Desalination Using the Capacitive Deionization Technology with Graphite/AC Electrodes: Effect of the Flow Rate and Electrode Thickness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of the Electrode
2.3. Fabrication of CDI Cell
2.4. Electrochemical Setup
2.5. Characterization Techniques
2.6. CDI Measurements
3. Results and Discussions
3.1. Electrochemical Characterization
3.2. Cell Performance
3.3. Specific Energy Consumption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Frietzman, C.; Lowenberg, J.; Wintgens, T.; Melin, T. State-of-art of reverse osmosis desalination. Desalination 2007, 216, 1–76. [Google Scholar] [CrossRef]
- Petelet-Girud, E.; Cary, L.; Cary, P.; Bertrand, G.; Giglio-Jacquemot, A. Multi-layered water resources, management, and uses under the impacts of global changes in a southern coastal metropolis: When will it be already too late? Crossed analysis in Recife, NE Brazil. Sci. Total Environ. 2017, 618, 645–657. [Google Scholar] [CrossRef]
- Biesheuvel, P.M.; Van Limpt, B.; van der Wal, A. Dynamic adsorption desorption process model for capacitive deionization. J. Phys. Chem. C 2009, 113, 5636–5640. [Google Scholar] [CrossRef]
- Wang., H.; Varghese., J.; Pilon., L. Simulation of electric double layer capacitors with mesoporous electrodes: Effects of morphology and electrolyte permittivity. Electrochim. Acta 2011, 56, 6189–6197. [Google Scholar] [CrossRef]
- Zhao, R.; Biesheuvel, P.M.; Miedema, H.; Bruning, H.; van der Wal, A. Charge efficiency: A functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization. J. Phys. Chem. Lett. 2010, 1, 205–210. [Google Scholar] [CrossRef]
- Biesheuvel, P.M.; van der Wal, A. Membrane capacitive deionization. J. Membr. Sci. 2010, 346, 256–262. [Google Scholar] [CrossRef]
- Bazant, M.; Thorton, K.; Ajdan, A. Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 2014, 70, 021056. [Google Scholar] [CrossRef] [Green Version]
- Lewandosky, A.; Majkowski, T.; Galinski, M. Electrocapillary curves for the Hg liquid interface. Z. Naturforsch A 2009, 64a, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Biesheuvel, P.M.; Fu, Y.; Bazant, M. Diffuse charge and Faradaic reactions in porous electrodes. Phys. Rev. E 2011, 83, 061507. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; van Soestbergen, M.; Rijnaarts, H.H.M.; van der Wal, A.; Bazant, M.; Bieshevel, P.M. Time-dependent ion selectivity in capacitive charging of porous electrodes. J. Colloid Interface Sci. 2012, 384, 38–44. [Google Scholar] [CrossRef]
- Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P.M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater Sci. 2013, 58, 1388–1442. [Google Scholar] [CrossRef] [Green Version]
- Porada, S.; Weinstein, L.; Dash, R.; Bryjak, Y.; Gogotsi, Y.; Biesheuvel, P.M. Water desalination using capacitive deionization with microporous carbon electrodes. ACS Appl. Mater. Interfaces 2012, 4, 1194–1199. [Google Scholar] [CrossRef] [Green Version]
- Laxman, K.; Al Gharibi, L.; Dutta, J. Capacitive deionization with asymmetric electrodes: Electrode capacitance vs. electrode surface area. Electrochim. Acta 2015, 176, 420–425. [Google Scholar] [CrossRef]
- Wang, L.; Dykstra, J.E.; Lin, S. Energy efficiency of capacitive deionization. Environ. Sci. Technol. 2019, 53, 3366–3378. [Google Scholar] [CrossRef] [PubMed]
- Shulga, Y.M.; Kabachkov, E.N.; Korepanov, V.I.; Khodos, I.I.; Kovalev, D.Y.; Melezhik, A.V.; Tkachev, A.G.; Gustev, G.L. The concentration of c(sp3) atoms and properties of an activated carbon with over 3000 m2/g bet surface area. J. Nanomater. 2021, 11, 1324. [Google Scholar] [CrossRef]
- Suss, M.E.; Porada, S.; Sun, X.; Biesheuvel, P.M.; Yoon, J.; Presser, V. Water desalination via capacitive deionization: What is it and what can we expect from it? Environ. Sci. Technol. 2015, 8, 2296–2319. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Pilon, L. Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances. Electrochim. Acta 2012, 64, 130–139. [Google Scholar] [CrossRef]
- Liu, D.; Ning, X.; Hong, Y.; Li, Y.; Bian, Q.; Zhang, J. Covalent triazine-based frameworks as electrodes for high-performance membrane capacitive deionization. Electrochim. Acta 2019, 296, 327–334. [Google Scholar] [CrossRef]
- Maddah, H.A.; Shihon, M.A. Activated Carbon Cloth for Desalination of Brackish Water Using Capacitive Deionization. In Desalination and Water Treatment; IntechOpen: London, UK, 2018; Volume 10. [Google Scholar]
- Shi, M.; Qiang, H.; Chen, C.; Bano, Z.; Wang, F.; Xia, M.; Lei, W. Construction and evaluation of a novel three-electrode capacitive deionization system with high desalination performance. Sep. Purif. Technol. 2021, 273, 118976. [Google Scholar] [CrossRef]
- Wu, L.; Liu, M.; Huo, S.; Zang, X.; Xu, M.; Ni, W.; Yang, Z.; Yan, Y. Mold-casting prepared free-standing activated carbon electrodes for capacitive deionization. Carbon 2019, 149, 627–636. [Google Scholar] [CrossRef]
- Ain, Q.T.; Haq, S.H.; Alshammari, A.; Al-Mutlaq, M.A.; Anjum, M.N. The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model. Beilstein J. Nanotechnol. 2019, 10, 901–911. [Google Scholar] [CrossRef]
- Sonal, S.; Prakash, P.; Mishra, B.K.; Nayak, G.C. Synthesis, characterization and sorption studies of a zirconium(IV) impregnated highly functionalized mesoporous activated carbons. RSC Adv. 2020, 10, 13783–13798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Z.; Guan, W.; Ji, F.; Song, Z.; Zhao, Y. Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology. J. Chem. 2014, 2014, 491912. [Google Scholar] [CrossRef]
- Rodrigues, S.C.; Silva, M.C.; Torres, J.A.; Bianchi, M.L. Use of Magnetic Activated Carbon in a Solid Phase Extraction Procedure for Analysis of 2,4-dichlorophenol in Water Samples. Water Air Soil Pollut. 2020, 231, 294. [Google Scholar] [CrossRef]
- Tsay, K.; Zhang, L.; Zhang, J. Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochim. Acta 2012, 60, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Gamby, J.; Taberna, P.L.; Simon, P.; Fauvarque, J.F.; Chesneau, M. Studies and characterizations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 2001, 10, 109–116. [Google Scholar] [CrossRef]
- Wang, Y.; Vázquez-Rodríguez, I.; Santos, C.; García-Quismondo, E.; Palma, J.; Anderson, M.A.; Lado, J.J. Graphite felt 3d framework composites as an easy to scale capacitive deionization electrode for brackish water desalination. Chem. Eng. J. 2020, 392, 123698. [Google Scholar] [CrossRef]
- Xing, F.; Li, T.; Li, J.; Zhu, H.; Wang, N.; Cao, X. Chemically exfoliated MoS2 for capacitive deionization of saline water. Nano Energy 2017, 31, 590–595. [Google Scholar] [CrossRef]
- Chen, P.A.; Cheng, H.C.; Wang, P. Activated carbon recycled from bitter-tea and palm shell wastes for capacitive desalination of salt wate. J. Clean. Prod. 2018, 174, 927–932. [Google Scholar] [CrossRef]
- Anh, N.; Tran, T.; Phuoc, N.M.; Yoon, H.; Jung, E.; Lee, Y.W.; Kang, B.G.; Kang, H.S.; Yoo, C.Y.; Cho, Y. Improved desalination performance of flow- and fixed-capacitive deionization using redox-active quinone. ACS Sustain. Chem. Eng. 2020, 44, 16701–16710. [Google Scholar]
Sample | Initial Film Thickness | Measured Thickness | Mass | Specific Capacitance |
---|---|---|---|---|
(µm) | (µm) | (mg) | (F/g) | |
S1 | 100 | 67 | 8 | 6.7 |
S2 | 200 | 87 | 10 | 54.9 |
S3 | 300 | 102 | 12 | 69.4 |
S4 | 400 | 150 | 18 | 52.5 |
S5 | 500 | 231 | 28 | 32.8 |
S6 | 600 | 350 | 43 | 26.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, J.; Colán, M.; Catillón, R.; Huamán, J.; Paria, R.; Sánchez, L.; Rodríguez, J.M. Desalination Using the Capacitive Deionization Technology with Graphite/AC Electrodes: Effect of the Flow Rate and Electrode Thickness. Membranes 2022, 12, 717. https://doi.org/10.3390/membranes12070717
Martinez J, Colán M, Catillón R, Huamán J, Paria R, Sánchez L, Rodríguez JM. Desalination Using the Capacitive Deionization Technology with Graphite/AC Electrodes: Effect of the Flow Rate and Electrode Thickness. Membranes. 2022; 12(7):717. https://doi.org/10.3390/membranes12070717
Chicago/Turabian StyleMartinez, Jhonatan, Martín Colán, Ronald Catillón, Jesús Huamán, Robert Paria, Luis Sánchez, and Juan M. Rodríguez. 2022. "Desalination Using the Capacitive Deionization Technology with Graphite/AC Electrodes: Effect of the Flow Rate and Electrode Thickness" Membranes 12, no. 7: 717. https://doi.org/10.3390/membranes12070717
APA StyleMartinez, J., Colán, M., Catillón, R., Huamán, J., Paria, R., Sánchez, L., & Rodríguez, J. M. (2022). Desalination Using the Capacitive Deionization Technology with Graphite/AC Electrodes: Effect of the Flow Rate and Electrode Thickness. Membranes, 12(7), 717. https://doi.org/10.3390/membranes12070717