Next Article in Journal
An Updated View of the Importance of Vesicular Trafficking and Transport and Their Role in Immune-Mediated Diseases: Potential Therapeutic Interventions
Previous Article in Journal
Virtual and Artificial Cardiorespiratory Patients in Medicine and Biomedical Engineering
Previous Article in Special Issue
Effect of Self-Made TiO2 Nanoparticle Size on the Performance of the PVDF Composite Membrane in MBR for Landfill Leachate Treatment
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Membrane Fouling Control in Water Treatment

Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan
Membranes 2022, 12(6), 551; https://doi.org/10.3390/membranes12060551
Submission received: 24 May 2022 / Accepted: 24 May 2022 / Published: 25 May 2022
(This article belongs to the Special Issue Membrane Fouling Control in Water Treatment)
The stress of freshwater scarcity has become a severe problem worldwide and drives the development of technologies for water recycling and reuse. Among these technologies, membrane separation has received a great amount of attention because of its simple operating procedure, few chemical additions, and broad removal of pollutants of different sizes. However, for both conventional pressure-driven membrane separation (such as nanofiltration (NF) and reverse osmosis (RO)), and the emerging concentration-driven forward osmosis (FO) processes, the major challenge for the practical application of various membranes is the inevitable fouling, which can cause drawbacks by increasing cleaning frequency and operating cost but reducing membrane life. Therefore, fouling control in the development of membrane technology is crucial, especially for the treatment and recycling of various water sources with complicated matrices.
The aim of this Special Issue “Membrane Fouling Control in Water Treatment” was to shed light on the latest advances of membrane fouling control techniques, such as in-situ membrane surface modification, incorporation of emerging nanocomposites or functional copolymer into membrane material, and fouling mechanism illustration. Here are the key findings of the contributors in this Special Issue.
Wang et al. [1] prepared polyethylene glycol (PEG) non-covalent-functionalized multi-walled carbon nanotube (MWCNT) membranes through vacuum filtration, which greatly enhanced membrane hydrophilicity, with better removal of humic acid (HA) and lower transmembrane pressure (TMP) growth compared to a commercial 0.01-μm PVDF ultrafiltration (UF) membrane. Moreover, the PEG-MWCNT membrane exhibited excellent antifouling ability with 79.4% TMP recovery through flushing, which effectively prolonged the service life of membrane.
Wang and Ding [2] used self-made TiO2 nanoparticles to modify a UF membrane (PVDF-2) to increase membrane hydrophilicity and reduce surface pollution in the A/O-MBR (anoxic–aerobic membrane bioreactor) process. The modified membrane exhibited significantly improved antifouling performance and was successfully applied to the treatment of landfill leachate.
Lin et al. [3] modified in-situ a commercial nanofiltration membrane, NF90, through the concentration-polymerization-enhanced radical graft polarization method by applying two agents of 3-sulfopropyl methacrylate potassium salt (SPM) and 2-hydroxyethyl methacrylate (HEMA). The modified membranes exhibited considerably enhanced separation performance of NaCl rejection and pharmaceutical and personal care product (PPCPs) rejection than the pristine membrane. Moreover, the modified membranes exhibited relatively less flux decline and higher percentage of reversible fouling than the pristine membrane when treating the feedwater with a high silica concentration, and the fouling mechanism was confirmed to be intermediate blocking of membrane pores. Overall, the in-situ modification technique with a low monomer concentration is cost-effective and easily performed in practical applications for mitigating silica fouling, as well as improving NaCl and PPCP rejection.
Li et al. [4] blended amphiphilic zwitterion polysulfone-co-sulfobetaine polysulfone (PSf-co-SBPSf) copolymer to prepare antifouling PSf UF membranes. The PSf/PSf-co-SBPSf blend membranes show significant increases in porosity, water permeance and surface hydrophilicity and have excellent antifouling abilities and thermostability. Therefore, the PSf/PSf-co-SBPSf blended membranes have promising potential for high-temperature separation application.
Ma et al. [5] systematically evaluated the fouling mechanism of an anion exchange membrane (AEM) induced by different natural organic matter (NOM) and calcium via the extended Derjaguin–Landau–Verwey–Overbeek (xDLVO) approach. The results show that the presence of calcium ions can form Ca–NOM complex on AEM, and short-range acid–base (AB) interaction energy played a significant role in the compositions of interaction energy during the electrodialysis (ED) process, which was a dominating indicator for evaluating the tendency of AEM fouling by NOM.
The research results and critical discussion from these five contributions can provide state-of-the-art knowledge that fits the gap for future developments in the field of membrane fouling control. My sincere thanks to all the contributors for the successful publication of this Special Issue.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Wang, Y.; Dong, M.; Xiong, X.; Gai, X.; Zeng, J.; Luan, G.; Wang, Y.; Wu, Y.; Guo, J. Preparation of Ultrafiltration Membrane by Polyethylene Glycol Non-Covalent Functionalized Multi-Walled Carbon Nanotubes: Application for HA Removal and Fouling Control. Membranes 2021, 11, 362. [Google Scholar] [CrossRef] [PubMed]
  2. Wang, H.; Ding, K. Effect of Self-Made TiO2 Nanoparticle Size on the Performance of the PVDF Composite Membrane in MBR for Landfill Leachate Treatment. Membranes 2021, 12, 216. [Google Scholar] [CrossRef] [PubMed]
  3. Lin, Y.-L.; Zheng, N.-Y.; Gan, H.-Y.; Chang, A.-X.; Luo, H.-X.; Mao, Y.-J. Mitigating Silica Fouling and Improving PPCP Removal by Modified NF90 Using in situ Radical Graft Polymerization. Membranes 2021, 11, 904. [Google Scholar] [CrossRef] [PubMed]
  4. Li, D.; Gao, C.; Wang, X.; Wu, G.; Yin, J.; Huang, Y.; Sun, X. Zwitterionic Polysulfone Copolymer/Polysulfone Blended Ultrafiltration Membranes with Excellent Thermostability and Antifouling Properties. Membranes 2021, 11, 932. [Google Scholar] [CrossRef] [PubMed]
  5. Ma, Z.; Zhang, L.; Liu, Y.; Ji, X.; Xu, Y.; Wang, Q.; Sun, Y.; Wang, X.; Wang, J.; Xue, J.; et al. Influential Mechanism of Natural Organic Matters with Calcium Ion on the Anion Exchange Membrane Fouling Behavior via xDLVO Theory. Membranes 2021, 11, 968. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Lin, Y.-L. Membrane Fouling Control in Water Treatment. Membranes 2022, 12, 551. https://doi.org/10.3390/membranes12060551

AMA Style

Lin Y-L. Membrane Fouling Control in Water Treatment. Membranes. 2022; 12(6):551. https://doi.org/10.3390/membranes12060551

Chicago/Turabian Style

Lin, Yi-Li. 2022. "Membrane Fouling Control in Water Treatment" Membranes 12, no. 6: 551. https://doi.org/10.3390/membranes12060551

APA Style

Lin, Y. -L. (2022). Membrane Fouling Control in Water Treatment. Membranes, 12(6), 551. https://doi.org/10.3390/membranes12060551

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop