. A novel lipid transfer protein from the dill Anethum graveolens L.: Isolation, structure, heterologous expression, and functional characteristics. J. Pept. Sci. 2015, 22, 59–66. [Google Scholar] [CrossRef]
- Melnikova, D.; Bogdanov, I.; Ovchinnikova, T.; Finkina, E. Interaction between the Lentil Lipid Transfer Protein Lc-LTP2 and Its Novel Signal Ligand PI(4,5)P2. Membranes 2020, 10, 357. [Google Scholar] [CrossRef]
- Dubiela, P.; Del Conte, R.; Cantini, F.; Borowski, T.; Aina, R.; Radauer, C.; Bublin, M.; Hoffmann-Sommergruber, K.; Alessandri, S. Impact of lipid binding on the tertiary structure and allergenic potential of Jug r 3, the non-specific lipid transfer protein from walnut. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nazeer, M.; Waheed, H.; Saeed, M.; Ali, S.Y.; Choudhary, M.I.; Ul-Haq, Z.; Ahmed, A. Purification and Characterization of a Nonspecific Lipid Transfer Protein 1 (nsLTP1) from Ajwain (Trachyspermum ammi) Seeds. Sci. Rep. 2019, 9, 4148. [Google Scholar] [CrossRef] [Green Version]
- Melnikova, D.N.; Finkina, E.I.; Bogdanov, I.V.; Ignatova, A.A.; Matveevskaya, N.S.; Tagaev, A.A.; Ovchinnikova, T.V. Effect of Point Mutations on Structural and Allergenic Properties of the Lentil Allergen Len c 3. Membranes 2021, 11, 939. [Google Scholar] [CrossRef]
- Melnikova, D.; Bogdanov, I.; Ignatova, A.; Ovchinnikova, T.; Finkina, E. New insights into ligand binding by plant lipid transfer proteins: A case study of the lentil Lc-LTP2. Biochem. Biophys. Res. Commun. 2020, 528, 39–45. [Google Scholar] [CrossRef]
- Bakan, B.; Hamberg, M.; Larue, V.; Prangé, T.; Marion, D.; Lascombe, M.-B. The crystal structure of oxylipin-conjugated barley LTP1 highlights the unique plasticity of the hydrophobic cavity of these plant lipid-binding proteins. Biochem. Biophys. Res. Commun. 2009, 390, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Cubells-Baeza, N.; Gómez-Casado, C.; Tordesillas, L.; Ramírez-Castillejo, C.; Garrido-Arandia, M.; González-Melendi, P.; Herrero, M.; Pacios, L.F.; Díaz-Perales, A. Identification of the ligand of Pru p 3, a peach LTP. Plant Mol. Biol. 2017, 94, 33–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Klein, Z.; Cuevas-Zuviria, B.; Wangorsch, A.; Hernandez-Ramirez, G.; Pazos-Castro, D.; Oeo-Santos, C.; Romero-Sahagun, A.; Pacios, L.F.; Tome-Amat, J.; Scheurer, S.; et al. The key to the allergenicity of lipid transfer protein (LTP) ligands: A structural characterization. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2021, 1866, 158928. [Google Scholar] [CrossRef] [PubMed]
- Guerbette, F.; Grosbois, M.; Jolliot-Croquin, A.; Kader, J.-C.; Zachowski, A. Comparison of Lipid Binding and Transfer Properties of Two Lipid Transfer Proteins from Plants. Biochemistry 1999, 38, 14131–14137. [Google Scholar] [CrossRef]
- Guerbette, F.; Grosbois, M.; Jolliot-Croquin, A.; Kader, J.C.; Zachowski, A. Lipid-transfer proteins from plants: Structure and binding properties. Mol. Cell. Biochem. 1999, 192, 157–161. [Google Scholar] [CrossRef]
- Douliez, J.-P.; Jégou, S.; Pato, C.; Mollé, D.; Tran, V.; Marion, D. Binding of two mono-acylated lipid monomers by the barley lipid transfer protein, LTP1, as viewed by fluorescence, isothermal titration calorimetry and molecular modelling. J. Biol. Inorg. Chem. 2001, 268, 384–388. [Google Scholar] [CrossRef]
- Regente, M.; Giudici, A.M.; Villalaín, J.; de la Canal, L. The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett. Appl. Microbiol. 2005, 40, 183–189. [Google Scholar] [CrossRef]
- Caaveiro, J.M.M.; Molina, A.; González-Mañas, J.M.; Rodríguez-Palenzuela, P.; García-Olmedo, F.; Goñi, F.M.; Fernandez, A.M. Differential effects of five types of antipathogenic plant peptides on model membranes. FEBS Lett. 1997, 410, 338–342. [Google Scholar] [CrossRef] [Green Version]
- Madni, Z.K.; Tripathi, S.K.; Salunke, D.M. Structural insights into the lipid transfer mechanism of a non-specific lipid transfer protein. Plant J. 2019, 102, 340–352. [Google Scholar] [CrossRef]
- Qiao, P.; Bourgault, R.; Mohammadi, M.; Gore, M.A.; Molina, I.; Scanlon, M.J. A maize LIPID TRANSFER PROTEIN may bridge the gap between PHYTOCHROME-mediated light signaling and cuticle biosynthesis. Plant Signal. Behav. 2020, 15. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, S.S.; Elseehy, M.M.; Aljuaid, B.S.; El-Shehawi, A.M. Transcriptome Analysis of Jojoba (Simmondsia chinensis) during Seed Development and Liquid Wax Ester Biosynthesis. Plants 2020, 9, 588. [Google Scholar] [CrossRef]
- Chen, C.; Chen, G.; Hao, X.; Cao, B.; Chen, Q.; Liu, S.; Lei, J. CaMF2, an anther-specific lipid transfer protein (LTP) gene, affects pollen development in Capsicum annuum L. Plant Sci. 2011, 181, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Ma, K.; Ji, G.; Pan, L.; Zhou, Q. Lipid transfer proteins involved in plant–pathogen interactions and their molecular mechanisms. Mol. Plant Pathol. 2022, 23, 1815–1829. [Google Scholar] [CrossRef] [PubMed]
- Nieuwland, J.; Feron, R.; Huisman, B.; Fasolino, A.; Hilbers, C.W.; Derksen, J.; Mariani, C. Lipid Transfer Proteins Enhance Cell Wall Extension in Tobacco. Plant Cell 2005, 17, 2009–2019. [Google Scholar] [CrossRef] [Green Version]
- Bakan, B.; Hamberg, M.; Perrocheau, L.; Maume, D.; Rogniaux, H.; Tranquet, O.; Rondeau-Mouro, C.; Blein, J.-P.; Ponchet, M.; Marion, D. Specific Adduction of Plant Lipid Transfer Protein by an Allene Oxide Generated by 9-Lipoxygenase and Allene Oxide Synthase. J. Biol. Chem. 2006, 281, 38981–38988. [Google Scholar] [CrossRef] [Green Version]
- Amador, V.C.; dos Santos-Silva, C.A.; Vilela, L.M.B.; Oliveira-Lima, M.; Rêgo, M.d.S.; Roldan-Filho, R.S.; de Oliveira-Silva, R.L.; Lemos, A.B.; de Oliveira, W.D.; Ferreira-Neto, J.R.C.; et al. Lipid Transfer Proteins (LTPs)—Structure, Diversity and Roles beyond Antimicrobial Activity. Antibiotics 2021, 10, 1281. [Google Scholar] [CrossRef]
- Zottich, U.; Da Cunha, M.; Carvalho, A.O.; Dias, G.B.; Silva, N.C.; Santos, I.S.; Nacimento, V.V.D.; Miguel, E.C.; Machado, O.L.; Gomes, V.M. Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim. Biophys. Acta-Gen. Subj. 2011, 1810, 375–383. [Google Scholar] [CrossRef]
- Sun, J.-Y.; Gaudet, D.A.; Lu, Z.-X.; Frick, M.; Puchalski, B.; Laroche, A. Characterization and Antifungal Properties of Wheat Nonspecific Lipid Transfer Proteins. Mol. Plant-Microbe Interact. 2008, 21, 346–360. [Google Scholar] [CrossRef] [Green Version]
- Akhiyarova, G.R.; Finkina, E.I.; Ovchinnikova, T.V.; Veselov, D.S.; Kudoyarova, G.R. Role of Pea LTPs and Abscisic Acid in Salt-Stressed Roots. Biomolecules 2019, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, H.; Michalska, K.; Sikorski, M.; Jaskolski, M. Structural and functional aspects of PR-10 proteins. FEBS J. 2013, 280, 1169–1199. [Google Scholar] [CrossRef] [PubMed]
- Radauer, C.; Lackner, P.; Breiteneder, H. The Bet v 1 fold: An ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol. Biol. 2008, 8, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Führer, S.; Unterhauser, J.; Zeindl, R.; Eidelpes, R.; Fernández-Quintero, M.L.; Liedl, K.R.; Tollinger, M. The Structural Flexibility of PR-10 Food Allergens. Int. J. Mol. Sci. 2022, 23, 8252. [Google Scholar] [CrossRef] [PubMed]
- Sliwiak, J.; Dauter, Z.; Jaskólski, M. Hyp-1 protein from St John’s wort as a PR-10 protein. BioTechnologia 2013, 1, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Neudecker, P.; Schweimer, K.; Nerkamp, J.; Scheurer, S.; Vieths, S.; Sticht, H.; Rösch, P. Allergic Cross-reactivity Made Visible. J. Biol. Chem. 2001, 276, 22756–22763. [Google Scholar] [CrossRef] [Green Version]
- Mogensen, J.E.; Wimmer, R.; Larsen, J.N.; Spangfort, M.D.; Otzen, D.E. The Major Birch Allergen, Bet v 1, Shows Affinity for a Broad Spectrum of Physiological Ligands. J. Biol. Chem. 2002, 277, 23684–23692. [Google Scholar] [CrossRef] [Green Version]
- Kofler, S.; Asam, C.; Eckhard, U.; Wallner, M.; Ferreira, F.; Brandstetter, H. Crystallographically Mapped Ligand Binding Differs in High and Low IgE Binding Isoforms of Birch Pollen Allergen Bet v 1. J. Mol. Biol. 2012, 422, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Zubini, P.; Zambelli, B.; Musiani, F.; Ciurli, S.; Bertolini, P.; Baraldi, E. The RNA Hydrolysis and the Cytokinin Binding Activities of PR-10 Proteins Are Differently Performed by Two Isoforms of the Pru p 1 Peach Major Allergen and Are Possibly Functionally Related. Plant Physiol. 2009, 150, 1235–1247. [Google Scholar] [CrossRef] [Green Version]
- Mattila, K.; Renkonen, R. Modelling of Bet v 1 Binding to Lipids. Scand. J. Immunol. 2009, 70, 116–124. [Google Scholar] [CrossRef]
- von Loetzen, C.S.; Hoffmann, T.; Hartl, M.J.; Schweimer, K.; Schwab, W.; Rösch, P.; Hartl-Spiegelhauer, O. Secret of the major birch pollen allergen Bet v 1: Identification of the physiological ligand. Biochem. J. 2014, 457, 379–390. [Google Scholar] [CrossRef]
- Jacob, T.; Von Loetzen, C.S.; Reuter, A.; Lacher, U.; Schiller, D.; Schobert, R.; Mahler, V.; Vieths, S.; Rösch, P.; Schweimer, K.; et al. Identification of a natural ligand of the hazel allergen Cor a 1. Sci. Rep. 2019, 9, 8714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBride, J.K.; Cheng, H.; Maleki, S.J.; Hurlburt, B.K. Purification and Characterization of Pathogenesis Related Class 10 Panallergens. Foods 2019, 8, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mogensen, J.E.; Ferreras, M.; Wimmer, R.; Petersen, S.V.; Enghild, J.J.; Otzen, D.E. The Major Allergen from Birch Tree Pollen, Bet v 1, Binds and Permeabilizes Membranes. Biochemistry 2007, 46, 3356–3365. [Google Scholar] [CrossRef]
- Śliwiak, J.; Dolot, R.; Michalska, K.; Szpotkowski, K.; Bujacz, G.; Sikorski, M.; Jaskolski, M. Crystallographic and CD probing of ligand-induced conformational changes in a plant PR-10 protein. J. Struct. Biol. 2016, 193, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Besbes, F.; Franz-Oberdorf, K.; Schwab, W. Phosphorylation-dependent ribonuclease activity of Fra a 1 proteins. J. Plant Physiol. 2018, 233, 1–11. [Google Scholar] [CrossRef]
- Lee, O.R.; Pulla, R.K.; Kim, Y.-J.; Balusamy, S.R.D.; Yang, D.-C. Expression and stress tolerance of PR10 genes from Panax ginseng C. A. Meyer. Mol. Biol. Rep. 2011, 39, 2365–2374. [Google Scholar] [CrossRef]
- Gómez-Gómez, L.; Rubio-Moraga, A.; Ahrazem, O. Molecular cloning and characterisation of a pathogenesis-related protein CsPR10 from Crocus sativus. Plant Biol. 2011, 13, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.S. The Pathogenesis Related Class 10 proteins in Plant Defense against Biotic and Abiotic Stresses. Adv. Plants Agric. Res. 2015, 2, 305–314. [Google Scholar] [CrossRef]
- Casañal, A.; Zander, U.; Muñoz, C.; Dupeux, F.; Luque, I.; Botella, M.A.; Schwab, W.; Valpuesta, V.; Marquez, J.A. The Strawberry Pathogenesis-related 10 (PR-10) Fra a Proteins Control Flavonoid Biosynthesis by Binding to Metabolic Intermediates. J. Biol. Chem. 2013, 288, 35322–35332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grutsch, S.; Fuchs, J.E.; Freier, R.; Kofler, S.; Bibi, M.; Asam, C.; Wallner, M.; Ferreira, F.; Brandstetter, H.; Liedl, K.; et al. Ligand Binding Modulates the Structural Dynamics and Compactness of the Major Birch Pollen Allergen. Biophys. J. 2014, 107, 2972–2981. [Google Scholar] [CrossRef]
- Meng, W.; Su, Y.C.F.; Saunders, R.; Chye, M. The rice acyl-CoA-binding protein gene family: Phylogeny, expression and functional analysis. New Phytol. 2010, 189, 1170–1184. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.-Y.; Arias, T.; Meng, W.; Chye, M.-L. Plant acyl-CoA-binding proteins: An emerging family involved in plant development and stress responses. Prog. Lipid Res. 2016, 63, 165–181. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Zeng, B. Advances in Understanding the Acyl-CoA-Binding Protein in Plants, Mammals, Yeast, and Filamentous Fungi. J. Fungi 2020, 6, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, K.; Poulsen, F. The three-dimensional structure of acyl-coenzyme A binding protein from bovine liver: Structural refinement using heteronuclear multidimensional NMR spectroscopy. J. Biomol. NMR 1993, 3, 271–284. [Google Scholar] [CrossRef]
- Teilum, K.; Thormann, T.; Caterer, N.R.; Poulsen, H.I.; Jensen, P.H.; Knudsen, J.; Kragelund, B.B.; Poulsen, F.M. Different secondary structure elements as scaffolds for protein folding transition states of two homologous four-helix bundles. Proteins Struct. Funct. Bioinform. 2005, 59, 80–90. [Google Scholar] [CrossRef]
- van Aalten, D.; Milne, K.; Zou, J.; Kleywegt, G.J.; Bergfors, T.; Ferguson, M.; Knudsen, J.; Jones, T. Binding site differences revealed by crystal structures of Plasmodium falciparum and bovine acyl-CoA binding protein. J. Mol. Biol. 2001, 309, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Costabel, M.D.; Ermácora, M.R.; Santomé, J.A.; Alzari, P.M.; Guérin, D.M.A. Structure of armadillo ACBP: A new member of the acyl-CoA-binding protein family. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2006, 62, 958–961. [Google Scholar] [CrossRef] [Green Version]
- Taskinen, J.P.; Van Aalten, D.M.; Knudsen, J.; Wierenga, R.K. High resolution crystal structures of unliganded and liganded human liver ACBP reveal a new mode of binding for the acyl-CoA ligand. Proteins Struct. Funct. Bioinform. 2006, 66, 229–238. [Google Scholar] [CrossRef]
- Guo, Z.-H.; Chan, W.H.Y.; Kong, G.K.W.; Hao, Q.; Chye, M.-L. The first plant acyl-CoA-binding protein structures: The close homologues OsACBP1 and OsACBP2 from rice. Acta Crystallogr. Sect. D Struct. Biol. 2017, 73, 438–448. [Google Scholar] [CrossRef] [Green Version]
- Monzani, P.S.; Pereira, H.M.; Melo, F.A.; Meirelles, F.V.; Oliva, G.; Cascardo, J.C. A new topology of ACBP from Moniliophthora perniciosa. Biochim. Biophys. Acta-Proteins Proteom. 2010, 1804, 115–123. [Google Scholar] [CrossRef]
- Raboanatahiry, N.; Wang, B.; Yu, L.; Li, M. Functional and Structural Diversity of Acyl-coA Binding Proteins in Oil Crops. Front. Genet. 2018, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Chye, M.-L. New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism. Prog. Lipid Res. 2011, 50, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.-H.; Chye, M.-L. Plant Acyl-CoA-Binding Proteins—Their Lipid and Protein Interactors in Abiotic and Biotic Stresses. Cells 2021, 10, 1064. [Google Scholar] [CrossRef]
- Lung, S.-C.; Lai, S.H.; Wang, H.; Zhang, X.; Liu, A.; Guo, Z.-H.; Lam, H.-M.; Chye, M.-L. Oxylipin signaling in salt-stressed soybean is modulated by ligand-dependent interaction of Class II acyl-CoA-binding proteins with lipoxygenase. Plant Cell 2021, 34, 1117–1143. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-Y.; Chye, M.-L. Arabidopsis Acyl-CoA-Binding Protein ACBP2 Interacts with an Ethylene-Responsive Element-Binding Protein, AtEBP, via Its Ankyrin Repeats. Plant Mol. Biol. 2004, 54, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Licausi, F.; Kosmacz, M.; Weits, D.A.; Giuntoli, B.; Giorgi, F.M.; Voesenek, L.A.C.J.; Perata, P.; van Dongen, J.T. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 2011, 479, 419–422. [Google Scholar] [CrossRef]
- Chen, M.-X.; Hu, T.-H.; Xue, Y.; Zhu, F.-Y.; Du, Z.-Y.; Lo, C.; Chye, M.-L. Arabidopsis Acyl-Coenzyme-A-Binding Protein ACBP1 interacts with AREB1 and mediates salt and osmotic signaling in seed germination and seedling growth. Environ. Exp. Bot. 2018, 156, 130–140. [Google Scholar] [CrossRef]
- Xiao, S.; Gao, W.; Chen, Q.-F.; Ramalingam, S.; Chye, M.-L. Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis. Plant J. 2008, 54, 141–151. [Google Scholar] [CrossRef]
- Jin, J.; Guo, Z.; Hao, Q.; Chye, M. Crystal structure of the rice acyl-CoA-binding protein OsACBP2 in complex with C18:3-CoA reveals a novel pattern of binding to acyl-CoA esters. FEBS Lett. 2020, 594, 3568–3575. [Google Scholar] [CrossRef]
- Rosendal, J.; Ertbjerg, P.; Knudsen, J. Characterization of ligand binding to acyl-CoA-binding protein. Biochem. J. 1993, 290, 321–326. [Google Scholar] [CrossRef]
- Gossett, R.E.; Frolov, A.A.; Roths, J.B.; Behnke, W.D.; Kier, A.B.; Schroeder, F. Acyl-CoA binding proteins: Multiplicity and function. Lipids 1996, 31, 895–918. [Google Scholar] [CrossRef] [PubMed]
- Færgeman, N.J.; Wadum, M.; Feddersen, S.; Burton, M.; Kragelund, B.B.; Knudsen, J. Acyl-CoA binding proteins; structural and functional conservation over 2000 MYA. Mol. Cell. Biochem. 2006, 299, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.-H.; Lung, S.-C.; Ye, Z.-W.; Chye, M.-L. Depletion of Arabidopsis ACYL-COA-BINDING PROTEIN3 Affects Fatty Acid Composition in the Phloem. Front. Plant Sci. 2018, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.-F.; Xiao, S.; Chye, M.-L. Overexpression of the Arabidopsis 10-Kilodalton Acyl-Coenzyme A-Binding Protein ACBP6 Enhances Freezing Tolerance. Plant Physiol. 2008, 148, 304–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.-Y.; Xiao, S.; Chen, Q.-F.; Chye, M.-L. Depletion of the Membrane-Associated Acyl-Coenzyme A-Binding Protein ACBP1 Enhances the Ability of Cold Acclimation in Arabidopsis. Plant Physiol. 2010, 152, 1585–1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lung, S.-C.; Liao, P.; Yeung, E.C.; Hsiao, A.-S.; Xue, Y.; Chye, M.-L. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis. Plant Physiol. 2017, 174, 1420–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.-Y.; Chen, M.-X.; Chen, Q.-F.; Xiao, S.; Chye, M.-L. Arabidopsis acyl-CoA-binding protein ACBP1 participates in the regulation of seed germination and seedling development. Plant J. 2013, 74, 294–309. [Google Scholar] [CrossRef]
- Guo, Z.; Haslam, R.; Michaelson, L.V.; Yeung, E.C.; Lung, S.; Napier, J.A.; Chye, M. The overexpression of rice ACYL - CoA - BINDING PROTEIN 2 increases grain size and bran oil content in transgenic rice. Plant J. 2019, 100, 1132–1147. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Ye, Z.; Haslam, R.; Michaelson, L.V.; Napier, J.; Chye, M. Arabidopsis cytosolic acyl-CoA-binding proteins function in determining seed oil composition. Plant Direct 2019, 3, e00182. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Xiao, S.; Kim, J.; Lung, S.-C.; Chen, L.; Tanner, J.A.; Suh, M.C.; Chye, M.-L. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation. J. Exp. Bot. 2014, 65, 5473–5483. [Google Scholar] [CrossRef]
- Hsiao, A.-S.; Yeung, E.C.; Ye, Z.-W.; Chye, M.L. The Arabidopsis Cytosolic Acyl-CoA-Binding Proteins Play Combinatory Roles in Pollen Development. Plant Cell Physiol. 2014, 56, 322–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.; Gao, W.; Chen, Q.-F.; Chan, S.-W.; Zheng, S.-X.; Ma, J.; Wang, M.; Welti, R.; Chye, M.-L. Overexpression of Arabidopsis Acyl-CoA Binding Protein ACBP3 Promotes Starvation-Induced and Age-Dependent Leaf Senescence. Plant Cell 2010, 22, 1463–1482. [Google Scholar] [CrossRef] [Green Version]
- Blochet, J.-E.; Kaboulou, A.; Compoint, J.-P.; Marion, D. Amphiphilic proteins from wheat flour: Specific extraction, structure and lipid binding properties. In Gluten Proteins; Bushuk, W., Tkachuk, R., Eds.; AACCI: St. Paul, MN, USA, 1991; pp. 314–325. [Google Scholar]
- Aleman, M.-E.; Guirao, A.; Marion, D.; Joudrier, P. Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol. Biol. 1994, 25, 43–57. [Google Scholar] [CrossRef]
- Le Bihan, T.; Blochet, J.; Désormeaux, A.; Marion, D.; Pézolet, M. Determination of the Secondary Structure and Conformation of Puroindolines by Infrared and Raman Spectroscopy. Biochemistry 1996, 35, 12712–12722. [Google Scholar] [CrossRef]
- Kooijman, M.; Orsel, R.; Hessing, M.; Hamer, R.; Bekkers, A. Spectroscopic Characterisation of the Lipid-binding Properties of Wheat Puroindolines. J. Cereal Sci. 1997, 26, 145–159. [Google Scholar] [CrossRef]
- Clifton, L.A.; Sanders, M.R.; Hughes, A.V.; Neylon, C.; Frazier, R.A.; Green, R.J. Lipid binding interactions of antimicrobial plant seed defence proteins: Puroindoline-a and β-purothionin. Phys. Chem. Chem. Phys. 2011, 13, 17153–17162. [Google Scholar] [CrossRef] [PubMed]
- Dubreil, L.; Compoint, A.J.-P.; Marion, D. Interaction of Puroindolines with Wheat Flour Polar Lipids Determines Their Foaming Properties. J. Agric. Food Chem. 1997, 45, 108–116. [Google Scholar] [CrossRef]
- Keller, R.C. Identification of potential lipid binding regions in cereal proteins and peptides with the use of bioinformatics. J. Cereal Sci. 2018, 80, 128–134. [Google Scholar] [CrossRef]
- Bottier, C.; Géan, J.; Desbat, B.; Renault, A.; Marion, D. Structure and Orientation of Puroindolines into Wheat Galactolipid Monolayers. Langmuir 2008, 24, 10901–10909. [Google Scholar] [CrossRef]
- Evrard, A.; Lagarde, V.; Joudrier, P.; Gautier, M.-F. Puroindoline-a and puroindoline-b interact with the Saccharomyces cerevisiae plasma membrane through different amino acids present in their tryptophan-rich domain. J. Cereal Sci. 2008, 48, 379–386. [Google Scholar] [CrossRef]
- Clifton, L.A.; Lad, M.D.; Green, R.J.; Frazier, R.A. Single Amino Acid Substitutions in Puroindoline-b Mutants Influence Lipid Binding Properties. Biochemistry 2007, 46, 2260–2266. [Google Scholar] [CrossRef] [PubMed]
- Le Guernevé, C.; Seigneuretb, M.; Marion, D. Interaction of the Wheat Endosperm Lipid-Binding Protein Puroindoline-a with Phospholipids. Arch. Biochem. Biophys. 1998, 360, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Douliez, J.-P.; Michon, T.; Elmorjani, K.; Marion, D. Mini Review: Structure, Biological and Technological Functions of Lipid Transfer Proteins and Indolines, the Major Lipid Binding Proteins from Cereal Kernels. J. Cereal Sci. 2000, 32, 1–20. [Google Scholar] [CrossRef]
- Llanos, P.; Henriquez, M.; Minic, J.; Elmorjani, K.; Marion, D.; Riquelme, G.; Benoit, E. Neuronal and muscular alterations caused by two wheat endosperm proteins, puroindoline-a and alpha1-purothionin, are due to ion pore formation. Eur. Biophys. J. 2003, 33, 283–284. [Google Scholar] [CrossRef] [PubMed]
- Llanos, P.; Henriquez, M.; Minic, J.; Elmorjani, K.; Marion, D.; Riquelme, G.; Molgo, J.; Benoit, E. Puroindoline-a and alpha1-purothionin form ion channels in giant liposomes but exert different toxic actions on murine cells. FEBS J. 2006, 273, 1710–1722. [Google Scholar] [CrossRef]
- Dubreil, L.; Gaborit, T.; Bouchet, B.; Gallant, D.J.; Broekaert, W.F.; Quillien, L.; Marion, D. Spatial and temporal distribution of the major isoforms of puroindolines (puroindoline-a and puroindoline-b) and non specific lipid transfer protein (ns-LTP1e1) of Triticum aestivum seeds. Relationships with their in vitro antifungal properties. Plant Sci. 1998, 138, 121–135. [Google Scholar] [CrossRef]
- Jing, W.; Demcoe, A.R.; Vogel, H.J. Conformation of a Bactericidal Domain of Puroindoline a: Structure and Mechanism of Action of a 13-Residue Antimicrobial Peptide. J. Bacteriol. 2003, 185, 4938–4947. [Google Scholar] [CrossRef] [Green Version]
- Beringhelli, T.; Gianazza, E.; Maggioni, D.; Scanu, S.; Parravicini, C.; Sensi, C.; Monaco, H.L.; Eberini, I. All-Purpose Containers? Lipid-Binding Protein—Drug Interactions. PLoS ONE 2015, 10, e0132096. [Google Scholar] [CrossRef]
- Cheng, C.-S.; Chen, M.-N.; Liu, Y.-J.; Huang, L.-Y.; Lin, K.-F.; Lyu, P.-C. Evaluation of plant non-specific lipid-transfer proteins for potential application in drug delivery. Enzym. Microb. Technol. 2004, 35, 532–539. [Google Scholar] [CrossRef]
- Tousheh, M.; Darvishi, F.Z.; Miroliaei, M. A novel biological role for nsLTP2 from Oriza sativa: Potential incorporation with anticancer agents, nucleosides and their analogues. Comput. Biol. Chem. 2015, 58, 9–18. [Google Scholar] [CrossRef]
- Jégou, S.; Douliez, J.-P.; Mollé, D.; Boivin, P.; Marion, D. Purification and Structural Characterization of LTP1 Polypeptides from Beer. J. Agric. Food Chem. 2000, 48, 5023–5029. [Google Scholar] [CrossRef] [PubMed]
- Gorjanović, S.; Spillner, E.; Beljanski, M.V.; Gorjanović, R.; Pavlović, M.; Gojgić-Cvijanović, G. Malting Barley Grain Non-Specific Lipid-Transfer Protein (ns-LTP): Importance for Grain Protection. J. Inst. Brew. 2005, 111, 99–104. [Google Scholar] [CrossRef]
- Douliez, J.-P.; Jégou, S.; Pato, C.; Larré, C.; Mollé, D.; Marion, D. Identification of a New Form of Lipid Transfer Protein (LTP1) in Wheat Seeds. J. Agric. Food Chem. 2001, 49, 1805–1808. [Google Scholar] [CrossRef] [PubMed]
- Nieuwoudt, M.; Lombard, N.; Rautenbach, M. Optimised purification and characterisation of lipid transfer protein 1 (LTP1) and its lipid-bound isoform LTP1b from barley malt. Food Chem. 2014, 157, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Tu, M.; Li, Y. Toward the Genetic Basis and Multiple QTLs of Kernel Hardness in Wheat. Plants 2020, 9, 1631. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, Y.; Sun, F.; Li, X.; Wang, P.; Yang, G.; He, G. Expression of Puroindoline a in Durum Wheat Affects Milling and Pasting Properties. Front. Plant Sci. 2019, 10, 482. [Google Scholar] [CrossRef] [PubMed]
- Bhave, M.; Morris, C.F. Molecular genetics of puroindolines and related genes: Regulation of expression, membrane binding properties and applications. Plant Mol. Biol. 2007, 66, 221–231. [Google Scholar] [CrossRef]
- Geneix, N.; Dalgalarrondo, M.; Tassy, C.; Nadaud, I.; Barret, P.; Bakan, B.; Elmorjani, K.; Marion, D. Relationships between puroindoline A-prolamin interactions and wheat grain hardness. PLoS ONE 2020, 15, e0225293. [Google Scholar] [CrossRef]
- Morris, C.F. The antimicrobial properties of the puroindolines, a review. World J. Microbiol. Biotechnol. 2019, 35, 86. [Google Scholar] [CrossRef]
- Alfred, R.L.; Palombo, E.A.; Panozzo, J.F.; Bhave, M. The Antimicrobial Domains of Wheat Puroindolines Are Cell-Penetrating Peptides with Possible Intracellular Mechanisms of Action. PLoS ONE 2013, 8, e75488. [Google Scholar] [CrossRef]
- Tian, P.; Lv, Y.; Wei, S.; Zhang, S.; Zheng, X.; Hu, Y. Antifungal activity of puroindoline protein from soft wheat against grain molds and its potential as a biocontrol agent. Lett. Appl. Microbiol. 2022, 75, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, S.P.; Lung, S.-C.; Liao, P.; Lo, C.; Chye, M.-L. The overexpression of OsACBP5 protects transgenic rice against necrotrophic, hemibiotrophic and biotrophic pathogens. Sci. Rep. 2020, 10, 14918. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.; Chen, Q.-F.; Chye, M.-L. Transgenic Arabidopsis Flowers Overexpressing Acyl-CoA-Binding Protein ACBP6 are Freezing Tolerant. Plant Cell Physiol. 2014, 55, 1055–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DU, Z.-Y.; Chen, M.-X.; Chen, Q.-F.; Gu, J.-D.; Chye, M.-L. Expression of Arabidopsis acyl-CoA-binding proteins AtACBP1 and AtACBP4 confers Pb(II) accumulation in Brassica juncea roots. Plant Cell Environ. 2014, 38, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Chye, M.-L. Overexpression of Arabidopsis ACBP3 Enhances NPR1-Dependent Plant Resistance to Pseudomonas syringe pv tomato DC3000. Plant Physiol. 2011, 156, 2069–2081. [Google Scholar] [CrossRef] [Green Version]
- Finkina, E.I.; Melnikova, D.; Bogdanov, I.V.; Ovchinnikova, T.V. Plant Pathogenesis-Related Proteins PR-10 and PR-14 as Components of Innate Immunity System and Ubiquitous Allergens. Curr. Med. Chem. 2017, 24, 1772–1787. [Google Scholar] [CrossRef]
- Carella, P.; Merl-Pham, J.; Wilson, D.C.; Dey, S.; Hauck, S.M.; Vlot, A.C.; Cameron, R.K. Comparative proteomics analysis of phloem exudates collected during the induction of systemic acquired resistance. Plant Physiol. 2016, 171, 1495–1510. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.; Inui, H. Review: Biological functions of major latex-like proteins in plants. Plant Sci. 2021, 306, 110856. [Google Scholar] [CrossRef]
- Xu, T.-F.; Zhao, X.-C.; Jiao, Y.-T.; Wei, J.-Y.; Wang, L.; Xu, Y. A Pathogenesis Related Protein, VpPR-10.1, from Vitis pseudoreticulata: An Insight of Its Mode of Antifungal Activity. PLoS ONE 2014, 9, e95102. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.S.; Hwang, I.S.; Hwang, B.K. Requirement of the Cytosolic Interaction between pathogenesis-related protein 10 and leucine-rich repeat protein 1 for Cell Death and Defense Signaling in Pepper. Plant Cell 2012, 24, 1675–1690. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Li, Y.; Cao, K.; Ge, X. A rice lipid transfer protein binds to plasma membrane proteinaceous sites. Mol. Biol. Rep. 2008, 36, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Dabi, M.; More, P.; Patel, K.; Jana, K.; Agarwal, P.K. Improved Shoot Regeneration, Salinity Tolerance and Reduced Fungal Susceptibility in Transgenic Tobacco Constitutively Expressing PR-10a Gene. Front. Plant Sci. 2016, 7, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safi, H.; Saibi, W.; Alaoui, M.M.; Hmyene, A.; Masmoudi, K.; Hanin, M.; Brini, F. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana. Plant Physiol. Biochem. 2015, 89, 64–75. [Google Scholar] [CrossRef]
- Rojas, M.; Jimenez-Bremont, F.; Villicaña, C.; Carreón-Palau, L.; Arredondo-Vega, B.O.; Gómez-Anduro, G. Involvement of OpsLTP1 from Opuntia streptacantha in abiotic stress adaptation and lipid metabolism. Funct. Plant Biol. 2019, 46, 816. [Google Scholar] [CrossRef]
- Pan, Y.; Li, J.; Jiao, L.; Li, C.; Zhu, D.; Yu, J. A Non-specific Setaria italica Lipid Transfer Protein Gene Plays a Critical Role under Abiotic Stress. Front. Plant Sci. 2016, 7, 1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimek, L.; Bachert, C.; Lukat, K.; Pfaar, O.; Meyer, H.; Narkus, A. Allergy immunotherapy with a hypoallergenic recombinant birch pollen allergen rBet v 1-FV in a randomized controlled trial. Clin. Transl. Allergy 2015, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Schiller, D.; Vieths, S.; Holzhauser, T. Analysis of potential immunoglobulin E epitopes of Gly m 4, a bet V 1-related allergen in soy beans. Clin. Transl. Allergy 2011, 1, O10. [Google Scholar] [CrossRef] [Green Version]
- Neudecker, P.; Lehmann, K.; Nerkamp, J.; Haase, T.; Wangorsch, A.; Fötisch, K.; Hoffmann, S.; Rösch, P.; Vieths, S.; Scheurer, S. Mutational epitope analysis of Pru av 1 and Api g 1, the major allergens of cherry (Prunus avium) and celery (Apium graveolens): Correlating IgE reactivity with three-dimensional structure. Biochem. J. 2003, 376, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Son, D.; Scheurer, S.; Hoffmann, A.; Haustein, D.; Vieths, S. Pollen-related food allergy: Cloning and immunological analysis of isoforms and mutants of Mal d 1, the major apple allergen, and Bet v 1, the major birch pollen allergen. Eur. J. Nutr. 1999, 38, 201–215. [Google Scholar] [CrossRef]
- Bonura, A.; Passantino, R.; Costa, M.A.; Montana, G.; Melis, M.; Bondì, M.L.; Butteroni, C.; Barletta, B.; Corinti, S.; Di Felice, G.; et al. Characterization of a Par j 1/Par j 2 mutant hybrid with reduced allergenicity for immunotherapy of Parietaria allergy. Clin. Exp. Allergy 2011, 42, 471–480. [Google Scholar] [CrossRef]
- Linhart, B.; Gstoettner, A.; Gamez, C.; Swoboda, I.; Mari, A.; Papadopoulos, N.; Valenta, R. Hypoallergenic allergen de-rivatives of Pru p 3 for immunotherapy of IgE-mediated peach allergy. Clin. Transl. Allergy 2013, 3, 177. [Google Scholar] [CrossRef] [Green Version]
- Alexander, J.M.; Kueffer, C.; Daehler, C.; Edwards, P.J.; Pauchard, A.; Seipel, T.; Arévalo, R.J.; Cavieres, L.A.; Dietz, H.; Jakobs, G.; et al. Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc. Natl. Acad. Sci. USA 2011, 108, 656–661. [Google Scholar] [CrossRef] [PubMed]
Characteristics | LTPs | PR-10 | ACBPs | PINs |
---|---|---|---|---|
Protein MW (kDa) | 6–7 (LTP2s) or 9–10 (LTP1s) | 15–18 | 9–70 | 13 |
Disulfide bonds | four conserved disulfide bridges | no | no | five conserved disulfide bridges |
Spatial structure | three or four α-helices and a flexible C-terminal coil | three α-helices and seven antiparallel β-strands | four α-helices | four α-helices |
Conservative motif | C...C...CC...CXC..C...C | glycine-rich loop or GXGGXGXXK motif (aa 47–55) | Acyl-CoA-binding domain, ankyrin repeats, or C-terminal kelch motif | tryptophan-rich domain |
Volume of cavity | 180–1000 Å3 | 2100–3900 Å3 | 550–800 Å3 | 900–1000 Å3 (according to cavity volume assessment with CASTp) * |
Amino acid residues interacting with a ligand | Arg44 and Tyr79 (numeration for rice LTP1) Phe36, Tyr45, and Tyr48 (numeration for rice LTP2) | Asp27, Phe30, Lys54, Asp69, Tyr81, Asn118, Lys137 (numeration for Bet v 1) | Phe7, Tyr30, Lys34, Lys56, and Tyr75 (numeration for AtACBP6) | Arg39, Trp41, and Trp44 (numeration for PIN-a) |
Ligand name | saturated and unsaturated fatty acids (C12-C20), PC, PG, acyl-CoA, cerebrosides (galactolipids), prostaglandin B2, molecules of organic solvents, some drugs | saturated and unsaturated fatty acids, flavonoids, cytokinins, brassinosteroids, sterols, and emodin | acyl-CoA, LPC, DIPC, PA, and PE with saturated and unsaturated acyl tails (C16-C26) | phospholipids and glycolipids |
Localization | generally extracellular | generally intracellular and cytosolic | subcellular | subcellular |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melnikova, D.N.; Finkina, E.I.; Bogdanov, I.V.; Tagaev, A.A.; Ovchinnikova, T.V. Features and Possible Applications of Plant Lipid-Binding and Transfer Proteins. Membranes 2023, 13, 2. https://doi.org/10.3390/membranes13010002
Melnikova DN, Finkina EI, Bogdanov IV, Tagaev AA, Ovchinnikova TV. Features and Possible Applications of Plant Lipid-Binding and Transfer Proteins. Membranes. 2023; 13(1):2. https://doi.org/10.3390/membranes13010002
Chicago/Turabian StyleMelnikova, Daria N., Ekaterina I. Finkina, Ivan V. Bogdanov, Andrey A. Tagaev, and Tatiana V. Ovchinnikova. 2023. "Features and Possible Applications of Plant Lipid-Binding and Transfer Proteins" Membranes 13, no. 1: 2. https://doi.org/10.3390/membranes13010002
APA StyleMelnikova, D. N., Finkina, E. I., Bogdanov, I. V., Tagaev, A. A., & Ovchinnikova, T. V. (2023). Features and Possible Applications of Plant Lipid-Binding and Transfer Proteins. Membranes, 13(1), 2. https://doi.org/10.3390/membranes13010002