Comparative Evaluation of the Performance of Sterile Filters for Bioburden Protection and Final Fill in Biopharmaceutical Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Filter Characteristics
2.3. Bacterial Challenge Test (BCT)
2.4. Sterile Filtration Process and Protein Concentration Measurement
3. Results and Discussion
3.1. Characteristics of the Sterile Filters
3.2. Bacterial Challenge Test
3.3. Filtration Performance Comparison
3.3.1. Water Permeability
3.3.2. Capability as the Buffer Preparation and Media Preparation
3.3.3. Capability as the Final Filling Step in Downstream Processes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Reis, R.; Zydney, A. Bioprocess Membrane Technology. J. Membr. Sci. 2007, 297, 16–50. [Google Scholar] [CrossRef]
- Charcosset, C. Membrane Processes in Biotechnology: An Overview. Biotechnol. Adv. 2006, 24, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Jornitz, M.W.; Soelkner, P.G.; Meltzer, T.H. Sterile Filtration—A Review of the Past and Present Technologies. PDA J. Pharm. Sci. Technol. 2002, 56, 192–195. [Google Scholar] [PubMed]
- Johnson, S.A.; Chen, S.; Bolton, G.; Chen, Q.; Lute, S.; Fisher, J.; Brorson, K. Virus Filtration: A Review of Current and Future Practices in Bioprocessing. Biotechnol. Bioeng. 2022, 119, 743–761. [Google Scholar] [CrossRef]
- Razin, S.; Hayflick, L. Highlights of Mycoplasma Research—An Historical Perspective. Biologicals 2010, 38, 183–190. [Google Scholar] [CrossRef]
- ASTM F838-20; Standard Test Method for Determining Bacterial Retention of Membrane Filters Utilized for Liquid Filtration. ASTM International: West Conshohocken, PA, USA, 2020.
- Madsen, R.E.; Jornitz, M.W. Filter Validation. In Sterile Filtration; Springer: Berlin/Heidelberg, Germany, 2006; pp. 125–141. ISBN 978-3-540-33018-9. [Google Scholar]
- Bowman, F.W.; Calhoun, M.P.; White, M. Microbiological Methods for Quality Control of Membrane Filters. J. Pharm. Sci. 1967, 56, 222–225. [Google Scholar] [CrossRef]
- Folmsbee, M.; Lentine, K.R.; Wright, C.; Haake, G.; Mcburnie, L.; Ashtekar, D.; Beck, B.; Hutchison, N.; Okhio-Seaman, L.; Potts, B. The Development of a Microbial Challenge Test with Acholeplasma Laidlawii to Rate Mycoplasma-Retentive Filters by Filter Manufacturers. PDA J. Pharm. Sci. Technol. 2014, 68, 281–296. [Google Scholar] [CrossRef]
- Marshall, A.D.; Munro, P.A.; Trägårdh, G. The Effect of Protein Fouling in Microfiltration and Ultrafiltration on Permeate Flux, Protein Retention and Selectivity: A Literature Review. Desalination 1993, 91, 65–108. [Google Scholar] [CrossRef]
- Mahler, H.-C.; Huber, F.; Kishore, R.S.K.; Reindl, J.; Rückert, P.; Müller, R. Adsorption Behavior of a Surfactant and a Monoclonal Antibody to Sterilizing-Grade Filters. J. Pharm. Sci. 2010, 99, 2620–2627. [Google Scholar] [CrossRef]
- Kelly, S.T.; Zydney, A.L. Protein Fouling during Microfiltration: Comparative Behavior of Different Model Proteins. Biotechnol. Bioeng. 1997, 55, 91–100. [Google Scholar] [CrossRef]
- Liu, L.; Qi, W.; Schwartz, D.K.; Randolph, T.W.; Carpenter, J.F. The Effects of Excipients on Protein Aggregation During Agitation: An Interfacial Shear Rheology Study. J. Pharm. Sci. 2013, 102, 2460–2470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggio, E.T. Use of Excipients to Control Aggregation in Peptide and Protein Formulations. J. Excip. Food Chem. 2010, 1, 40–49. [Google Scholar]
- Allmendinger, A.; Mueller, R.; Huwyler, J.; Mahler, H.-C.; Fischer, S. Sterile Filtration of Highly Concentrated Protein Formulations: Impact of Protein Concentration, Formulation Composition, and Filter Material. J. Pharm. Sci. 2015, 104, 3319–3329. [Google Scholar] [CrossRef] [PubMed]
- Taylor, N.; Ma, W.J.; Kristopeit, A.; Wang, S.; Zydney, A.L. Retention Characteristics of Sterile Filters—Effect of Pore Size and Structure. J. Membr. Sci. 2021, 635, 119436. [Google Scholar] [CrossRef]
- Fallahianbijan, F.; Emami, P.; Hillsley, J.M.; Motevalian, S.P.; Conde, B.C.; Reilly, K.; Zydney, A.L. Effect of Membrane Pore Structure on Fouling Behavior of Glycoconjugate Vaccines. J. Membr. Sci. 2021, 619, 118797. [Google Scholar] [CrossRef]
- Nguyen, M.N.; Loulergue, P.; Karpel, N.; Teychene, B. Electron Beam Irradiation of Polyvinylidene Fluoride/polyvinylpyrrolidone Ultrafiltration Membrane in Presence of Zwitterions Molecules Evaluation of Filtration Performance. Rad. Phys. Chem. 2019, 159, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Koloti, E.; Gule, N.; Arotiba, O.; Malinga, S. Laccase-immobilized Dendritic Nanofibrous Membranes as a Novel Approach towards the Removal of Bisphenol A. Env. Technol. 2018, 39, 392–404. [Google Scholar] [CrossRef]
- Rusli, U.N.; Alias, N.H.; Shahruddin, M.Z.; Othman, N.H. Photocatalytic Degradation of Oil Using Polyvinylidene Fluoride/Titanium Dioxide Composite Membrane for Oily Wastewater Treatment. MATEC Web Conf. 2016, 69, 05003. [Google Scholar] [CrossRef] [Green Version]
- Alenazi, N.; Hussein, M.; Alamry, K.; Asiri, A. Nanocomposite-Based Aminated Polyethersulfone and Carboxylate Activated Carbon for Environmental Application. A Real Sample Analysis. J. Carbon Res. 2018, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Millipore Millipore Express PLUS Membrane Filter. Available online: merckmillipore.com/product/Millipore-Express-PLUS-Membrane-Filter,MM_NF-GPWP04700 (accessed on 10 March 2022).
- Millipore Durapore® Membrane Filter, 0.22 μm. Available online: merckmillipore.com/product/Durapore-Membrane-Filter-0.22m,MM_NF-GVWP04700 (accessed on 10 March 2022).
- Susanto, H.; Stahra, N.; Ulbricht, M. High Performance Polyethersulfone Microfiltration Membranes Having High Flux and Stable Hydrophilic Property. J. Membr. Sci. 2009, 342, 153–164. [Google Scholar] [CrossRef]
- Bucs, S.S.; Valladares Linares, R.; van Loosdrecht, M.C.M.; Kruithof, J.C.; Vrouwenvelder, J.S. Impact of Organic Nutrient Load on Biomass Accumulation, Feed Channel Pressure Drop Increase and Permeate Flux Decline in Membrane Systems. Water Res. 2014, 67, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Zydney, A.L. Development of a New Blocking Model for Membrane Fouling Based on a Composite Media Model. J. Membr. Sci. Lett. 2022, 2, 100018. [Google Scholar] [CrossRef]
- Mollerup, J.M. A Review of the Thermodynamics of Protein Association to Ligands, Protein Adsorption, and Adsorption Isotherms. Chem. Eng. Technol. 2008, 31, 864–874. [Google Scholar] [CrossRef]
- Arunkumar, A.; Singh, N.; Peck, M.; Borys, M.C.; Li, Z.J. Investigation of Single-Pass Tangential Flow Filtration (SPTFF) as an Inline Concentration Step for Cell Culture Harvest. J. Membr. Sci. 2017, 524, 20–32. [Google Scholar] [CrossRef]
- Wang, W.; Roberts, C.J. Protein Aggregation—Mechanisms, Detection, and Control. Int. J. Pharm. 2018, 550, 251–268. [Google Scholar] [CrossRef]
- Lay, H.T.; Yeow, R.J.E.; Ma, Y.; Zydney, A.L.; Wang, R.; Chew, J.W. Internal Membrane Fouling by Proteins during Microfiltration. J. Membr. Sci. 2021, 637, 119589. [Google Scholar] [CrossRef]
- Bowen, W.R.; Gan, Q. Properties of Microfiltration Membranes: Flux Loss during Constant Pressure Permeation of Bovine Serum Albumin. Biotechnol. Bioeng. 1991, 38, 688–696. [Google Scholar] [CrossRef]
- Ramon, G.Z.; Hoek, E.M.V. On the Enhanced Drag Force Induced by Permeation through a Filtration Membrane. J. Membr. Sci. 2012, 392–393, 1–8. [Google Scholar] [CrossRef]
Atomic Concentration (%) | |||||||
---|---|---|---|---|---|---|---|
C 1s | O 1s | F 1s | S 2p | Si 2p | Zn 2p | Ca 2p | |
Filter A | 66.2 | 14.5 | 18.4 | - | 0.5 | 0.2 | 0.2 |
Filter B | 74.2 | 22.9 | - | 2.9 | - | - | - |
Model | Material | Measured Pore Size (μm) a | Thickness b (μm) | Contact Angle (deg) |
---|---|---|---|---|
A | Hydrophilic PVDF | 0.3 | 107.7 ± 0.7 | 78 |
B | PES | 0.26 | 170.7 ± 3.0 | N.D. |
Filter | Feed for Sample (×106 CFU/mL) | Permeate for Sample | Retention Rate (log/cm2) |
---|---|---|---|
A | 4.2 | N.D. | >7.8 |
B | 4.0 | N.D. | >7.9 |
Feed BSA Conc. (g/L) | Adsorbed Protein Conc. (µg/cm2) | |
---|---|---|
A | B | |
1 | N.D. | 80.7 |
2 | 66.6 | 132.0 |
5 | 152.2 | 263.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, J.; Suh, D.; Cho, Y.H.; Baek, Y. Comparative Evaluation of the Performance of Sterile Filters for Bioburden Protection and Final Fill in Biopharmaceutical Processes. Membranes 2022, 12, 524. https://doi.org/10.3390/membranes12050524
Na J, Suh D, Cho YH, Baek Y. Comparative Evaluation of the Performance of Sterile Filters for Bioburden Protection and Final Fill in Biopharmaceutical Processes. Membranes. 2022; 12(5):524. https://doi.org/10.3390/membranes12050524
Chicago/Turabian StyleNa, Jimin, Dongwoo Suh, Young Hoon Cho, and Youngbin Baek. 2022. "Comparative Evaluation of the Performance of Sterile Filters for Bioburden Protection and Final Fill in Biopharmaceutical Processes" Membranes 12, no. 5: 524. https://doi.org/10.3390/membranes12050524
APA StyleNa, J., Suh, D., Cho, Y. H., & Baek, Y. (2022). Comparative Evaluation of the Performance of Sterile Filters for Bioburden Protection and Final Fill in Biopharmaceutical Processes. Membranes, 12(5), 524. https://doi.org/10.3390/membranes12050524