An AFM Approach Applied in a Study of α-Crystallin Membrane Association: New Insights into Lens Hardening and Presbyopia Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. α-Crystallin Extraction and Purification
2.3. AFM Experiment
3. Results
3.1. Topographical Images of Time-Dependent α-Crystallin Membrane Interaction
3.2. Mechanical Properties of Membranes with α-Crystallin Association
3.3. Distribution of α-Crystallin Oligomers
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horwitz, J.; Bova, M.P.; Ding, L.L.; Haley, D.A.; Stewart, P.L. Lens Alpha-Crystallin: Function and Structure. Eye Lond. Engl. 1999, 13 Pt 3b, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Hejtmancik, J.F.; Shiels, A. Overview of the Lens. Prog. Mol. Biol. Transl. Sci. 2015, 134, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heys, K.R.; Cram, S.L.; Truscott, R.J. Massive Increase in the Stiffness of the Human Lens Nucleus with Age: The Basis for Presbyopia? Mol. Vis. 2004, 10, 956–963. [Google Scholar] [PubMed]
- Truscott, R.J. Presbyopia. Emerging from a Blur towards an Understanding of the Molecular Basis for This Most Common Eye Condition. Exp. Eye Res. 2009, 88, 241–247. [Google Scholar] [CrossRef]
- Heys, K.R.; Friedrich, M.G.; Truscott, R.J.W. Presbyopia and Heat: Changes Associated with Aging of the Human Lens Suggest a Functional Role for the Small Heat Shock Protein, Alpha-Crystallin, in Maintaining Lens Flexibility. Aging Cell 2007, 6, 807–815. [Google Scholar] [CrossRef]
- Nandi, S.K.; Nahomi, R.B.; Rankenberg, J.; Glomb, M.A.; Nagaraj, R.H. Glycation-Mediated Inter-Protein Cross-Linking Is Promoted by Chaperone-Client Complexes of α-Crystallin: Implications for Lens Aging and Presbyopia. J. Biol. Chem. 2020, 295, 5701–5716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandi, S.K.; Rankenberg, J.; Glomb, M.A.; Nagaraj, R.H. Transient Elevation of Temperature Promotes Cross-Linking of α-Crystallin-Client Proteins through Formation of Advanced Glycation Endproducts: A Potential Role in Presbyopia and Cataracts. Biochem. Biophys. Res. Commun. 2020, 533, 1352–1358. [Google Scholar] [CrossRef] [PubMed]
- Strenk, S.A.; Strenk, L.M.; Koretz, J.F. The Mechanism of Presbyopia. Prog. Retin. Eye Res. 2005, 24, 379–393. [Google Scholar] [CrossRef] [PubMed]
- Eskridge, J.B. Review of Ciliary Muscle Effort in Presbyopia. Am. J. Optom. Physiol. Opt. 1984, 61, 133–138. [Google Scholar] [CrossRef]
- Krag, S.; Olsen, T.; Andreassen, T.T. Biomechanical Characteristics of the Human Anterior Lens Capsule in Relation to Age. Investig. Ophthalmol. Vis. Sci. 1997, 38, 357–363. [Google Scholar]
- Coleman, D.J. Unified Model for Accommodative Mechanism. Am. J. Ophthalmol. 1970, 69, 1063–1079. [Google Scholar] [CrossRef]
- Katz, J.A.; Karpecki, P.M.; Dorca, A.; Chiva-Razavi, S.; Floyd, H.; Barnes, E.; Wuttke, M.; Donnenfeld, E. Presbyopia—A Review of Current Treatment Options and Emerging Therapies. Clin. Ophthalmol. Auckl. N. Z. 2021, 15, 2167–2178. [Google Scholar] [CrossRef] [PubMed]
- Garner, W.H.; Garner, M.H. Protein Disulfide Levels and Lens Elasticity Modulation: Applications for Presbyopia. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2851–2863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glasser, A.; Campbell, M.C. Biometric, Optical and Physical Changes in the Isolated Human Crystalline Lens with Age in Relation to Presbyopia. Vision Res. 1999, 39, 1991–2015. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.F. Elastic Properties of the Human Lens. Exp. Eye Res. 1971, 11, 143. [Google Scholar] [CrossRef]
- Scarcelli, G.; Kim, P.; Yun, S.H. In Vivo Measurement of Age-Related Stiffening in the Crystalline Lens by Brillouin Optical Microscopy. Biophys. J. 2011, 101, 1539–1545. [Google Scholar] [CrossRef] [Green Version]
- Weeber, H.A.; Eckert, G.; Pechhold, W.; van der Heijde, R.G. Stiffness Gradient in the Crystalline Lens. Graefes Arch. Clin. Exp. Ophthalmol. 2007, 245, 1357–1366. [Google Scholar] [CrossRef] [Green Version]
- Hozic, A.; Rico, F.; Colom, A.; Buzhynskyy, N.; Scheuring, S. Nanomechanical Characterization of the Stiffness of Eye Lens Cells: A Pilot Study. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2151–2156. [Google Scholar] [CrossRef] [Green Version]
- Weeber, H.A.; Eckert, G.; Soergel, F.; Meyer, C.H.; Pechhold, W.; van der Heijde, R.G.L. Dynamic Mechanical Properties of Human Lenses. Exp. Eye Res. 2005, 80, 425–434. [Google Scholar] [CrossRef]
- Wilkes, R.P.; Reilly, M.A. A Pre-Tensioned Finite Element Model of Ocular Accommodation and Presbyopia. Int. J. Adv. Eng. Sci. Appl. Math. 2016, 1, 25–38. [Google Scholar] [CrossRef]
- Heys, K.R.; Truscott, R.J.W. The Stiffness of Human Cataract Lenses Is a Function of Both Age and the Type of Cataract. Exp. Eye Res. 2008, 86, 701–703. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.V.; Huang, Q.; Horwitz, J.; Zigler, J.S. Evidence That α-Crystallin Prevents Non-Specific Protein Aggregation in the Intact Eye Lens. Biochim. Biophys. Acta BBA—Gen. Subj. 1995, 1245, 439–447. [Google Scholar] [CrossRef]
- Srivastava, O.; Srivastava, K.; Joseph, R.; Wilson, L. Increased Association of Deamidated AA-N101D with Lens Membrane of Transgenic AAN101D vs. Wild Type AA Mice: Potential Effects on Intracellular Ionic Imbalance and Membrane Disorganization. BMC Ophthalmol. 2020, 20, 484. [Google Scholar] [CrossRef] [PubMed]
- Bova, M.P.; Mchaourab, H.S.; Han, Y.; Fung, B.K.-K. Subunit Exchange of Small Heat Shock Proteins analysis of oligomer formation of αa-crystallin and hsp27 by fluorescence resonance energy transfer and site-directed truncations. J. Biol. Chem. 2000, 275, 1035–1042. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, M.G.; Truscott, R.J.W. Membrane Association of Proteins in the Aging Human Lens: Profound Changes Take Place in the Fifth Decade of Life. Investig. Ophthalmol. Vis. Sci. 2009, 50, 4786–4793. [Google Scholar] [CrossRef] [Green Version]
- Timsina, R.; Mainali, L. Association of Alpha-Crystallin with Fiber Cell Plasma Membrane of the Eye Lens Accompanied by Light Scattering and Cataract Formation. Membranes 2021, 11, 447. [Google Scholar] [CrossRef]
- Srivastava, K.; Chaves, J.M.; Srivastava, O.P.; Kirk, M. Multi-Crystallin Complexes Exist in the Water-Soluble High Molecular Weight Protein Fractions of Aging Normal and Cataractous Human Lenses. Exp. Eye Res. 2008, 87, 356–366. [Google Scholar] [CrossRef]
- Chandrasekher, G.; Cenedella, R.J. Protein Associated with Human Lens “native” Membrane during Aging and Cataract Formation. Exp. Eye Res. 1995, 60, 707–717. [Google Scholar] [CrossRef]
- Cobb, B.A.; Petrash, J.M. Alpha-Crystallin Chaperone-like Activity and Membrane Binding in Age-Related Cataracts. Biochemistry 2002, 41, 483–490. [Google Scholar] [CrossRef]
- Friedrich, M.G.; Truscott, R.J.W. Large-Scale Binding of α-Crystallin to Cell Membranes of Aged Normal Human Lenses: A Phenomenon That Can Be Induced by Mild Thermal Stress. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5145–5152. [Google Scholar] [CrossRef] [Green Version]
- McGinty, S.J.; Truscott, R.J.W. Presbyopia: The First Stage of Nuclear Cataract? Ophthalmic Res. 2006, 38, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Borchman, D.; Tang, D. Binding Capacity of Alpha-Crystallin to Bovine Lens Lipids. Exp. Eye Res. 1996, 63, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekher, G.; Cenedella, R.J. Properties of α-Crystallin Bound to Lens Membrane: Probing Organization at the Membrane Surface. Exp. Eye Res. 1997, 64, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Ifeanyi, F.; Takemoto, L. Differential Binding of Alpha-Crystallins to Bovine Lens Membrane. Exp. Eye Res. 1989, 49, 143–147. [Google Scholar] [CrossRef]
- Ifeanyi, F.; Takemoto, L. Specificity of Alpha Crystallin Binding to the Lens Membrane. Curr. Eye Res. 1990, 9, 259–265. [Google Scholar] [CrossRef]
- Ifeanyi, F.; Takemoto, L. Alpha Crystallin from Human Cataractous vs. Normal Lenses: Change in Binding to Lens Membrane. Exp. Eye Res. 1990, 50, 113–116. [Google Scholar] [CrossRef]
- Mulders, J.W.; Stokkermans, J.; Leunissen, J.A.; Benedetti, E.L.; Bloemendal, H.; de Jong, W.W. Interaction of Alpha-Crystallin with Lens Plasma Membranes. Affinity for MP26. Eur. J. Biochem. 1985, 152, 721–728. [Google Scholar] [CrossRef]
- Zhang, W.Z.; Augusteyn, R.C. On the Interaction of Alpha-Crystallin with Membranes. Curr. Eye Res. 1994, 13, 225–230. [Google Scholar] [CrossRef]
- Mainali, L.; O’Brien, W.J.; Timsina, R. Interaction of Alpha-Crystallin with Phospholipid Membranes. Curr. Eye Res. 2021, 46, 185–194. [Google Scholar] [CrossRef]
- Timsina, R.; Khadka, N.K.; Maldonado, D.; Mainali, L. Interaction of Alpha-Crystallin with Four Major Phospholipids of Eye Lens Membranes. Exp. Eye Res. 2021, 202, 108337. [Google Scholar] [CrossRef]
- Ifeanyi, F.; Takemoto, L. Interaction of Lens Crystallins with Lipid Vesicles. Exp. Eye Res. 1991, 52, 535–538. [Google Scholar] [CrossRef]
- Cobb, B.A.; Petrash, J.M. Factors Influencing α-Crystallin Association with Phospholipid Vesicles. Mol. Vis. 2002, 8, 85–93. [Google Scholar] [PubMed]
- Tang, D.; Borchman, D. Temperature Induced Structural Changes of Beta-Crystallin and Sphingomyelin Binding. Exp. Eye Res. 1998, 67, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Borchman, D.; Yappert, M.C.; Cenedella, R.J. Influence of Cholesterol on the Interaction of Alpha-Crystallin with Phospholipids. Exp. Eye Res. 1998, 66, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Cobb, B.A.; Petrash, J.M. Characterization of α-Crystallin-Plasma Membrane Binding. J. Biol. Chem. 2000, 275, 6664–6672. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.; Borchman, D.; Yappert, M.C. Alpha-Crystallin/Lens Lipid Interactions Using Resonance Energy Transfer. Ophthalmic Res. 1999, 31, 452–462. [Google Scholar] [CrossRef]
- Tjondro, H.C.; Xi, Y.-B.; Chen, X.-J.; Su, J.-T.; Yan, Y.-B. Membrane Insertion of AA-Crystallin Is Oligomer-Size Dependent. Biochem. Biophys. Res. Commun. 2016, 473, 1–7. [Google Scholar] [CrossRef]
- Timsina, R.; Trossi-Torres, G.; Thieme, J.; O’Dell, M.; Khadka, N.K.; Mainali, L. Alpha-Crystallin Association with the Model of Human and Animal Eye Lens-Lipid Membranes Is Modulated by Surface Hydrophobicity of Membranes. Curr. Eye Res. 2022, 1–19. [Google Scholar] [CrossRef]
- Timsina, R.; Trossi-Torres, G.; O’Dell, M.; Khadka, N.K.; Mainali, L. Cholesterol and Cholesterol Bilayer Domains Inhibit Binding of Alpha-Crystallin to the Membranes Made of the Major Phospholipids of Eye Lens Fiber Cell Plasma Membranes. Exp. Eye Res. 2021, 206, 108544. [Google Scholar] [CrossRef]
- Trossi-Torres, G.; Timsina, R.; Mainali, L. Alpha-Crystallin-Membrane Association Modulated by Phospholipid Acyl Chain Length and Degree of Unsaturation. Membranes 2022, 12, 455. [Google Scholar] [CrossRef]
- Choi, S.; Lee, H.-J.; Cheong, Y.; Shin, J.-H.; Jin, K.-H.; Park, H.-K.; Park, Y.-G. AFM Study for Morphological Characteristics and Biomechanical Properties of Human Cataract Anterior Lens Capsules. Scanning 2012, 34, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Ziebarth, N.M.; Wojcikiewicz, E.P.; Manns, F.; Moy, V.T.; Parel, J.M. Atomic Force Microscopy Measurements of Lens Elasticity in Monkey Eyes. Mol. Vis. 2007, 13, 504–510. [Google Scholar] [PubMed]
- Li, M.; Xi, N.; Wang, Y.; Liu, L. Atomic Force Microscopy as a Powerful Multifunctional Tool for Probing the Behaviors of Single Proteins. IEEE Trans. NanoBiosci. 2020, 19, 78–99. [Google Scholar] [CrossRef] [PubMed]
- Khadka, N.K.; Timsina, R.; Rowe, E.; O’Dell, M.; Mainali, L. Mechanical Properties of the High Cholesterol-Containing Membrane: An AFM Study. Biochim. Biophys. Acta BBA—Biomembr. 2021, 1863, 183625. [Google Scholar] [CrossRef]
- Deeley, J.M.; Mitchell, T.W.; Wei, X.; Korth, J.; Nealon, J.R.; Blanksby, S.J.; Truscott, R.J.W. Human Lens Lipids Differ Markedly from Those of Commonly Used Experimental Animals. Biochim. Biophys. Acta BBA—Mol. Cell Biol. Lipids 2008, 1781, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, J.; Huang, Q.-L.; Ding, L.; Bova, M.P. [30] Lens α-Crystallin: Chaperone-like Properties. In Methods in Enzymology; Molecular Chaperones; Academic Press: Cambridge, MA, USA, 1998; Volume 290, pp. 365–383. [Google Scholar]
- Ryazantsev, S.N.; Poliansky, N.B.; Chebotareva, N.A.; Muranov, K.O. 3D Structure of the Native α-Crystallin from Bovine Eye Lens. Int. J. Biol. Macromol. 2018, 117, 1289–1298. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005. [Google Scholar]
- Bloemendal, H.; Hermsen, T.; Dunia, I.; Benedetti, E.L. Association of Crystallins with the Plasma Membrane. Exp. Eye Res. 1982, 35, 61–67. [Google Scholar] [CrossRef]
- Borchman, D.; Yappert, M.C. Lipids and the Ocular Lens. J. Lipid Res. 2010, 51, 2473–2488. [Google Scholar] [CrossRef] [Green Version]
- Das, C.; Sheikh, K.H.; Olmsted, P.D.; Connell, S.D. Nanoscale Mechanical Probing of Supported Lipid Bilayers with Atomic Force Microscopy. Phys. Rev. E 2010, 82, 041920. [Google Scholar] [CrossRef] [Green Version]
- Stetter, F.W.S.; Hugel, T. The Nanomechanical Properties of Lipid Membranes Are Significantly Influenced by the Presence of Ethanol. Biophys. J. 2013, 104, 1049–1055. [Google Scholar] [CrossRef] [Green Version]
- Dimitriadis, E.K.; Horkay, F.; Maresca, J.; Kachar, B.; Chadwick, R.S. Determination of Elastic Moduli of Thin Layers of Soft Material Using the Atomic Force Microscope. Biophys. J. 2002, 82, 2798–2810. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.J.; Sahoo, P.K.; Dalzini, A.; Hayati, Z.; Aryal, C.M.; Teng, P.; Cai, J.F.; Gutierrez, H.R.; Song, L.K. Membrane Disruption Mechanism of a Prion Peptide (106–126) Investigated by Atomic Force Microscopy, Raman and Electron Paramagnetic Resonance Spectroscopy. J. Phys. Chem. B 2017, 121, 5058–5071. [Google Scholar] [CrossRef] [Green Version]
- Selivanova, O.M.; Galzitskaya, O.V. Structural and Functional Peculiarities of α-Crystallin. Biology 2020, 9, 85. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.N.; Li, X.-Y. Interaction and Aggregation of Lens Crystallins. Exp. Eye Res. 1991, 53, 61–66. [Google Scholar] [CrossRef]
- Mulders, J.W.; Wajcik, E.; Bloemendal, H.; de Jong, W.W. Loss of High-Affinity Membrane Binding of Bovine Nuclear Alpha-Crystallin. Exp. Eye Res. 1989, 49, 149–152. [Google Scholar] [CrossRef]
- Koynova, R.; Caffrey, M. Phases and Phase Transitions of the Phosphatidylcholines. Biochim. Biophys. Acta BBA—Rev. Biomembr. 1998, 1376, 91–145. [Google Scholar] [CrossRef]
- Nicolson, G.L. The Fluid-Mosaic Model of Membrane Structure: Still Relevant to Understanding the Structure, Function and Dynamics of Biological Membranes after More than 40 Years. Biochim Biophys Acta 2014, 1838, 1451–1466. [Google Scholar] [CrossRef] [Green Version]
- Jedziniak, J.A.; Kinoshita, J.H.; Yates, E.M.; Hocker, L.O.; Benedek, G.B. Calcium-Induced Aggregation of Bovine Lens Alpha Crystallins. Investig. Ophthalmol. Vis. Sci. 1972, 11, 905–915. [Google Scholar]
- Inoue, M.; In, Y.; Ishida, T. Calcium Binding to Phospholipid: Structural Study of Calcium Glycerophosphate. J. Lipid Res. 1992, 33, 985–994. [Google Scholar] [CrossRef]
- Domingues, M.M.; Gomes, B.; Hollmann, A.; Santos, N.C. 25-Hydroxycholesterol Effect on Membrane Structure and Mechanical Properties. Int. J. Mol. Sci. 2021, 22, 2574. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khadka, N.K.; Timsina, R.; Mainali, L. An AFM Approach Applied in a Study of α-Crystallin Membrane Association: New Insights into Lens Hardening and Presbyopia Development. Membranes 2022, 12, 522. https://doi.org/10.3390/membranes12050522
Khadka NK, Timsina R, Mainali L. An AFM Approach Applied in a Study of α-Crystallin Membrane Association: New Insights into Lens Hardening and Presbyopia Development. Membranes. 2022; 12(5):522. https://doi.org/10.3390/membranes12050522
Chicago/Turabian StyleKhadka, Nawal K., Raju Timsina, and Laxman Mainali. 2022. "An AFM Approach Applied in a Study of α-Crystallin Membrane Association: New Insights into Lens Hardening and Presbyopia Development" Membranes 12, no. 5: 522. https://doi.org/10.3390/membranes12050522
APA StyleKhadka, N. K., Timsina, R., & Mainali, L. (2022). An AFM Approach Applied in a Study of α-Crystallin Membrane Association: New Insights into Lens Hardening and Presbyopia Development. Membranes, 12(5), 522. https://doi.org/10.3390/membranes12050522