Modification of Carbon Nanomaterials by Association with Poly(3-octylthiophene-2,5-diyl) as a Method of Improving the Solid-Contact Layer in Ion-Selective Electrodes
Abstract
:1. Introduction
- Electrospun carbon nanofibers (eCNF);
- Electrospun carbon nanofibers with embedded cobalt nanoparticles (eCNF-Co);
- Hierarchical nanocomposite with the nanoparticles of cobalt and nickel as a catalyst for the growth of carbon nanotubes (eCNF/CNT-NiCo).
2. Materials and Methods
2.1. Chemicals
2.2. Layers Preparations
2.3. Preparation of SC-ISE
2.4. Measurements
3. Results and Discussion
3.1. Microstructure Analysis by Scanning Electron Microscopy
3.2. Wettablity
3.3. Electrical Characteristics of Electrodes
3.4. Potentometric Measurements
3.5. Stability of Response and Reversibility Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cattrall, R.W.; Freiser, H. Coated wire ion-selective electrodes. Anal. Chem. 1971, 43, 1905–1906. [Google Scholar] [CrossRef]
- Hu, J.; Stein, A.; Bühlmann, P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends Anal. Chem. 2016, 76, 102–114. [Google Scholar] [CrossRef]
- Bobacka, J. Potential Stability of All-Solid-State Ion-Selective Electrodes Using Conducting Polymers as Ion-to-Electron Transducers. Anal. Chem. 1999, 71, 4932–4937. [Google Scholar] [CrossRef] [PubMed]
- Nikolskii, B.P.; Materova, E.A. Solid Contact in Membrane Ion-Selective Electrodes. Ion Sel. Electrode Rev. 1985, 7, 3–39. [Google Scholar] [CrossRef]
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric Ion Sensors. Chem. Rev. 2008, 108, 329–351. [Google Scholar] [CrossRef] [PubMed]
- Zdrachek, E.; Bakker, E. Potentiometric Sensing. Anal. Chem. 2019, 91, 2–26. [Google Scholar] [CrossRef] [Green Version]
- Fibbioli, M.; Morf, W.E.; Badertscher, M.; de Rooij, N.F.; Pretsch, E. Potential Drifts of Solid-Contacted Ion-Selective Electrodes Due to Zero-Current Ion Fluxes Through the Sensor Membrane. Electroanalysis 2000, 12, 1286–1292. [Google Scholar] [CrossRef]
- Bobacka, J.; McCarrick, M.; Lewenstam, A.; Ivaska, A. All solid-state poly(vinyl chloride) membrane ion-selective electrodes with poly(3-octylthiophene) solid internal contact. Analyst 1994, 119, 1985–1991. [Google Scholar] [CrossRef]
- Cadogan, A.; Gao, Z.; Lewenstam, A.; Ivaska, A.; Diamond, D. All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly(vinyl chloride) membrane with a polypyrrole solid contact. Anal. Chem. 1992, 64, 2496–2501. [Google Scholar] [CrossRef]
- Jarvis, J.M.; Guzinski, M.; Pendley, B.D.; Lindner, E. Poly(3-octylthiophene) as solid contact for ion-selective electrodes: Contradictions and possibilities. J. Solid State Electrochem. 2016, 20, 3033–3041. [Google Scholar] [CrossRef]
- Lenar, N.; Paczosa-Bator, B.; Piech, R.; Królicka, A. Poly(3-octylthiophene-2,5-diyl)-nanosized ruthenium dioxide composite material as solid-contact layer in polymer membrane-based K+-selective electrodes. Electrochim. Acta 2019, 322, 134718. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Z.; Yin, H.; Li, W.; Jiang, Y. Poly(3,4-ethylenedioxythiophene)/MoS2 nanocomposites with enhanced electrochemical capacitance performance. RSC Adv. 2014, 4, 56926–56932. [Google Scholar] [CrossRef]
- Kałuża, D.; Jaworska, E.; Mazur, M.; Maksymiuk, K.; Michalska, A. Multiwalled Carbon Nanotubes–Poly(3-octylthiophene-2,5-diyl) Nanocomposite Transducer for Ion-Selective Electrodes: Raman Spectroscopy Insight into the Transducer/Membrane Interface. Anal. Chem. 2019, 91, 9010–9017. [Google Scholar] [CrossRef] [PubMed]
- Rostampour, M.; Bailey, B.; Autrey, C.; Ferrer, K.; Vantoorenburg, B.; Patel, P.K.; Calvo-Marzal, P.; Chumbimuni-Torres, K.Y. Single-Step Integration of Poly(3-Octylthiophene) and Single-Walled Carbon Nanotubes for Highly Reproducible Paper-Based Ion-Selective Electrodes. Anal. Chem. 2021, 93, 1271–1276. [Google Scholar] [CrossRef] [PubMed]
- Niemiec, B.; Zambrzycki, M.; Piech, R.; Wardak, C.; Paczosa-Bator, B. Hierarchical Nanocomposites Electrospun Carbon NanoFibers/Carbon Nanotubes as a Structural Element of Potentiometric Sensors. Materials 2022, 15, 4803. [Google Scholar] [CrossRef] [PubMed]
- El Mel, A.A.; Achour, A.; Xu, W.; Choi, C.H.; Gautron, E.; Angleraud, B.; Granier, A.; Le Brizoual, L.; Djouadi, M.A.; Tessier, P.-Y. Hierarchical carbon nanostructure design: Ultra-long carbon nanofibers decorated with carbon nanotubes. Nanotechnology 2011, 22, 435302. [Google Scholar] [CrossRef] [PubMed]
- Zambrzycki, M.; Jeleń, P.; Fraczek-Szczypta, A. Structure and electrical transport properties of electrospun carbon nanofibers/carbon nanotubes 3D hierarchical nanocomposites: Effect of the CCVD synthesis conditions. J. Mater. Sci. 2022, 57, 9334–9356. [Google Scholar] [CrossRef]
- Zambrzycki, M.; Fraczek-Szczypta, A. Study on the synthesis and properties of hierarchically structured electrospun/vapour-grown carbon nanofibres nanocomposites. J. Ind. Eng. Chem. 2020, 86, 100–112. [Google Scholar] [CrossRef]
Material | S at% | Ni at% | Co at% |
---|---|---|---|
eCNF+POT | 1.28 | - | - |
eCNF-Co+POT | 2.27 | - | 1.68 |
eCNF/CNT-NiCo+POT | 4.47 | 0.24 | 0.27 |
Electrode GC/: | R ± SD [kΩ] | ΔEdc/Δt ± SD [μV/s] | C ± SD [mF/cm2] (CP Method) | C [μF] [mF/cm2] (EIS Method) |
---|---|---|---|---|
eCNF/K+-ISM [14] | 91.3 ± 0.7 | 88.4 ± 1.3 | 1.62 ± 0.02 | 1.28 |
eCNF+POT/K+-ISM | 113.8 ± 0.8 | 18.2 ± 0.6 | 7.87 ± 0.27 | 6.80 |
eCNF-Co/K+-ISM [14] | 93.1 ± 0.1 | 53.5 ± 0.5 | 2.67 ± 0.03 | 1.79 |
eCNF-Co+POT/K+-ISM | 179.7 ± 0.7 | 33 ± 0.4 | 4.37 ± 0.53 | 3.21 |
eCNF/CNT-NiCo/K+-ISM [14] | 122.4 ± 0.7 | 31 ± 1.5 | 4.71 ± 0.14 | 3.80 |
eCNF/CNT-NiCo+POT/K+-ISM | 197 ± 0 | 73 ± 3 | 1.97 ± 0.07 | 1.66 |
Electrode | Parameter | |||
---|---|---|---|---|
Slope (mV/dec) | E0 (mV) | LOD (M) | Linear Range (M) | |
GC/eCNF/K+-ISM [14] | 59.45 ± 0.70 | 435.3 ± 1.7 | 10−5.5 ± 0.1 | 10−5–10−1 |
GC/eCNF+POT/K+-ISM | 59.74 ± 0.2 | 467.9 ± 1.4 | 10−6.2 ± 0.1 | 10−6–10−1 |
GC/eCNF-Co/K+-ISM [14] | 59.32 ± 0.80 | 401.0 ± 1.7 | 10−5.7 ± 0.1 | 10−5–10−1 |
GC/eCNF-Co+POT/K+-ISM | 59.87 ± 0.2 | 470.9 ± 1.3 | 10−5.9 ± 0.1 | 10−5–10−1 |
GC/eCNF/CNT-NiCo/K+-ISM [14] | 59.39 ± 0.80 | 413.7 ± 0.9 | 10−6.3 ± 0.1 | 10−6–10−1 |
GC/eCNF/CNT-NiCo+POT/K+-ISM | 59.76 ± 0.3 | 354.8 ± 0.8 | 10−5.5 ± 0.1 | 10−5–10−1 |
GC/K+-ISM | 57.0 ± 2.0 | 178.6 ± 3.1 | 10−5.3 ± 0.2 | 10−5–10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niemiec, B.; Piech, R.; Paczosa-Bator, B. Modification of Carbon Nanomaterials by Association with Poly(3-octylthiophene-2,5-diyl) as a Method of Improving the Solid-Contact Layer in Ion-Selective Electrodes. Membranes 2022, 12, 1275. https://doi.org/10.3390/membranes12121275
Niemiec B, Piech R, Paczosa-Bator B. Modification of Carbon Nanomaterials by Association with Poly(3-octylthiophene-2,5-diyl) as a Method of Improving the Solid-Contact Layer in Ion-Selective Electrodes. Membranes. 2022; 12(12):1275. https://doi.org/10.3390/membranes12121275
Chicago/Turabian StyleNiemiec, Barbara, Robert Piech, and Beata Paczosa-Bator. 2022. "Modification of Carbon Nanomaterials by Association with Poly(3-octylthiophene-2,5-diyl) as a Method of Improving the Solid-Contact Layer in Ion-Selective Electrodes" Membranes 12, no. 12: 1275. https://doi.org/10.3390/membranes12121275
APA StyleNiemiec, B., Piech, R., & Paczosa-Bator, B. (2022). Modification of Carbon Nanomaterials by Association with Poly(3-octylthiophene-2,5-diyl) as a Method of Improving the Solid-Contact Layer in Ion-Selective Electrodes. Membranes, 12(12), 1275. https://doi.org/10.3390/membranes12121275