Multifunctional Membranes Based on β-Glucans and Chitosan Useful in Wound Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Synthesis of Carboxylated β-Glucans
2.4. Determination of the Carboxyl Groups Content of Carboxylated β-Glucans
2.5. Synthesis of β-Glucans–Chitosan
2.6. Determination of the Degree of Substitution (DS) by Volumetric Analysis
2.7. Membrane Preparation Procedure
2.8. In Vitro Tests of Antibiotic Activity on Plate and on Broth
2.9. Evaluation of Antioxidant Capacity
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbasi, A.R.; Sohail, M.; Minhas, M.U.; Khaliq, T.; Kousar, M.; Khan, S.; Hussain, Z.; Munir, A.A. Bioinspired sodium alginate based thermosensitive hydrogel membranes for accelerated wound healing. Int. J. Biol. Macromol. 2020, 155, 751–765. [Google Scholar] [CrossRef]
- Khaliq, T.; Sohail, M.; Minhas, M.U.; Shah, S.A.; Jabeen, N.; Khan, S.; Hussain, Z.; Mahmood, A.; Kousar, M.; Rashid, H. Self-crosslinked chitosan/κ-carrageenan-based biomimetic membranes to combat diabetic burn wound infections. Int. J. Biol. Macromol. 2022, 197, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Dhivya, S.; Padma, V.V.; Santhini, E. Wound dressings—A review. BioMedicine 2015, 5, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Robson, M.; Steed, D.; Franz, M. Wound healing: Biological features and approaches to maximize healing trajectories. Curr. Probl. Surg. 2001, 38, 77–89. [Google Scholar] [CrossRef]
- Frykberg, R.G.; Banks, J. Challenges in the treatment of chronic wounds. Adv. Wound Care 2015, 4, 560–582. [Google Scholar] [CrossRef] [Green Version]
- Schmidtchen, A.; Pang, C.; Ni, G.; Sönnergren, H.; Car, J.; Järbrink, K.; Bajpai, R. The humanistic and economic burden of chronic wounds: A protocol for a systematic review. Syst. Rev. 2017, 6, 15–21. [Google Scholar]
- Aderibigbe, B.A.; Buyana, B. Alginate in Wound Dressings. Pharmaceutics 2018, 10, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, Z.; Thu, H.E.; Shuid, A.N.; Katas, H.; Hussain, F. Recent Advances in Polymer-based Wound Dressings for the Treatment of Diabetic Foot Ulcer: An Overview of State-of-the-art. Curr. Drug Targets 2017, 19, 527–550. [Google Scholar] [CrossRef]
- Trombino, S.; Cassano, R.; Ferrarelli, T.; Isacchi, B.; Bilia, A.R.; Picci, N. Collagen α-tocopherulate for topical applications: Preparation, characterization, and antioxidant activity evaluation. Macromol. Res. 2012, 20, 939–943. [Google Scholar] [CrossRef]
- Cassano, R.; Di Gioia, M.L.; Mellace, S.; Picci, N.; Trombino, S. Hemostatic gauze based on chitosan and hydroquinone: Preparation, characterization and blood coagulation evaluation. J. Mater. Sci. Mater. Med. 2017, 28, 190–198. [Google Scholar] [CrossRef]
- Bohn, J.A.; BeMiller, J.N. (1→3)-β-d-Glucans as biological response modifiers: A review of structurefunctional activity relationships. Carbohydr. Polym. 1995, 28, 3–14. [Google Scholar] [CrossRef]
- Williams, J.D.; Mueller, A.; Browder, W. Glucan-based macrophage stimulators. A review of their anti-infective potential. Clin. Immunother. 1996, 5, 392–399. [Google Scholar] [CrossRef]
- Browder, W.; Williams, D.; Pretus, H.; Olivero, G.; Enrichens, F.; Mao, P.; Franchello, A. Beneficial effect of enhanced macrophage function in trauma patient. Ann. Surg. 1990, 211, 605–613. [Google Scholar]
- Sherwood, E.R.; Williams, D.L.; DiLuzio, N.R. Glucan stimulates production of antitumor cytolitic/cytostaticfactor(s) by macrophages. J. Biol. Response Modif. 1986, 5, 504–526. [Google Scholar]
- Sherwood, E.R.; Williams, D.L.; McNamee, R.B.; Jones, E.L.; Browder, I.W.; DiLuzio, N.R. In vitro tumoricidal activity of resting and glucan activated Kupffer cells. J. Leukoc. Biol. 1987, 42, 69–75. [Google Scholar] [CrossRef]
- Grip, J.; Engstad, R.E.; Skjæveland, I.; Škalko-Basnet, N.; Holsæter, A.M. Sprayablecarbopol hydrogel with soluble beta-1,3/1,6-glucan as an active ingredient for wound healing– development and in-vivo evaluation. Eur. J. Pharm. Sci. 2017, 107, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Gwon, H.J.; Lim, Y.M.; Park, J.S.; Nho, Y.C. Evaluation of radiation synthesized b -glucan hydrogel wound dressing using rat models. Int. J. Med. Health Biomed.Bioeng. Pharm. Eng. 2011, 5, 684–687. [Google Scholar]
- Sun, L.; Zhao, Y. The biological role of dectin-1 in immune response. Int. Rev. Immunol. 2007, 26, 349–364. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Lourith, N. Carboxymethylglucan in cosmetics. Thai Pharm. Health Sci. J. 2008, 3, 378–382. [Google Scholar]
- Gautier, S.; Xhauflaire-Uhoda, E.; Gonry, P.; Pierard, G.E. Chitin-glucan, a natural cell scaffold for skin moisturization and rejuvenation. Int. J. Cosmet. Sci. 2008, 30, 459–469. [Google Scholar] [CrossRef]
- Jesenak, M.; Urbancek, M.; Majtan, J.; Banovcin, P.; Hercogova, J. β-Glucan-based cream (containing pleuran isolated from Pleurotusostreatus) in supportive treatment of mild-to-moderate atopic dermatitis. J. Dermatol. Treat. 2016, 27, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Jantova, S.; Bakos, D.; Birosova, L.; Matejov, P. Biological properties of a novel coladerm-beta glucan membrane. In vitro assessment using human fibroblasts. Biomed. Pap. 2015, 159, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majtan, J.; Jesenak, M. β-Glucans: Multi-Functional Modulator of Wound Healing. Molecules 2018, 23, 806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Silva, S.S.; Mano, J.F.; Reis, R.L. Potential applications of natural origin polymer-based systems in soft tissue regeneration. Crit. Rev. Biotechnol. 2010, 30, 200–221. [Google Scholar] [CrossRef] [Green Version]
- Lia, J.; Zhuang, S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. Eur. Polym. J. 2020, 138, 109984. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Ma, Y.; Xin, L.; Tan, H.; Fan, M.; Li, J.; Jia, Y.; Ling, Z.; Cheb, Y.; Hu, X. Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing. Mater. Sci. Eng. C 2017, 81, 522–531. [Google Scholar] [CrossRef]
- Silva, S.S.; Mano, J.F.; Reis, R.L. Soft constructs for skin tissue engineering. In Biomimetic Approaches for Biomaterials Developments; Mano, J.F., Ed.; Wiley-VCH: Weinheim, Germany, 2012; pp. 537–557. [Google Scholar]
- Cassano, R.; Trombino, S.; Bloise, E.; Muzzalupo, R.; Iemma, F.; Chidichimo, G.; Picci, N. New Broom Fiber (Spartiumjunceum, L.) Derivates: Preparation and characterization. J. Agric. Food Chem. 2007, 55, 9489–9495. [Google Scholar] [CrossRef]
- Cassano, R.; Trombino, S.; Ferrarelli, T.; Nicoletta, F.P.; Mauro, M.V.; Giraldi, G.; Picci, N. Hempfiber (Cannabis sativa L.) derivatives with antibacterial and chelatingproperties. Cellulose 2013, 20, 547–557. [Google Scholar] [CrossRef]
- Klemm, D.; Philipp, B.; Heinze, T.; Heinze, U.; Wagenknecht, W. Appendix. In Comprehensive Cellulose Chemistry; Klemm, D., Philipp, B., Heinze, T., Heinze, U., Eds.; Wiley-VCH: Weinheim, Germany, 1998; p. 374. [Google Scholar]
- Klemm, D.; Philipp, B.; Heinze, T.; Heinze, U.; Wagenknecht, W. Experimental Protocols for the Analysis of Cellulose-Appendix 1. In Comprehensive Cellulose Chemistry; Klemm, D., Philipp, B., Heinze, T., Heinze, U., Eds.; Wiley-VCH: Weinheim, Germany, 1998; p. 236. [Google Scholar]
- Mitsunobu, O.; Yamada, Y. Preparation of Esters of Carboxylic and Phosphoric Acid via Quaternary Phosphonium Salts. Bull. Chem. Soc. Jpn. 1967, 40, 2380–2382. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Hsiao, W.W.; Chen, P. Chitosan-Cellulose composite membrane for affinity purification of biopolymers and immunoadsorption. J. Membr. Sci. 2002, 197, 185–197. [Google Scholar] [CrossRef]
- Clasen, C.; Wilhelms, T.; Kulicke, W.M. Formation and Characterization of Chitosan Membranes. Biomacromolecules 2006, 7, 3210–3222. [Google Scholar] [CrossRef]
- Dong, X.; Lu, D.; Harris, T.A.L.; Escobar, I.C. Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development. Membranes 2021, 11, 309. [Google Scholar] [CrossRef]
- Diluzio, N.R.; Williams, D.L. Protective Effect of Glucan against Systemic Staphylococcus-Aureus Septicemia in Normal and Leukemic Mice. Infect. Immun. 1978, 20, 804–810. [Google Scholar] [CrossRef] [Green Version]
- No, H.K.; Park, N.Y.; Lee, S.H.; Meyers, S.P. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 2002, 74, 65–72. [Google Scholar] [CrossRef]
- Hadwiger, L.A.; Kendra, D.G.; Fristensky, B.W.; Wagoner, W. Chitosan both activated genes in plants and inhibits RNA synthesis in fungi. In Chitin in Nature and Technology; Muzzarelli, R.A.A., Jeuniaux, C., Gooday, G.W., Eds.; Plenum: New York, NY, USA, 1981. [Google Scholar]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standard single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Benson, H.J. Antimicrobial sensitivity testing: The Kirby-Bauer method. In Microbiological Applications: Laboratory Manual in General Microbiology, 7th ed.; McGraw-Hill: Boston, MA, USA, 1998; pp. 139–141. [Google Scholar]
- Benson, H.J. Microbiological Applications: Laboratory Manual in General Microbiology, 8th ed.; McGraw-Hill: Boston, MA, USA, 2002; p. 432. [Google Scholar]
- Clinical and Laboratory Standards Institute. M02–A11- Performance Standard for Antimicrobial Disk Susceptibility Tests, Approved Standard; CLSI: Philadelphia, PA, USA, 2012; Volume 32, pp. 1–15. [Google Scholar]
- Clinical and Laboratory Standards Institute. M100–S23-Performance Standards for Antimicrobial Susceptibility Testing: Twentieth Informational Supplement; CLSI: Philadelphia, PA, USA, 2013; pp. 1–206. [Google Scholar]
- Clinical and Laboratory Standards Institute. M07–A9Methods for Dilution Antimicrobial Susceptibility Test for Bacteria that Grow Aerobically, Approved Standards, 9th ed.; CLSI: Philadelphia, PA, USA, 2012; pp. 1–88. [Google Scholar]
- Peters, G.; Locci, R.; Pulverer, G. Adherence and growth of coagulase- negative staphylococci on surfaces of intravenous catheters. J. Infect. Dis. 1982, 146, 479–482. [Google Scholar] [CrossRef]
- Chang, C.C.; Merritt, K. Microbial adherence on poly (methyl methacrylate) (PMMA) surfaces. J. Biomed. Mater. Res. 1992, 26, 197–207. [Google Scholar] [CrossRef]
- Morra, M.; Cassinelli, C. Bacterial adhesion to polymer surfaces: A critical review of surface thermodynamic approaches. J. Biomater. Sci. Polym. Ed. 1997, 9, 55–74. [Google Scholar] [CrossRef]
- Gray, E.D.; Peters, G.; Verstegen, M.; Regelmann, W.E. Effect of extracellular slime substance from Staphylococcus epidermidis adhesion on human cellular immune response. Lancet 1984, 18, 365–367. [Google Scholar] [CrossRef]
- Trombino, S.; Cassano, R.; Bloise, E.; Muzzalupo, R.; Leta, S.; Puoci, F.; Picci, N. Design and synthesis of cellulose derivates with antioxidant activity. Macromol. Biosci. 2007, 8, 85–96. [Google Scholar]
- Yuan, Y.; Hays, M.P.; Hardwidgeb, P.R.; Kim, J. Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Adv. 2017, 7, 14254–14261. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.-Y.; Zhu, J.-F. Study on antimicrobial activity of chitosan with differentmolecular weights. Carbohydr. Polym. 2003, 54, 527–530. [Google Scholar] [CrossRef]
Reagents | Precipitation Solvents | Washing Solvents | Product | |||||
---|---|---|---|---|---|---|---|---|
β-glucans mixture (g) | H3PO4 85% (mL) | NaNO2 (g) | HCO2H 85% (mL) | Acetone (mL) | Et2O (mL) | EtOH 50% (mL) | EtOH (mL) | Carboxylated β-glucans (g) |
2 | 80 | 6 | 20 | 160 | 400 | 100 | 100 | 8.55 |
Reagents | Washing Solvents | Product | |||||
---|---|---|---|---|---|---|---|
Carboxylated β-glucans (g) | DMAc (mL) | LiCl (g) | ADDP (mL) | Bu3P (mL) | Chitosan (g) | Methanol (mL) | β-glucans–chitosan (g) |
1 | 196 | 2 | 1.56 | 2.1 | 2.9 | 192 | 3.63 |
Reagents | DS | |||
---|---|---|---|---|
β-glucans–chitosan (g) | NaOH (g) | HCl 1° eq. p. (mL) | HCl 2° eq. p. (mL) | 0.820 |
0.05 | 5 | 0.6 | 1 |
Membrane Name | Membrane Composition |
---|---|
C | Chitosan |
C-β-glucans | Chitosan + β-glucans (β-glucans 15 wt %) |
C-β-glucans–chitosan | Chitosan + β-glucans–chitosan (β-glucans–chitosan 15 wt %) |
Membrane | Pseudomonas aeruginosa | Klebsiella pneumonia | Escherichia coli | Staphylococcus aureus | ||||
---|---|---|---|---|---|---|---|---|
ATCC 27853 | ATCC 13883 | ATCC 25922 | ATCC 25923 | |||||
mm | Score | mm | Score | mm | Score | mm | Score | |
Chitosan | 14.2 ± 2.8 | * R | 11.2 ± 3.3 | R | 14.2 ± 3.4 | R | 10.3 ± 2.1 | R |
C-β-glucans | 17.6 ± 1.4 | * I | 18.7 ± 2.3 | I | 15.6 ± 1.7 | R | 11.6 ± 1.7 | R |
C-β-glucans–chitosan | 23.2 ± 1.7 | * S | 24.4 ± 1.3 | S | 18.2 ± 2.3 | I | 12.2 ± 2.3 | R |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trombino, S.; Curcio, F.; Di Gioia, M.L.; Armentano, B.; Poerio, T.; Cassano, R. Multifunctional Membranes Based on β-Glucans and Chitosan Useful in Wound Treatment. Membranes 2022, 12, 121. https://doi.org/10.3390/membranes12020121
Trombino S, Curcio F, Di Gioia ML, Armentano B, Poerio T, Cassano R. Multifunctional Membranes Based on β-Glucans and Chitosan Useful in Wound Treatment. Membranes. 2022; 12(2):121. https://doi.org/10.3390/membranes12020121
Chicago/Turabian StyleTrombino, Sonia, Federica Curcio, Maria Luisa Di Gioia, Biagio Armentano, Teresa Poerio, and Roberta Cassano. 2022. "Multifunctional Membranes Based on β-Glucans and Chitosan Useful in Wound Treatment" Membranes 12, no. 2: 121. https://doi.org/10.3390/membranes12020121
APA StyleTrombino, S., Curcio, F., Di Gioia, M. L., Armentano, B., Poerio, T., & Cassano, R. (2022). Multifunctional Membranes Based on β-Glucans and Chitosan Useful in Wound Treatment. Membranes, 12(2), 121. https://doi.org/10.3390/membranes12020121