A Critical Review on the Use of Ionic Liquids in Proton Exchange Membrane Fuel Cells
Abstract
:1. Introduction
2. Proton Exchange Membrane Fuel Cells (PEMFCs)
3. Ionic Liquids Applications in PEM
3.1. Preparation of Polymerized Ionic Liquid Membranes
3.2. Ionic Liquids as Electrolytes in PEMFCs
3.3. Polymer-Ionic Liquids Membranes
3.3.1. Nafion-Based PEM
3.3.2. Polyvinylidene Fluoride (PVDF)-Based PEM
3.3.3. Polybenzimidazole (PBI)-Based PEM
3.3.4. Sulfonated Poly (Ether Ether Ketones) (SPEEK)-Based PEM
3.3.5. Sulfonated Polyimide (SPI)-Based PEM
3.3.6. Other Polymer-Based PEM
4. IL/Polymer PEM: Challenges and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
[2-FPy]TF: | 2-fluoropyridinium triflate |
[2-sea][TfO]: | 2-Sulfoethylammonium trifluoromethanesulfonate |
9FDA: | 4,4′-(9-fluorenylidene) dianiline |
ABPBI: | Poly(2,5-benzimidazole) |
BG-BF4: | N-butylguanidinium tetrafluoroborate |
[BIm][BEHP]: | 1-n-butylimidazolium bis(2-ethylhexyl)phosphate |
[BIm][DBP]: | 1-n-butylimidazolium dibutylphosphate |
BMIHSO4: | 1-butyl-3-methylimidazolium hydrogen sulfate |
[BMIM][DCA]: | 1-butyl-3-methylimidazolium dicyanamide |
[BMIm]H2PO4: | 1-butyl-3-methylimidazolium dihydrogenphosphate |
[BMIM][TFA]: | 1-butyl-3-methylimidazolium triflate |
[BMIM][TFA]: | 1-butyl-3-methylimidazolium Trifluoroacetic |
[BMIm][TfO]: | 1-butyl-3-methylimidazolium trifluoromethanesulfonate |
[BMIm][BF4]: | 1-butyl-3-methylimidazolium tetrafluoroborate |
[BMIm]PF6: | 1-butyl-3-methylimidazolium hexafluorophosphate |
(Btmps)/HN(Tf)2: | 3-(1-butyl-1H-imidazol-3-ium-3-yl) propane-1- sulfonate 1,1,1-Trifluoro-N-(trifluoromethylsulfonyl) methanesulfoneamide |
[bzlm][TFSI]: | Benzimidazolium bis(trifluoromethanesulphonyl)imide |
[C2H3N3]/[CH3SO3H]: | 1H-1,2,4-triazole/methanesulfonic acid |
[C2mim][TFSI]: | Methylmethacrylatein1-ethyl-3-methylimida- zolium bis(trifluoromethanesulfonyl)imide |
[C3OHmim]BF4: | 1-(3-hydroxypropyl)-3-methylimidazolium tetrafluoroboride |
CF3SO3: | Trifluoromethanesulfonate |
CL: | Crosslinker |
CP: | Calcium phosphate |
[dema]HSO4: | Diethylmethylammonium hydrogensulfate |
[dema][TfO]: | Diethylmethylammonium trifluoromethanesulfonate |
[dema][TFSA]: | Diethylmethylammonium bis(trifluoromethylsulfonyl) amide |
[DMBIm]H2PO4: | 2,3 dimethyl-1-butylimidazolium dihydrogen phosphate |
[DMEIm]H2PO4: | 2,3-dimethyl-1-ethylimidazolium dihydrogenphosphate |
[DEMET][TFSI]: | N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide |
DSDA: | 3,3′, 4,4′-diphenyl sulfone tetracarboxylic dianhydride |
DTA+: | n-dodecyltrimethylammonium |
DVB: | Divinylbenzene |
[EIm][TfO]: | 1-ethylimidazolium trifluoromethanesulfonate |
[EIm][TFSI]: | N-ethylimidazolium bis(trifluoromethylsulfonyl)imide |
[Emim]: | 1-ethyl-3-methylimidazolium cation |
[EMIM][AC]: | 1-ethyl-3-methylimidazolium acetate |
[EMIM][BF4]: | 1-ethyl-3-methylimidazolium tetrafluoroborate |
[EMIm][DEP]: | 1-ethyl-3-methylimidazolium diethyl phosphate |
[EMIM][ESO4]: | 1-ethyl-3-methylimidazolium ethyl sulfate |
[EMIm](FH)nF): | 1-ethyl-3-methylimidazolium fluor hydrogenates |
[EMIm]HSO4: | 1-ethyl-3-methylimidazolium hydrogensulfate |
[EMIM][OCSO4]: | 1-ethyl-3-methylimidazolium octylsulfate |
[EMIM][SO4]: | 1-ethyl-3-methylimidazolium sulfate |
[EMIM][TFSI]: | 1-ethyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imid |
[Emorph][HCOO]: | N-ethylmorpholinium formate |
[Epdy]: | Ethyl pyridinium |
ETFE: | poly(ethylene-co-tetrafluoroethylene) |
ETFE-g-poly(4-VP): | Poly(4-VP) grafted ETFE films |
ETFE-g-P(1-Vim): | Poly(1-vinyl imidazole) grafted onto ETFE film |
ETS-10: | Microporous titanosilicate |
H3PO4: | Phosphoric acid |
H2SO4: | Sulfuric acid |
HClO4SiO2: | Perchloric acid immobilized on nano-silica |
[HMI][TFSI]: | 1-H-3-methylimidazolium bis(trifluoromethanesulfonyl)imide |
HPBI: | Hierarchical porous polybenzimidazole |
HSO3-BBIm][TfO]: | 1-butyl-3-(4-sulphobutyl)-imidazoliumtri-fluoromethanesulphonate |
[HSO3-BBIm][TFSI]: | 1-methyl-3-(4-sulfobutyl)-imidazolium bis (trifluoromethylsulfonyl)-imide |
[HSO3-BMIm][TFSI]: | 1-methyl-3-(4-sulphobutyl)-imidazolium bis(trifluoromethylsulphonyl)imide |
IL: Ionic Liquid | |
ImHSO4: | Imidazolium hydrogen sulfate |
[ImVH][TfO]: | 1-vinylimidazolium trifluoromethanesulfonate |
[ImVH][TFSI]: | 1-H-3-vinylimidazolium bis(trifluoromethanesulfonyl) imide |
IPTS30: | IPTS grafted to PBIOH30 backbone |
ITSA: | Isobutyramide trifluoromethanesulfonate |
MAT14PVP7: | Interconnected porous support prepared from MAT14 and PVP7 |
[MIm]BF4: | n-methyl imidazolium tetrafluoroborate |
[MImCM]Cl: | 1-carboxylmethyl-3-methylimidazolium chloride |
[MIm][DBP]: | 1-n-methylimidazolium dibutylphosphate |
[MIm][TfO]: | 1-methylimidazolium trifluoromethanesulfonate |
[MIm][TFSI]: | Methylimidazolium bis(trifluoromethanesulfonyl)imide |
MIHSO4: | 1-methylimidazolium hydrogen sulfate |
[Mmorph][HCOO]: | N-methylmorpholinium formate |
Mmtdema: | Modified montmorillonite clay with dema+ cation |
[morph][HCOO]: | Morpholinium formate |
[MPz][TFSI]: | 1-methyl-pyrazole N,N-bis(trifluoromethane-sulfonyl)imide |
[MTBDH]TFSI: | 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene bis(trifluoromethylsulfonyl)imide |
[N1114]+: | Trimethylethyl amide cation |
[N1114]+HSO4: | Trimethylethyl amide hydrogensulfate |
OCP: | Open circuit potemtial |
PA: | Polyamide |
PAA: | Poly(acrylic acid) |
PEG: | poly(ethylene glycol) |
PAI: | Polyamide imide |
PAMAM: | Polyamidoamine |
PAM/PEG IPN: | Polyacrylamide/polyethylene glycol interpenetrated |
PANI: | Polyaniline |
pBABTS: | 1,4-bis(4-aminophenoxy-2-sulfonic acid) benzenesulfonic acid |
PBI: | Polybenzimidazole |
PBI-O-Ph: | Polybenzimidazole derivative with benzofuranone moieties |
PDC3: | 1,3-di(3-methylimidazolium) propane bis (trifluoromethylsulfonyl) imide |
PEM: | Proton Exchange Membrane |
PEMFC: | Proton Exchange Membrane Fuel Cell |
PMC6: | 1-hexyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide |
PMIH2PO4: | 1-propyl-3-methylimidazolium dihydrogen phosphate |
PPO: | Poly(phenylene oxide) |
PVA: | Plovinyl alcohol |
PVDF: | Polyvinylidene fluoride |
PVDF-HFP: | Poly(vinylidene fluoride-co-hexafluoropropene) |
PWA: | 1-ethyl-3-methyl imidazolium phosphotungstate |
[pyrr][C7H15COO]: | Pyrrolidinium octanoate |
[pyrr][CF3COO]: | Pyrrolidinium trifluoroacete |
[pyrr][CH3COO]: | Pyrrolidinium acetate |
[pyrr][HCOO]: | Pyrrolidinium formate |
[pyrr]HSO4: | Pyrrolidinium hydrogensulfate |
[pyrr][NO3]: | Pyrrolidinium nitrate |
[pyrr][TFSA]: | Pyrrolidinium bis(trifluoromethanesulfonyl)amide |
QPPO: | Poly (2,6-dimethyl phenylene oxide |
RTIL: | Room temperature ionic liquid |
SiO2: | Silicon oxide |
SPAEKKS: | Sulfonated poly(arylene ether ketone ketone sulfone) |
SPAEKS: | Sulfonated poly(arylene ether ketone sulfone) |
SPEEK: | Sulfonated poly (ether ether ketone) |
SPI: | Sulfonated polyimide |
SPPO: | Sulfonated Polyphenylene Oxide |
SPS: | Sulfonated polystyrene |
TEA: | Triethylammonium |
TEAH+: | Triethylammonium cation |
TEA-TF: | Triethylammonium-triflate |
TFA−: | Triflate anion |
TFAPA: | Trifluoroacetic propylamine |
TIB: | 1,3,5-tris(1-imidazolyl)benzene |
[TMPA][TFSI]: | N,N,N-trimethyl-N-propylammonium bis (trifluoromethanesulfonyl) imide |
TMS: | Triethylammonium methanesulphonate |
[TMSPMIm]BF4: | 1-(3-trimethoxysilylpropyl)-2-methylimidazolium tetrafluoroborate |
TOA-TF: | Trioctylammonium triflate |
TPFBu: | Triethylammonium perfluorobutanesulphonate |
ZrO2: | Zirconium dioxide |
ZrP: | Zirconium phosphate |
References
- Jayakumar, A.; Chalmers, A.; Lie, T.T. Review of prospects for adoption of fuel cell electric vehicles in New Zealand. IET Electr. Syst. Transp. 2017, 7, 259–266. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Al-Othman, A.; Assad, M.E.H. Graphene oxide—Nafion composite membrane for effective methanol crossover reduction in passive direct methanol fuel cells. In Proceedings of the 2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA), Al Ain, United Arab Emirates, 25–28 February 2018; pp. 192–196. [Google Scholar] [CrossRef]
- Mohammed, H.; Al-Othman, A.; Nancarrow, P.; Tawalbeh, M.; El Haj Assad, M. Direct hydroCarbon fuel cells: A promising technology for improving energy efficiency. Energy 2019, 172, 207–219. [Google Scholar] [CrossRef]
- Martis, R.; Al-Othman, A.; Alkasrawi, M.; Tawalbeh, M. Fuel cells for carbon capture and power generation: Simulation studies. Int. J. Hydrog. Energy 2021, 46, 6139–6149. [Google Scholar] [CrossRef]
- İnci, M.; Türksoy, Ö. Review of fuel cells to grid interface: Configurations, technical challenges and trends. J. Clean. Prod. 2019, 213, 1353–1370. [Google Scholar] [CrossRef]
- Yu, F.; Han, T.; Wang, Z.; Xie, Y.; Wu, Y.; Jin, Y.; Yang, N.; Xiao, J.; Kawi, S. Recent progress in direct carbon solid oxide fuel cell: Advanced anode catalysts, diversified carbon fuels, and heat management. Int. J. Hydrog. Energy 2021, 46, 4283–4300. [Google Scholar] [CrossRef]
- Ogungbemi, E.; Wilberforce, T.; Ijaodola, O.; Thompson, J.; Olabi, A.G. Review of operating condition, design parameters and material properties for proton exchange membrane fuel cells. Int. J. Energy Res. 2021, 45, 1227–1245. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Al-Othman, A.; Singh, K.; Douba, I.; Kabakebji, D.; Alkasrawi, M. Microbial desalination cells for water purification and power generation: A critical review. Energy 2020, 209, 118493. [Google Scholar] [CrossRef]
- Wilberforce, T.; Ijaodola, O.; Emmanuel, O.; Thompson, J.; Olabi, A.; Abdelkareem, M.; Sayed, E.; Elsaid, K.; Maghrabie, H. Optimization of Fuel Cell Performance Using Computational Fluid Dynamics. Membranes 2021, 11, 146. [Google Scholar] [CrossRef]
- Kim, A.R.; Park, C.J.; Vinothkannan, M.; Yoo, D.J. Sulfonated poly ether sulfone/heteropoly acid composite membranes as electrolytes for the improved power generation of proton exchange membrane fuel cells. Compos. Part B Eng. 2018, 155, 272–281. [Google Scholar] [CrossRef]
- Ryu, S.K.; Kim, A.R.; Vinothkannan, M.; Lee, K.H.; Chu, J.Y.; Yoo, D.J. Enhancing Physic Chemical Properties and Single Cell Performance of Sulfonated Poly(arylene ether) (SPAE) Membrane by Incorporation of Phosphotungstic Acid and Graphene Oxide: A Potential Electrolyte for Proton Exchange Membrane Fuel Cells. Polymers 2021, 13, 2364. [Google Scholar] [CrossRef]
- Tellez-Cruz, M.M.; Escorihuela, J.; Solorza-Feria, O.; Compañ, V. Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers 2021, 13, 3064. [Google Scholar] [CrossRef]
- Sun, X.; Simonsen, S.; Norby, T.; Chatzitakis, A. Composite Membranes for High Temperature PEM Fuel Cells and Electrolysers: A Critical Review. Membranes 2019, 9, 83. [Google Scholar] [CrossRef] [Green Version]
- Cano, Z.P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289. [Google Scholar] [CrossRef]
- Ogungbemi, E.; Wilberforce, T.; Ijaodola, O.; Thompson, J.; Olabi, A.G. Selection of proton exchange membrane fuel cell for transportation. Int. J. Hydrog. Energy 2021, 46, 30625–30640. [Google Scholar] [CrossRef]
- Alaswad, A.; Omran, A.; Sodre, J.R.; Wilberforce, T.; Pignatelli, G.; Dassisti, M.; Baroutaji, A.; Olabi, A.G. Technical and Commercial Challenges of Proton-Exchange Membrane (PEM) Fuel Cells. Energies 2020, 14, 144. [Google Scholar] [CrossRef]
- Nancarrow, P.; Al-Othman, A.; Mital, D.K.; Döpking, S. Comprehensive analysis and correlation of ionic liquid conductivity data for energy applications. Energy 2021, 220, 119761. [Google Scholar] [CrossRef]
- Díaz, M.; Ortiz, A.; Ortiz, I. Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J. Membr. Sci. 2014, 469, 379–396. [Google Scholar] [CrossRef] [Green Version]
- Elwan, H.A.; Mamlouk, M.; Scott, K. A review of proton exchange membranes based on protic ionic liquid/polymer blends for polymer electrolyte membrane fuel cells. J. Power Sources 2021, 484, 229197. [Google Scholar] [CrossRef]
- Miyatake, K.; Watanabe, M. Recent progress in proton conducting membranes. Electrochem. Commun. 2005, 73, 12–19. [Google Scholar] [CrossRef]
- Al-Othman, A.; Tawalbeh, M.; Temsah, O.; Al-Murisi, M. Industrial Challenges of MOFs in Energy Applications. In Encyclopedia of Smart Materials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 535–543. [Google Scholar]
- Muto, F.; Oshima, A.; Kakigi, T.; Mitani, N.; Matsuura, A.; Fujii, K.; Sato, Y.; Li, J.; Washio, M. Synthesis and characterization of PEFC membranes based on fluorinated-polymer-alloy using pre-soft-EB grafting method. Nucl. Instrum. Methods Phys. Res. 2007, 265, 162–167. [Google Scholar] [CrossRef]
- Wang, J.; Yue, Z.; Economy, J. Preparation of proton-conducting composite membranes from sulfonated poly (ether ether ketone) and polyacrylonitrile. J. Membr. Sci. 2007, 291, 210–219. [Google Scholar] [CrossRef]
- Seng, L.K.; Masdar, M.S.; Shyuan, L.K. Ionic Liquid in Phosphoric Acid-Doped Polybenzimidazole (PA-PBI) as Electrolyte Membranes for PEM Fuel Cells: A Review. Membranes 2021, 11, 728. [Google Scholar] [CrossRef]
- Li, S.; Peng, C.; Shen, Q.; Wang, C.; Cheng, Y.; Yang, G. Impact of Membrane Phosphoric Acid Doping Level on Transport Phenomena and Performance in High Temperature PEM Fuel Cells. Membranes 2021, 11, 817. [Google Scholar] [CrossRef] [PubMed]
- Scott, K. Membrane electrode assemblies for polymer electrolyte membrane fuel cells. In Functional Materials for Sustainable Energy Applications; Elsevier: Amsterdam, The Netherlands, 2012; pp. 279–311. [Google Scholar]
- Kim, J.-D.; Ohira, A.; Nakao, H. Chemically Crosslinked Sulfonated Polyphenylsulfone (CSPPSU) Membranes for PEM Fuel Cells. Membranes 2020, 10, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Yen, C.-Y.; Ma, C.-C.M.; Liao, S.-H.; Lee, C.-H.; Hsiao, Y.-H.; Lin, H.-P. High proton-conducting Nafion ®/–SO3H functionalized mesoporous silica composite membranes. J. Power Sources 2007, 171, 388–395. [Google Scholar] [CrossRef]
- Majlan, E.H.; Rohendi, D.; Daud, W.R.W.; Husaini, T.; Haque, M.A. Electrode for proton exchange membrane fuel cells: A review. Renew. Sustain. Energy Rev. 2018, 89, 117–134. [Google Scholar] [CrossRef]
- Qiu, B.; Lin, B.; Yan, F. Ionic liquid/poly(ionic liquid)-based electrolytes for energy devices. Polym. Int. 2013, 62, 335–337. [Google Scholar] [CrossRef]
- Park, M.J.; Choi, I.; Hong, J.; Kim, O. Polymer electrolytes integrated with ionic liquids for future electroChemical devices. J. Appl. Polym. Sci. 2013, 129, 2363–2376. [Google Scholar] [CrossRef]
- Alashkar, A.; Ibrahim, T.; Khamis, M.; Alami, A.H. Electrolytes, Dyes, and Perovskite Materials in Third Generation Photovoltaic Cells. Ref. Modul. Mater. Sci. Mater. Eng. 2021, 2, 621–634. [Google Scholar] [CrossRef]
- Hagiwara, R.; Lee, J.S. Ionic Liquids for ElectrChemical Devices. Electrchemistry 2007, 75, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Galiński, M.; Lewandowski, A.; Stepniak, I. Ionic liquids as electrolytes. Electrochim. Acta 2006, 51, 5567–5580. [Google Scholar] [CrossRef]
- Bara, J.E.; Gin, D.L.; Noble, R.D. Effect of Anion on Gas Separation Performance of Polymer−Room-Temperature Ionic Liquid Composite Membranes. Ind. Eng. Chem. Res. 2008, 47, 9919–9924. [Google Scholar] [CrossRef]
- Põhako-Esko, K.; Timusk, M.; Saal, K.; Lõhmus, R.; Kink, I.; Mäeorg, U. Increased conductivity of polymerized ionic liquids through the use of a nonpolymerizable ionic liquid additive. J. Mater. Res. 2013, 28, 3086–3093. [Google Scholar] [CrossRef]
- GSaiz, P.; Lopes, A.C.; Eizagirre Barker, S.; Fernández de Luis, R.; Arriortua, M.I. Ionic liquids for the control of the morphology in poly(vinylidene fluoride-co-hexafluoropropylene) membranes. Mater. Des. 2018, 155, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Goh, J.T.E.; Abdul Rahim, A.R.; Masdar, M.S.; Shyuan, L.K. Enhanced Performance of Polymer Electrolyte Membranes via Modification with Ionic Liquids for Fuel Cell Applications. Membranes 2021, 11, 395. [Google Scholar] [CrossRef]
- Che, Q.; Fan, H.; Duan, X.; Feng, F.; Mao, W.; Han, X. Layer by layer self-assembly fabrication of high temperature proton exchange membrane based on ionic liquids and polymers. J. Mol. Liq. 2018, 269, 666–674. [Google Scholar] [CrossRef]
- Ka’ki, A.; Alraeesi, A.; Al-Othman, A.; Tawalbeh, M. Proton conduction of novel calcium phosphate nanoComposite membranes for high temperature PEM fuel cells applications. Int. J. Hydrog. Energy 2021, 46, 30641–30657. [Google Scholar] [CrossRef]
- Miran, M.S.; Yasuda, T.; Susan, M.A.B.H.; Dokko, K.; Watanabe, M. ElectroChemical properties of protic ionic liquids: Correlation between open circuit potential for H2/O2 cells under non-humidified conditions and ΔpKa. RSC Adv. 2013, 3, 4141. [Google Scholar] [CrossRef]
- Nakamoto, H.; Noda, A.; Hayamizu, K.; Hayashi, S.; Hamaguchi, H.; Watanabe, M. Proton-Conducting Properties of a Brønsted Acid−Base Ionic Liquid and Ionic Melts Consisting of Bis(trifluoromethanesulfonyl)imide and Benzimidazole for Fuel Cell Electrolytes. J. Phys. Chem. C 2007, 111, 1541–1548. [Google Scholar] [CrossRef]
- Noda, A.; Susan, M.A.B.H.; Kudo, K.; Mitsushima, S.; Hayamizu, K.; Watanabe, M. Brønsted Acid−Base Ionic Liquids as Proton-Conducting Nonaqueous Electrolytes. J. Phys. Chem. B 2003, 107, 4024–4033. [Google Scholar] [CrossRef]
- Wippermann, K.; Wackerl, J.; Lehnert, W.; Huber, B.; Korte, C. 2-Sulfoethylammonium Trifluoromethanesulfonate as an Ionic Liquid for High Temperature PEM Fuel Cells. J. Electrochem. Soc. 2016, 163, F25–F37. [Google Scholar] [CrossRef] [Green Version]
- Thomson, J.; Dunn, P.; Holmes, L.; Belieres, J.-P.; Angell, C.A.; Gervasio, D. A Flourinated Ionic Liquid as a High-Performance Fuel Cell Electrolyte. ECS Trans. 2019, 13, 21–29. [Google Scholar] [CrossRef]
- Nakamoto, H.; Watanabe, M. Brønsted acid-base ionic liquids for fuel cell electrolytes. Chem. Commun. 2007, 24, 2539–2541. [Google Scholar] [CrossRef] [PubMed]
- Miran, M.S.; Yasuda, T.; Susan, M.A.B.H.; Dokko, K.; Watanabe, M. Binary Protic Ionic Liquid Mixtures as a Proton Conductor: High Fuel Cell Reaction Activity and Facile Proton Transport. J. Phys. Chem. C 2014, 118, 27631–27639. [Google Scholar] [CrossRef]
- Tang, B.; Gondosiswanto, R.; Hibbert, D.B.; Zhao, C. Critical assessment of superbase-derived protic ionic liquids as electrolytes for electroChemical applications. Electrochim. Acta 2019, 298, 413–420. [Google Scholar] [CrossRef]
- Yoshizawa-Fujita, M.; Byrne, N.; Forsyth, M.; MacFarlane, D.R.; Ohno, H. Proton transport properties in zwitterion blends with Brønsted acids. J. Phys. Chem. B 2010, 114, 16373–16380. [Google Scholar] [CrossRef]
- Luo, J.; Hu, J.; Saak, W.; Beckhaus, R.; Wittstock, G.; Vankelecom, I.F.J.; Agert, C.; Conrad, O. Protic ionic liquid and ionic melts prepared from methanesulfonic acid and 1H-1,2,4-triazole as high temperature PEMFC electrolytes. J. Mater. Chem. 2011, 21, 10426–10436. [Google Scholar] [CrossRef] [Green Version]
- Yoshizawa, M.; Ogihara, W.; Ohno, H. Design of new ionic liquids by neutralization of imidazole derivatives with imide-type acids. Electrochem. Solid-State Lett. 2001, 4, 60–62. [Google Scholar] [CrossRef]
- Fernicola, A.; Panero, S.; Scrosati, B.; Tamada, M.; Ohno, H. New Types of Brönsted Acid–Base Ionic Liquids-Based Membranes for Applications in PEMFCs. ChemPhysChem 2007, 8, 1103–1107. [Google Scholar] [CrossRef]
- Xiang, J.; Chen, R.; Wu, F.; Li, L.; Chen, S.; Zou, Q. PhysicoChemical properties of new amide-based protic ionic liquids and their use as materials for anhydrous proton conductors. Electrochim. Acta 2011, 56, 7503–7509. [Google Scholar] [CrossRef]
- Che, Q.; Sun, B.; He, R. Preparation and characterization of new anhydrous, conducting membranes based on composites of ionic liquid trifluoroacetic propylamine and polymers of sulfonated poly (ether ether) ketone or polyvinylidenefluoride. Electrochim. Acta 2008, 53, 4428–4434. [Google Scholar] [CrossRef]
- Langevin, D.; Nguyen, Q.T.; Marais, S.; Karademir, S.; Sanchez, J.-Y.; Iojoiu, C.; Martinez, M.; Mercier, R.; Judeinstein, P.; Chappey, C. High-Temperature Ionic-Conducting Material: Advanced Structure and Improved Performance. J. Phys. Chem. C 2013, 117, 15552–15561. [Google Scholar] [CrossRef]
- Luo, J.; Conrad, O.; Vankelecom, I.F.J. PhysicoChemical properties of phosphonium-based and ammonium-based protic ionic liquids. J. Mater. Chem. 2012, 22, 20574–20579. [Google Scholar] [CrossRef] [Green Version]
- Lalia, B.S.; Sekhon, S.S. Polymer electrolytes containing ionic liquids with acidic counteranion (DMRImH2PO4, R = ethyl, butyl and oCtyl). Chem. Phys. Lett. 2006, 425, 294–300. [Google Scholar] [CrossRef]
- Rogalsky, S.; Bardeau, J.-F.; Makhno, S.; Babkina, N.; Tarasyuk, O.; Cherniavska, T.; Orlovska, I.; Kozyrovska, N.; Brovko, O. New proton conducting membrane based on bacterial cellulose/polyaniline nanocomposite film impregnated with guanidinium-based ionic liquid. Polymer 2018, 142, 183–195. [Google Scholar] [CrossRef]
- Gao, J.; Liu, J.; Liu, W.; Li, B.; Xin, Y.; Yin, Y.; Jungu; Zho, Z. Proton exchange membrane fuel cell working at elevated temperature with ionic liquid as electrolyte. Int. J. Electrochem. Sci. 2011, 6, 6115–6122. [Google Scholar]
- Brigouleix, C.; Anouti, M.; Jacquemin, J.; Caillon-Caravanier, M.; Galiano, H.; Lemordant, D. PhysicoChemical characterization of morpholinium cation based protic ionic liquids used as electrolytes. J. Phys. Chem. B 2010, 114, 1757–1766. [Google Scholar] [CrossRef]
- Anouti, M.; Caillon-Caravanier, M.; Dridi, Y.; Galiano, H.; Lemordant, D. Synthesis and characterization of new pyrrolidinium based protic ionic liquids. Good and superionic liquids. J. Phys. Chem. B 2008, 112, 13335–13343. [Google Scholar] [CrossRef]
- Susan, M.A.B.H.; Noda, A.; Mitsushima, S.; Watanabe, M. Brønsted acid–base ionic liquids and their use as new materials for anhydrous proton conductors. Chem. Commun. 2003, 8, 938–939. [Google Scholar] [CrossRef]
- Lakshminarayana, G.; Nogami, M. Inorganic–organic hybrid membranes with anhydrous proton conduction prepared from tetramethoxysilane/methyl-trimethoxysilane/trimethylphosphate and 1-ethyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imide for H2/O2 fuel cells. Electrochim. Acta 2010, 55, 1160–1168. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Liu, Y.; He, P.; Li, J. A Room-Temperature Ionic-Liquid-Templated Proton-Conducting Gelatinous Electrolyte. J. Phys. Chem. B 2004, 108, 17512–17518. [Google Scholar] [CrossRef]
- Li, H.; Jiang, F.; Di, Z.; Gu, J. Anhydrous proton-conducting glass membranes doped with ionic liquid for intermediate-temperature fuel cells. Electrochim. Acta 2012, 59, 86–90. [Google Scholar] [CrossRef]
- Takahashi, C.; Shirai, T.; Hayashi, Y.; Fuji, M. Study of intercalation compounds using ionic liquids into montmorillonite and their thermal stability. Solid State Ion. 2013, 241, 53–61. [Google Scholar] [CrossRef]
- Yasuda, T.; Nakamura, S.; Honda, Y.; Kinugawa, K.; Lee, S.-Y.; Watanabe, M. Effects of Polymer Structure on Properties of Sulfonated Polyimide/Protic Ionic Liquid Composite Membranes for Nonhumidified Fuel Cell Applications. ACS Appl. Mater. Interfaces 2012, 4, 1783–1790. [Google Scholar] [CrossRef]
- Ueki, T.; Watanabe, M. Macromolecules in Ionic Liquids: Progress, Challenges, and Opportunities. Macromolecules 2008, 41, 3739–3749. [Google Scholar] [CrossRef]
- Díaz, M.; Ortiz, A.; Vilas, M.; Tojo, E.; Ortiz, I. Performance of PEMFC with new polyvinyl-ionic liquids based membranes as electrolytes. Int. J. Hydrog. Energy 2014, 39, 3970–3977. [Google Scholar] [CrossRef]
- De Yuso, M.d.V.M.; Cuberes, M.T.; Romero, V.; Neves, L.; Coelhoso, I.; Crespo, J.G.; Rodríguez-Castellón, E.; Benavente, J. Modification of a Nafion membrane by n-dodecyltrimethylammonium cation inclusion for potential application in DMFC. Int. J. Hydrog. Energy 2014, 39, 4023–4029. [Google Scholar] [CrossRef]
- Di Noto, V.; Piga, M.; Giffin, G.A.; Lavina, S.; Smotkin, E.S.; Sanchez, J.-Y.; Iojoiu, C. Influence of Anions on Proton-Conducting Membranes Based on Neutralized Nafion 117, Triethylammonium Methanesulfonate, and Triethylammonium Perfluorobutanesulfonate. 1. Synthesis and Properties. J. Phys. Chem. C 2012, 116, 1361–1369. [Google Scholar] [CrossRef]
- Sun, J.; Jordan, L.R.; Forsyth, M.; MacFarlane, D.R. Acid–Organic base swollen polymer membranes. Electrochim. Acta 2001, 46, 1703–1708. [Google Scholar] [CrossRef]
- Sood, R.; Iojoiu, C.; Espuche, E.; Gouanvé, F.; Gebel, G.; Mendil-Jakani, H.; Lyonnard, S.; Jestin, J. Proton Conducting Ionic Liquid Doped Nafion Membranes: Nano-Structuration, Transport Properties and Water Sorption. J. Phys. Chem. C 2012, 116, 24413–24423. [Google Scholar] [CrossRef]
- Schauer, J.; Sikora, A.; Plíšková, M.; Mališ, J.; Mazúr, P.; Paidar, M.; Bouzek, K. Ion-conductive polymer membranes containing 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-ethylimidazolium trifluoromethanesulfonate. J. Membr. Sci. 2011, 367, 332–339. [Google Scholar] [CrossRef]
- Iojoiu, C.; Martinez, M.; Hanna, M.; Molmeret, Y.; Cointeaux, L.; Leprêtre, J.-C.; El Kissi, N.; Guindet, J.; Judeinstein, P.; Sanchez, J.-Y. PILs-based Nafion membranes: A route to high-temperature PEFMCs dedicated to electric and hybrid vehicles. Polym. Adv. Technol. 2008, 19, 1406–1414. [Google Scholar] [CrossRef]
- Zanchet, L.; da Trindade, L.G.; Bariviera, W.; Borba, K.M.N.; Santos, R.D.M.; Paganin, V.A.; de Oliveira, C.P.; Ticianelli, E.A.; Martini, E.M.A.; de Souza, M.O. 3-Triethylammonium propane sulfonate ionic liquids for Nafion-based composite membranes for PEM fuel cells. J. Mater. Sci. 2020, 55, 6928–6941. [Google Scholar] [CrossRef]
- Kumar, M.; Venkatnathan, A. Mechanism of Proton Transport in Ionic-Liquid-Doped Perfluorosulfonic Acid Membranes. J. Phys. Chem. B 2013, 117, 14449–14456. [Google Scholar] [CrossRef]
- Lu, F.; Gao, X.; Yan, X.; Gao, H.; Shi, L.; Jia, H.; Zheng, L. Preparation and Characterization of Nonaqueous Proton-Conducting Membranes with Protic Ionic Liquids. ACS Appl. Mater. Interfaces 2013, 5, 7626–7632. [Google Scholar] [CrossRef]
- Thayumanasundaram, S.; Piga, M.; Lavina, S.; Negro, E.; Jeyapandian, M.; Ghassemzadeh, L.; Müller, K.; Di Noto, V. Hybrid inorganic–organic proton conducting membranes based on Nafion, SiO2 and triethylammonium trifluoromethanesulfonate ionic liquid. Electrochim. Acta 2010, 55, 1355–1365. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Y.; Mehio, N.; Tan, M.; Wang, Z.; Hu, X.; Chen, G.; Dai, S.; Jin, X. More sustainable electricity generation in hot and dry fuel cells with a novel hybrid membrane of Nafion/nano-silica/hydroxyl ionic liquid. Appl. Energy 2016, 175, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Kuila, T.; Kim, D.-Y.; Kim, N.H.; Lee, J.H. Protic ionic liquid-functionalized mesoporous silica-based hybrid membranes for proton exchange membrane fuel cells. J. Mater. Chem. 2012, 22, 24366–24372. [Google Scholar] [CrossRef]
- Maiti, J.; Kakati, N.; Woo, S.P.; Yoon, Y.S. Nafion® based hybrid composite membrane containing GO and dihydrogen phosphate functionalized ionic liquid for high temperature polymer electrolyte membrane fuel cell. Compos. Sci. Technol. 2018, 155, 189–196. [Google Scholar] [CrossRef]
- Epping Martin, K.; Kopasz, J.P. The U.S. DOEs High Temperature Membrane Effort. Fuel Cells 2009, 9, 356–362. [Google Scholar] [CrossRef]
- Yandrasits, M.A.; Lindell, M.J.; Hamrock, S.J. New directions in perfluoroalkyl sulfonic acid–based proton-exchange membranes. Curr. Opin. Electrochem. 2019, 18, 90–98. [Google Scholar] [CrossRef]
- Martinelli, A.; Matic, A.; Jacobsson, P.; Börjesson, L.; Fernicola, A.; Panero, S.; Scrosati, B.; Ohno, H. Physical Properties of Proton Conducting Membranes Based on a Protic Ionic Liquid. J. Phys. Chem. B 2007, 111, 12462–12467. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Nohira, T.; Hagiwara, R. Novel composite electrolyte membranes consisting of fluorohydrogenate ionic liquid and polymers for the unhumidified intermediate temperature fuel cell. J. Power Sources 2007, 171, 535–539. [Google Scholar] [CrossRef]
- Gao, J.; Guo, Y.; Wu, B.; Qi, L.; Li, B.; Liu, J.; Wang, Z.; Liu, W.; Gu, J.; Zou, Z. Impact of cation selection on proton exchange membrane fuel cell performance with trimethylethyl amide, ethylpyridinium and ethylmethyl imidazolium ionic liquid carried by poly(vinylidene fluoride) membrane as electrolyte. J. Power Sources 2014, 251, 432–438. [Google Scholar] [CrossRef]
- Nair, M.G.; Mohapatra, S.R. Perchloric acid functionalized nano-silica and protic ionic liquid based non-aqueous proton conductive polymer electrolytes. Mater. Lett. 2019, 251, 148–151. [Google Scholar] [CrossRef]
- Kumar, G.G.; Kim, P.; Nahm, K.S.; Elizabeth, R.N. Structural characterization of PVdF-HFP/PEG/Al2O3 proton conducting membranes for fuel cells. J. Membr. Sci. 2007, 303, 126–131. [Google Scholar] [CrossRef]
- Inan, T.Y.; Doğan, H.; Unveren, E.E.; Eker, E. Sulfonated PEEK and fluorinated polymer based blends for fuel cell applications: Investigation of the effect of type and molecular weight of the fluorinated polymers on the membrane’s properties. Int. J. Hydrog. Energy 2010, 35, 12038–12053. [Google Scholar] [CrossRef]
- Kumar, G.G.; Kim, P.; Kim, A.R.; Nahm, K.S.; Elizabeth, R.N. Structural, thermal and ion transport studies of different particle size nanoComposite fillers incorporated PVdF-HFP hybrid membranes. Mater. Chem. Phys. 2009, 115, 40–46. [Google Scholar] [CrossRef]
- Miao, R.; Liu, B.; Zhu, Z.; Liu, Y.; Li, J.; Wang, X.; Li, Q. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries. J. Power Sources 2008, 184, 420–426. [Google Scholar] [CrossRef]
- Mališ, J.; Mazúr, P.; Schauer, J.; Paidar, M.; Bouzek, K. Polymer-supported 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-ethylimidazolium trifluoromethanesulfonate as electrolytes for the high temperature PEM-type fuel cell. Int. J. Hydrog. Energy 2013, 38, 4697–4704. [Google Scholar] [CrossRef]
- Escorihuela, J.; Olvera-Mancilla, J.; Alexandrova, L.; Felipe del Castillo, L.; Compañ, V. Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers 2020, 12, 1861. [Google Scholar] [CrossRef]
- Eguizábal, A.; Lemus, J.; Pina, M.P. On the incorporation of protic ionic liquids imbibed in large pore zeolites to polybenzimidazole membranes for high temperature proton exchange membrane fuel cells. J. Power Sources 2013, 222, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Van de Ven, E.; Chairuna, A.; Merle, G.; Benito, S.P.; Borneman, Z.; Nijmeijer, K. Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications. J. Power Sources 2013, 222, 202–209. [Google Scholar] [CrossRef]
- Ye, H.; Huang, J.; Xu, J.J.; Kodiweera, N.K.A.C.; Jayakody, J.R.P.; Greenbaum, S.G. New membranes based on ionic liquids for PEM fuel cells at elevated temperatures. J. Power Sources 2008, 178, 651–660. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, L.; Wang, P.; Zhang, F.; Yu, S.; Shao, Z.; Yi, B. Ionic-Liquid-Based Proton Conducting Membranes for Anhydrous H2/Cl2 Fuel-Cell Applications. ACS Appl. Mater. Interfaces 2014, 6, 3195–3200. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Liu, C.; Li, J.; Liu, F.; Tian, X.; Chen, H.; Mao, T.; Xu, J.; Wang, Z. Cage-like cross-linked membranes with excellent ionic liquid retention and elevated proton conductivity for HT-PEMFCs. Electrochim. Acta 2018, 283, 691–698. [Google Scholar] [CrossRef]
- Eguizábal, A.; Lemus, J.; Roda, V.; Urbiztondo, M.; Barreras, F.; Pina, M.P. Nanostructured electrolyte membranes based on zeotypes, protic ionic liquids and porous PBI membranes: Preparation, characterization and MEA testing. Int. J. Hydrog. Energy 2012, 37, 7221–7234. [Google Scholar] [CrossRef]
- Lemus, J.; Eguizábal, A.; Pina, M.P. Endurance strategies for the preparation of high temperature polymer electrolyte membranes by UV polymerization of 1-H-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide for fuel cell applications. Int. J. Hydrog. Energy 2016, 41, 3981–3993. [Google Scholar] [CrossRef]
- Kallem, P.; Eguizabal, A.; Mallada, R.; Pina, M.P. Constructing Straight Polyionic Liquid MicroChannels for Fast Anhydrous Proton Transport. ACS Appl. Mater. Interfaces 2016, 8, 35377–35389. [Google Scholar] [CrossRef]
- Kallem, P.; Drobek, M.; Julbe, A.; Vriezekolk, E.J.; Mallada, R.; Pina, M.P. Hierarchical Porous Polybenzimidazole Microsieves: An Efficient Architecture for Anhydrous Proton Transport via Polyionic Liquids. ACS Appl. Mater. Interfaces 2017, 9, 14844–14857. [Google Scholar] [CrossRef] [Green Version]
- Nawn, G.; Pace, G.; Lavina, S.; Vezzù, K.; Negro, E.; Bertasi, F.; Polizzi, S.; Di Noto, V. NanoComposite Membranes based on Polybenzimidazole and ZrO2 for High-Temperature Proton Exchange Membrane Fuel Cells. ChemSusChem 2015, 8, 1381–1393. [Google Scholar] [CrossRef]
- Xu, C.; Liu, X.; Cheng, J.; Scott, K. A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J. Power Sources 2015, 274, 922–927. [Google Scholar] [CrossRef]
- Hooshyari, K.; Javanbakht, M.; Adibi, M. Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells. Electrochim. Acta 2016, 205, 142–152. [Google Scholar] [CrossRef]
- Liu, F.; Wang, S.; Li, J.; Tian, X.; Wang, X.; Chen, H.; Wang, Z. Polybenzimidazole/ionic-liquid-functional silica composite membranes with improved proton conductivity for high temperature proton exchange membrane fuel cells. J. Membr. Sci. 2017, 541, 492–499. [Google Scholar] [CrossRef]
- Jothi, P.R.; Dharmalingam, S. An efficient proton conducting electrolyte membrane for high temperature fuel cell in aqueous-free medium. J. Membr. Sci. 2014, 450, 389–396. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, M.; Wang, X.; Li, Z.; Zhao, L. Anhydrous conducting composite membranes composed of SPEEK/silica/ionic liquids for high-temperature proton exchange. Electrochim. Acta 2016, 222, 1308–1315. [Google Scholar] [CrossRef]
- Arias, J.J.R.; Carlos Dutra, J.; Gomes, A.d.S. Hybrid membranes of sulfonated poly ether ether ketone, ionic liquid and organically modified montmorillonite for proton exchange membranes with enhanced ionic conductivity and ionic liquid lixiviation protection. J. Membr. Sci. 2017, 537, 353–361. [Google Scholar] [CrossRef]
- Wang, X.; Jin, M.; Li, Y.; Zhao, L. The influence of various ionic liquids on the properties of SPEEK membrane doped with mesoporous silica. Electrochim. Acta 2017, 257, 290–300. [Google Scholar] [CrossRef]
- Batalha, J.A.F.L.; Dahmouche, K.; Sampaio, R.B.; Gomes, A.d.S. Structure and Properties of New sPEEK/Zirconia/Protic Ionic Liquid Membranes for Fuel Cell Application. Macromol. Mater. Eng. 2017, 302, 1600301. [Google Scholar] [CrossRef]
- Che, Q.; Zhou, L.; Wang, J. Fabrication and characterization of phosphoric acid doped imidazolium ionic liquid polymer composite membranes. J. Mol. Liq. 2015, 206, 10–18. [Google Scholar] [CrossRef]
- da Trindade, L.G.; Zanchet, L.; Souza, J.C.; Leite, E.R.; Martini, E.M.A.; Pereira, E.C. Enhancement of sulfonated poly(ether ether ketone)-based proton exchange membranes doped with different ionic liquids cations. Ionics 2020, 26, 5661–5672. [Google Scholar] [CrossRef]
- Elumalai, V.; Ganesh, T.; Selvakumar, C.; Sangeetha, D. Phosphonate ionic liquid immobilised SBA-15/SPEEK composite membranes for high temperature proton exchange membrane fuel cells. Mater. Sci. Energy Technol. 2018, 1, 196–204. [Google Scholar] [CrossRef]
- Chen, B.-K.; Wu, T.-Y.; Kuo, C.-W.; Peng, Y.-C.; Shih, I.-C.; Hao, L.; Sun, I.-W. 4,4′-Oxydianiline (ODA) containing sulfonated polyimide/protic ionic liquid composite membranes for anhydrous proton conduction. Int. J. Hydrog. Energy 2013, 38, 11321–11330. [Google Scholar] [CrossRef]
- Deligöz, H.; Yılmazoğlu, M. Development of a new highly conductive and thermomechanically stable complex membrane based on sulfonated polyimide/ionic liquid for high temperature anhydrous fuel cells. J. Power Sources 2011, 196, 3496–3502. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Yasuda, T.; Watanabe, M. Fabrication of protic ionic liquid/sulfonated polyimide composite membranes for non-humidified fuel cells. J. Power Sources 2010, 195, 5909–5914. [Google Scholar] [CrossRef]
- Chen, B.-K.; Wong, J.-M.; Wu, T.-Y.; Chen, L.-C.; Shih, I.-C. Improving the Conductivity of Sulfonated Polyimides as Proton Exchange Membranes by Doping of a Protic Ionic Liquid. Polymers 2014, 6, 2720–2736. [Google Scholar] [CrossRef] [Green Version]
- Kowsari, E.; Zare, A.; Ansari, V. Phosphoric acid-doped ionic liquid-functionalized graphene oxide/sulfonated polyimide composites as proton exchange membrane. Int. J. Hydrog. Energy 2015, 40, 13964–13978. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, X.; Yang, S.; Zhang, Y.; Zhang, R.; Hu, S.; Bao, X.; Zhao, F.; Li, X.; Liu, Q. Design of sepiolite-supported ionogel-embedded composite membranes without proton carrier wastage for wide-temperature-range operation of proton exchange membrane fuel cells. J. Mater. Chem. A 2019, 7, 15288–15301. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Xu, J.; Xu, L.; Liu, F.; Tian, X.; Wang, Z. Organic-inorganic composite membrane based on sulfonated poly (arylene ether ketone sulfone) with excellent long-term stability for proton exchange membrane fuel cells. J. Membr. Sci. 2017, 529, 243–251. [Google Scholar] [CrossRef]
- Awasthi, S.; Gaur, B. Polymer Electrolytes: Ionic Liquid Modified Phenolphthalein Based Hybrid Multiblock Poly (Arylene Ether) Copolymers. J. Electrochem. Soc. 2017, 164, H5057. [Google Scholar] [CrossRef]
- Dahi, A.; Fatyeyeva, K.; Langevin, D.; Chappey, C.; Rogalsky, S.P.; Tarasyuk, O.; Marais, S. Polyimide/ionic liquid composite membranes for fuel cells operating at high temperatures. Electrochim. Acta 2014, 130, 830–840. [Google Scholar] [CrossRef]
- Zakeri, M.; Abouzari-Lotf, E.; Nasef, M.M.; Ahmad, A.; Miyake, M.; Ting, T.M.; Sithambaranathan, P.; Ming, T.T. Fabrication and characterization of supported dual acidic ionic liquids for polymer electrolyte membrane fuel cell applications. Arab. J. Chem. 2019, 12, 1011–1023. [Google Scholar] [CrossRef]
- Zakeri, M.; Abouzari-Lotf, E.; Nasef, M.M.; Ahmad, A.; Ripin, A.; Ting, T.M.; Sithambaranathan, P. Preparation and characterization of highly stable protic-ionic-liquid membranes. Int. J. Hydrog. Energy 2019, 44, 30732–30742. [Google Scholar] [CrossRef]
- Tang, Q.; Li, Y.; Tang, Z.; Wu, J.; Lin, J.; Huang, M. Anhydrous proton exchange membrane operated at 200 °C and a well-aligned anode catalyst. J. Mater. Chem. 2011, 21, 16010–16017. [Google Scholar] [CrossRef]
- Tang, Q.; Wu, J.; Tang, Z.; Li, Y.; Lin, J. High-temperature proton exchange membranes from ionic liquid absorbed/doped superabsorbents. J. Mater. Chem. 2012, 22, 15836–15844. [Google Scholar] [CrossRef]
- Chopade, S.A.; So, S.; Hillmyer, M.A.; Lodge, T.P. Anhydrous Proton Conducting Polymer Electrolyte Membranes via Polymerization-Induced Microphase Separation. ACS Appl. Mater. Interfaces 2016, 8, 6200–6210. [Google Scholar] [CrossRef]
- Chu, F.; Lin, B.; Yan, F.; Qiu, L.; Lu, J. Macromolecular protic ionic liquid-based proton-conducting membranes for anhydrous proton exchange membrane application. J. Power Sources 2011, 196, 7979–7984. [Google Scholar] [CrossRef]
- Lin, B.; Yuan, W.; Xu, F.; Chen, Q.; Zhu, H.; Li, X.; Yuan, N.; Chu, F.; Ding, J. Protic ionic liquid/functionalized graphene oxide hybrid membranes for high temperature proton exchange membrane fuel cell applications. Appl. Surf. Sci. 2018, 455, 295–301. [Google Scholar] [CrossRef]
- Thanganathan, U.; Nogami, M. Investigations on effects of the incorporation of various ionic liquids on PVA based hybrid membranes for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2015, 40, 1935–1944. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, H.; Zheng, L. Anhydrous proton exchange membranes at elevated temperatures: Effect of protic ionic liquids and crosslinker on proton conductivity. RSC Adv. 2015, 5, 17683–17689. [Google Scholar] [CrossRef]
- Wu, W.; Zou, G.; Fang, X.; Cong, C.; Zhou, Q. Effect of Methylimidazole Groups on the Performance of Poly(phenylene oxide) Based Membrane for High-Temperature Proton Exchange Membrane Fuel Cells. Ind. Eng. Chem. Res. 2017, 56, 10227–10234. [Google Scholar] [CrossRef]
- Al-Othman, A.; Tremblay, A.Y.; Pell, W.; Letaief, S.; Burchell, T.J.; Peppley, B.A.; Ternan, M. Zirconium phosphate as the proton conducting material in direct hydrocarbon polymer electrolyte membrane fuel cells operating above the boiling point of water. J. Power Sources 2010, 195, 2520–2525. [Google Scholar] [CrossRef]
- Al-Othman, A.; Tremblay, A.Y.; Pell, W.; Letaief, S.; Liu, Y.; Peppley, B.A.; Ternan, M. A modified silicic acid (Si) and sulphuric acid (S)-ZrP/PTFE/glycerol composite membrane for high temperature direct hydrocarbon fuel cells. J. Power Sources 2013, 224, 158–167. [Google Scholar] [CrossRef]
- Al-Othman, A.; Tremblay, A.Y.; Pell, W.; Liu, Y.; Peppley, B.A.; Ternan, M. The effect of glycerol on the conductivity of Nafion-free ZrP/PTFE composite membrane electrolytes for direct hydrocarbon fuel cells. J. Power Sources 2012, 199, 14–21. [Google Scholar] [CrossRef]
- Al-Othman, A.; Zhu, Y.; Tawalbeh, M.; Tremblay, A.Y.; Ternan, M. Proton conductivity and morphology of new composite membranes based on zirconium phosphates, phosphotungstic acid, and silicic acid for direct hydrocarbon fuel cells applications. J. Porous Mater. 2017, 24, 721–729. [Google Scholar] [CrossRef]
- Mohammed, H.; Al-Othman, A.; Nancarrow, P.; Elsayed, Y.; Tawalbeh, M. Enhanced proton conduction in zirconium phosphate/ionic liquids materials for high-temperature fuel cells. Int. J. Hydrog. Energy 2021, 46, 4857–4869. [Google Scholar] [CrossRef]
- Al-Othman, A.; Nancarrow, P.; Tawalbeh, M.; Ka’Ki, A.; El-Ahwal, K.; El Taher, B.; Alkasrawi, M. Novel composite membrane based on zirconium phosphate-ionic liquids for high temperature PEM fuel cells. Int. J. Hydrog. Energy 2021, 46, 6100–6109. [Google Scholar] [CrossRef]
- Ortiz-Martínez, V.M.; Ortiz, A.; Fernández-Stefanuto, V.; Tojo, E.; Colpaert, M.; Améduri, B.; Ortiz, I. Fuel cell electrolyte membranes based on copolymers of protic ionic liquid [HSO3-BVIm][TfO] with MMA and hPFSVE. Polymer Guildf 2019, 179, 121583. [Google Scholar] [CrossRef]
- Zhu, H.; Li, R.; Wang, F.; Chen, N.; Li, Z.; Wang, Z. Poly tris (1-imidazolyl) benzene ionic liquids/Poly (2,6-dimethyl phenylene oxide) composite membranes for anion exchange membrane fuel cells. J. Mater. Sci. 2017, 52, 11109–11119. [Google Scholar] [CrossRef]
- Eisa, A.; Al-Othman, A.; Al-Sayah, M.; Tawalbeh, M. Novel Composite Membranes Based on Polyaniline/Ionic Liquids for PEM Fuel Cells Applications. Key Eng. Mater. 2020, 865, 55–60. [Google Scholar] [CrossRef]
- Fu, R.-Q.; Julius, D.; Hong, L.; Lee, J.-Y. PPO-based acid–base polymer blend membranes for direct methanol fuel cells. J. Membr. Sci. 2008, 322, 331–338. [Google Scholar] [CrossRef]
- Yang, S.; Gong, C.; Guan, R.; Zou, H.; Dai, H. Sulfonated poly(phenylene oxide) membranes as promising materials for new proton exchange membranes. Polym. Adv. Technol. 2006, 17, 360–365. [Google Scholar] [CrossRef]
- Liu, S.; Wu, D.; Akcora, P. Ion-Containing Polymer-Grafted Nanoparticles in Ionic Liquids: Implications for Polymer Electrolyte Membranes. ACS Appl. Nano Mater. 2021, 4, 8108–8115. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, J.; Xu, J.; Meng, L.; Zhao, P.; Wang, H.; Wang, Z. Enhanced proton conductivity of sulfonated poly(arylene ether ketone sulfone) polymers by incorporating phosphotungstic acid-ionic-liquid-functionalized metal-organic framework. J. Membr. Sci. 2021, 630, 119304. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Zhao, C.; Ni, H.; Na, H. Synthesis and characterization of sulfonated poly(arylene ether ketone ketone sulfone) membranes for application in proton exchange membrane fuel cells. J. Power Sources 2006, 160, 969–976. [Google Scholar] [CrossRef]
- Okonkwo, P.C.; Ikram Ben Belgacem, I.B.; Emoric, W.; Uzomad, P.C. Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review. Int. J. Hydrog. Energy 2021, 46, 27956–27973. [Google Scholar] [CrossRef]
- Zhao, J.; Li, X. A review of polymer electrolyte membrane fuel cell durability for vehicular applications: Degradation modes and experimental techniques. Energy Convers. Manag. 2019, 199, 112022. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, X.Z.; Martin, J.J.; Wang, H.; Zhang, J.; Shen, J.; Wu, S.; Merida, W. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. J. Power Sources 2008, 184, 104–119. [Google Scholar] [CrossRef]
- Moreno, M.; Ali Aboudzadeh, M.; Barandiaran, M.J.; Mecerreyes, D. Facile incorporation of natural carboxylic acids into polymers via polymerization of protic ionic liquids. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 1049–1053. [Google Scholar] [CrossRef]
Category | Structure |
---|---|
Perfluorinated Membranes | Fluorinated backbone with fluorocarbon side chain. Ex. Nafion |
Partially Fluorinated Membrane | Fluorocarbon or Hydrocarbon base. Ex. PVDF |
Nonfluorinated Membrane | Hydrocarbon or aromatic base. Ex. PBI |
Acid–base Membranes | Integration of acid in an alkaline polymer base. Ex. H3PO4 |
Ionic Liquid Membranes | Formed between an organic cation and an organic/inorganic anion |
Protic IL | Conductivity (mS/cm) | Temperature (°C) | Ref. |
---|---|---|---|
[dema][TfO] | 43 | 120 | [46] |
[dema]HSO4 | 1.1 | 30 | [47] |
[dema][TFSA] | 7.4 | 30 | [47] |
[MTBDH]TFSI | 1.54 | 30 | [48] |
[bzlm][TFSI] | 8.3 | 140 | [42] |
(Btmps)/HN(Tf)2 | 1 | 100 | [49] |
[C2H3N3]/[CH3SO3H] | 149 | 200 | [50] |
[MIm][TFSI] | 7.23 | 25 | [51] |
[MPz][TFSI] | 12 | 90 | [52] |
ITSA | 32.6 | 150 | [53] |
TFAPA | 30 | 180 | [54] |
TEA-TF | 31 | 130 | [55] |
TOA-TF | 0.0303 | 25 | [56] |
[DMEIm]H2PO4 | 70 | 120 | [57] |
BG-BF4 | 180 | 180 | [58] |
[EMIm]HSO4 | 16 | 85 | [59] |
[morph][HCOO] | 9.92 | 60 | [60] |
[Mmorph][HCOO] | 16.77 | 60 | [60] |
[Emorph][HCOO] | 12.17 | 60 | [60] |
[pyrr][NO3] | 50.1 | 25 | [61] |
[pyrr]HSO4 | 5.8 | 25 | [61] |
[pyrr][HCOO] | 32.9 | 25 | [61] |
[pyrr][CH3COO] | 5.9 | 25 | [61] |
[pyrr][CF3COO] | 16.4 | 25 | [61] |
[pyrr][C7H15COO] | 0.8 | 25 | [61] |
[pyrr][TFSA] | 39.6 | 130 | [62] |
[EMIM][TFSI] | 5.4 | 150 | [63] |
[BMIm][BF4] | 1.2 | 25 | [64] |
Proton Exchange Membrne | Proton Conductivity (mS/cm) | Temperature (°C) | Ref. |
---|---|---|---|
Nafion 117/imidazole-imidazolium | 3–4 | 100 | [72] |
Nafion/[BMIM][TfO] | 24 | 160 | [74] |
Nafion/[EIM][TfO] | 5.5 | 160 | [74] |
Nafion/(TEA-PSHSO4) | 159 | 80 | [76] |
Nafion/[MIMCM]Cl | 6 | 130 | [78] |
Nafion/(SiO2)3.67(TEA)/(TEA-TF)1.2 | 4.7 | 105 | [79] |
Nafion/[C3OHMIM]BF4/SiO2 (50/10 wt%) | 55 | 160 | [80] |
Nafion/[TMSPMIM]BF4/SiO2 (10 wt%) | 375 | 90 | [81] |
Nafion/[DMBIM]H2PO4/GO (0.75/0.75/0.015 g) | 6.1 | 110 | [82] |
Proton Exchange Membrane | Conductivity (mS/cm) | Temperature (°C) | Ref. |
---|---|---|---|
PVDF-HFP/EImTFSI (80 wt%) | 10 | 25 | [85] |
PVDF-HFP/s-DFBP-HFDP/[EMIm](FH)nF) | 34.7 | 130 | [86] |
HClO4SiO2/[dema][TfO]/PVDF-HFP | 0.02 0.6 | 30 100 | [88] [88] |
PVDF/[N1114]+HSO4 | 10 | 140 | [87] |
60 wt% PAI/5 wt.% PVDF | 7.5 | 150 | [53] |
PVDF-HFP/EImTfO | 13.5 | 25 | [93] |
Proton Exchange Membrane | Conductivity (mS/cm) | Temperature (°C) | Ref. |
---|---|---|---|
PBI/[HMI][TFSI] | 54 | 200 | [95] |
[h-MIM] Ntf2/PBI | 1.86 | 170 | [96] |
H3PO4/PMIH2PO4/PBI | 2.0 | 150 | [97] |
PBI/[dema][TfO] | 20.73 | 160 | [98] |
PBI/[BMIm]H2PO4 | 133 | 160 | [99] |
PBI/[MIm][TFSI] | 100 | 160 | [100] |
PIL (crosslinker: 2.5 mol%) | 371 | [101] | |
PIL-PBI | 309 | [101] | |
PBI/IL/DVB (0.88/58.5/1%) | 53.3 | 200 | [102] |
HPBI/IL/DVB (49.5/58.5/1%) | 85 | 200 | [103] |
[PBI4N(ZrO2)0.231] (H3PO4)13 | 104 | 180 | [104] |
PBI/PA/ILGO | 35 | 175 | [105] |
PBI/PA/PDC3 | 78 | 180 | [106] |
PBIOH-ILSi | 106 | 170 | [107] |
Proton Exchange Membrane | Conductivity (mS/cm) | Temperature (°C) | Ref. |
---|---|---|---|
SPEEK/[EMIm][DEP] | 3 | 145 | [108] |
SPEEK/SiOx/[dema][TfO] (50 wt.%), SPEEK sulfonation degree: 66% | 20 | 220 | [109] |
SPEEK/[dema][TfO]/Mmtdema, SPEEK sulfonation degree: 73% | 78 | 70 | [110] |
SPEEK+[BMIm][BF4]/SiO2 (50/7.5 wt.%) | 15 | 200 | [111] |
SPEEK/[dema][TfO] and 6 wt.% of ZrO2 | 660 | 70 | [112] |
SPEEK/[BMIm]BF6 (50%)/PA | 30 | 160 | [113] |
(SPEEK/PU/SPEEK/BMiM)100/60%PA | 103 | 160 | [39] |
6% SBA-15/SPEEK | 10.2 | 140 | [115] |
Proton Exchange Membrane | Conductivity (mS/cm) | Temperature (°C) | Ref. |
---|---|---|---|
ABPBI/SNR/[BMIm][TFSI] | 10 | 80 | [121] |
SPAEKS/PWA | 127 | 80 | [122] |
Poly (arylene ether)/[BMIm][BF4] | 75 | 70 | [123] |
[BIm][DBP]/Matrimid® | 20 | 115 | [124] |
MAT14PVP7/TEA-T | 20 | 130 | [55] |
[ETFE-g-poly(4-VP)-SO3H] HSO4 | 259 | 90 | [125] |
[ETFE-g-P(1-Vim) PrSO3H]CF3SO3 | 138 | 95 | [126] |
[MIm][TfO]/PAM/PEG IPN (22.84 wt%) | 10.37 | 150 | [127] |
[MIm][TfO]/PAM/PEG IPN (50 wt%) | 17.02 | 150 | [127] |
[MIm][TfO]/PAA | 19.4 | 200 | [128] |
[MIm][TfO]/PEG | 40.4 | 200 | [128] |
[EIm][TFSI]/PEO | 14 | 180 | [129] |
[MIm][TfO] and [APMIm][BR]-GO | 14.8 | 160 | [131] |
PVA/PMA/SiO2/BMITFSI | 0.83 | 60 | [132] |
PVA/PMA/SiO2/EMI-BF4 | 0.58 | 60 | [132] |
PVA-CA-EAN (1:0.05:0.4 molar ratio) | 7.8 | 140 | [133] |
PPO/MeIM | 67.9 | 30 | [134] |
ZrP/[EMIM] [ESO4 | 22.6 | 200 | [139] |
ZrP/[EMIM][SO4]/GLY/PTFE | 70 | 200 | [140] |
TIB/QPPO | 55 | 80 | [142] |
PANI/ZrP/IL (3.7 wt%) | 20 | 25 | [143] |
CP/PTFE/[HMIM][C4N3−] | 100 | 25 | [40] |
CP/PTFE/[HMIM][C4N3−] | 3.14 | 200 | [40] |
SPPO | 94 | 25 | [144] |
SPPO/N-methyl-2-pyrrolidone | 11.6 | 25 | [145] |
SPAEKS/HPW-ILs@MIL-100 | 138 | 100 | [147] |
SPAEKKS | 32 | 80 | [148] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alashkar, A.; Al-Othman, A.; Tawalbeh, M.; Qasim, M. A Critical Review on the Use of Ionic Liquids in Proton Exchange Membrane Fuel Cells. Membranes 2022, 12, 178. https://doi.org/10.3390/membranes12020178
Alashkar A, Al-Othman A, Tawalbeh M, Qasim M. A Critical Review on the Use of Ionic Liquids in Proton Exchange Membrane Fuel Cells. Membranes. 2022; 12(2):178. https://doi.org/10.3390/membranes12020178
Chicago/Turabian StyleAlashkar, Adnan, Amani Al-Othman, Muhammad Tawalbeh, and Muhammad Qasim. 2022. "A Critical Review on the Use of Ionic Liquids in Proton Exchange Membrane Fuel Cells" Membranes 12, no. 2: 178. https://doi.org/10.3390/membranes12020178
APA StyleAlashkar, A., Al-Othman, A., Tawalbeh, M., & Qasim, M. (2022). A Critical Review on the Use of Ionic Liquids in Proton Exchange Membrane Fuel Cells. Membranes, 12(2), 178. https://doi.org/10.3390/membranes12020178