Next Article in Journal
Perspective on the Application of Erythrocyte Liposome-Based Drug Delivery for Infectious Diseases
Next Article in Special Issue
An Activated Bismuth Layer Formed In Situ on a Solid Bismuth Microelectrode for Electrochemical Sensitive Determination of Ga(III)
Previous Article in Journal
X-ray Reflectivity Study of Polylysine Adsorption on the Surface of DMPS Monolayers
Previous Article in Special Issue
Preparation, Characterization, and Activation of Natural Glassy Carbon Paste Electrodes as New Sensors for Determining the Total Antioxidant Capacity of Plant Extracts
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:

Advances on Hormones and Steroids Determination: A Review of Voltammetric Methods since 2000

Faculty of Material Sciences and Ceramics, AGH University of Science and Technology, av. Mickiewicza 30, 30-059 Kraków, Poland
Author to whom correspondence should be addressed.
Membranes 2022, 12(12), 1225;
Submission received: 28 September 2022 / Revised: 18 November 2022 / Accepted: 22 November 2022 / Published: 2 December 2022
(This article belongs to the Special Issue Membrane-Based Electrochemical Sensors)


This article presents advances in the electrochemical determination of hormones and steroids since 2000. A wide spectrum of techniques and working electrodes have been involved in the reported measurements in order to obtain the lowest possible limits of detection. The voltammetric and polarographic techniques, due to their sensitivity and easiness, could be used as alternatives to other, more complicated, analytical assays. Still, growing interest in designing a new construction of the working electrodes enables us to prepare new measurement procedures and obtain lower limits of detection. A brief description of the measured compounds has been presented, along with a comparison of the obtained results.

1. Introduction

Steroids are organic compounds, derivatives of the cyclic hydrocarbon sterane, composed of four conjugated homocyclic rings. It is comprised of three cyclohexanes and one cyclopentane ring. Individual rings are marked with consecutive letters of the alphabet, and individual carbon atoms are numbered [1]. Depending on the type of steroid, this skeleton can be extended in various ways with additional carbon atoms, creating various systems, such as the systems of estran, androstane, pregnane, cholate and cholestane. Various functional groups, such as OH, CHO, COOH or CO, can be attached to these systems, changing their biological activity to a large extent. Depending on the function and use, steroids can be divided into five main groups, which include sterols, corticosteroids, anabolic steroids, sex hormones and prohormones. In medical therapy, steroids are used in a wide variety of diseases, including topical conditions, inflammation, autoimmune diseases, allergies or cancer treatment [2,3,4,5]. Steroids, due to their immunosuppressive properties, are also commonly used after organ transplantation to reduce the risk of rejecting an organ [6,7,8]. Apart from its beneficial properties, steroids taken without proper supervision may also cause serious health conditions, such as hypertension, glaucoma, osteoporosis or headaches [9,10,11].
Hormones are organic substances that play a regulatory role in organisms. They are most often produced by the endocrine glands (less often by endocrine tissues) and then transported through the blood to the target cells. Hormone binding by a receptor located on the surface or inside the cell triggers a series of reactions that stimulate or inhibit specific metabolic processes in order to maintain homeostasis of the entire body [12]. There are several different criteria for classifying hormones: due to their place of formation, the chemical structure, mechanism of action, or exerted final effect. Due to the chemical structure, four main groups of hormones can be distinguished, such as peptide and protein hormones, amino acid derivative hormones, steroid hormones and fatty acid analogs [13]. It is known that hormones also affect the functioning of the immune system and even behavior. Therefore, diseases resulting from hormonal disorders have serious consequences on health and can cause multi-organ symptoms. Not only are hormones produced in our body glands, but they are also an important part of the common medicines used in the treatment of hypothyroidism, polycystic ovaries syndrome, breast and prostate cancer, adult acne conditions and during hormone replacement therapy [14,15,16].
By considering the importance of the steroid and hormone families, numerous attempts have been made through the years in order to detect them with high sensitivity using different analytical techniques. Most of the biological samples containing steroids and hormones are analyzed using gas or liquid chromatography coupled with the mass spectrometer [17,18,19,20,21,22]. Determination of the analyte by using these techniques is very accurate; however, the whole analytical procedure is expensive, time-consuming and often requires long and complicated sample pretreatment and specialized skills of the analyst. Considering these disadvantages, electrochemical methods and the development of new electrochemical sensors are gaining much attention lately due to their simplicity, high sensitivity, easiness and low financial outlay. Electroanalysis is one of the analytical methods that help to detect and quantify the analyte in an aqueous solution. Electroanalytical methods, such as voltammetry and polarography, are based on registering the current vs. voltage relation on a voltammogram or polarogram. Voltammetric and polarographic measurements are characterized by potential, which is related to the qualitative properties of the analyte, and the current, which is related to the qualitative amount of the analyte in the measurement cell. The selectivity of the electrochemical methods depends on the accessible potential range for the chosen electrode, the number of compounds in the sample and the half-width of each signal. The choice of optimal techniques depends on several factors, such as the nature of the analyte, the type and material of the electrode and the choice of supporting electrolyte. Specifically, the size and morphology of the working electrode can be very crucial to the analytical response of the system.
This review aims to describe the possibilities of the electrochemical hormones and steroid determination assays that can be successfully applied for their highly sensitive measurements. It is impossible to quote all the papers concerning this topic; thus, only selected manuscripts containing voltammetric, polarographic and amperometric methods are cited. The authors focused on the most recent positions published since 2000.

2. Electrochemical Techniques used for Hormones and Steroids Determination

Electrochemistry is a well-established analytical branch and is widely used for the determination of pharmaceutical compounds. The most popular electrochemical techniques used in hormone and steroid analyses are voltammetry and polarography. Notably, voltammetry, which is considered a fast, accurate and high sensitive method, is a willingly chosen technique for the routine quality assurance analysis of electroactive analytes. In voltammetry, a few specific techniques used for qualitative and quantitative measurements can be distinguished, such as cyclic voltammetry (CV), linear sweep voltammetry (LSV), differential pulse voltammetry (DPV) or square-wave voltammetry (SWV). What the above have in common is the basis of signal registration, which is based on the application of a specific potential to the working electrode and registration of the current change in the applied potential range. CV studies are usually used to determine the type of transport of the analyte to the surface of the working electrode, which may be limited by adsorption or diffusion. Additionally, the use of the CV technique allows us to distinguish if the electrode process is reversible or irreversible and thus could be a useful tool for explaining the electrode reaction in detail by giving the possibility to calculate the number of electrons exchanged. CV is very rarely used for the quantitative analysis of compounds because of its lower sensitivity in comparison with other voltammetric techniques. For this type of analysis, the DPV and SWV techniques are widely used. Among the voltammetric techniques, DPV and SWV offer much better sensitivity with a more beneficial signal-to-noise factor, which results in the possibility of performing measurements of electroactive compounds at trace levels. Therefore, these two techniques are used for the studies of active substances present in the pharmaceutical products, such as tablets, creams, ointments, injections, etc., and also often provide opportunities to perform measurements in biological samples, such as urine, blood, serum, etc.
A typical electrochemical sensor used during voltammetric measurements comprises a working electrode, an auxiliary electrode (e.g., platinum rod) and a reference electrode (usually a saturated calomel electrode or Ag/AgCl electrode). The most known working electrodes belong to the family of mercury electrodes, with the dropping mercury electrode (DME) and hanging drop mercury electrode (HMDE) as representatives. Mercury is characterized as the most desired, nearly perfectly polarizable electrode material due to its properties, which include its easy renewal and smooth drop surface, which result in high sensitivity and broad potential windows in the cathodic range. Due to the mentioned properties, the use of mercury in working electrode construction enables the measurement of a wide variety of electroactive compounds. The main disadvantage of the mercury electrodes is the high toxicity of this element, which requires careful work and the utilization of toxic mercury waste after the measurements. Therefore, solid electrodes as an alternative to mercury electrodes are nowadays preferable due to their non-toxic construction. Solid electrodes, made of materials, such as glassy carbon, graphite, noble metals or diamond-related materials, etc., may be characterized by a wide range of working potentials in the anodic region in comparison to the mercury electrodes. The main disadvantage of such electrodes is the necessity for surface preparation before measurement, based on the use of the polishing powder or chemical pretreatment. Solid electrodes also provide a great opportunity to investigate the influence of the surface modifiers’ application on their working surface, which usually results in the improvement of the parameters such as sensitivity and selectivity and allows us to obtain lower detection limits in comparison with the bare electrode. The most popular modifiers include conducting polymers, metallic and non-metallic nanoparticles, carbon nanomaterials, biological compounds or silica-based materials.
A wide variety of working electrodes based on mercury, glassy carbon, noble metals, carbon paste, pyrolytic graphite, molecularly imprinted polymers, carbon nanotubes, nanocomposites, etc., have been developed for the highly sensitive determination of hormones and steroids since 2000. Most of the methods reported so far required immunosensors, which lower the limits of detection in comparison to the classic constructions, which is the impact of the specific bond between the antibody and the analyte, which is strengthened by the catalytic properties of the nanoparticles used in the sensing component of immunosensors.

3. Electrochemical Measurements of Hormones and Steroids

3.1. Pituitary Gland Hormones

The pituitary gland is a small, endocrine gland placed at the base of the mammal brain. It is responsible for the secretion of hormones that affects bone growth, blood pressure, energy management and functions of the sex organs. The pituitary gland also controls the thyroid gland’s work and metabolism and affects the reproduction process, levels of electrolytes and temperature regulation [23,24].
Human growth hormone (hGH) is a peptide hormone stored and secreted by the somatotropic cells and is based in the anterior pituitary gland. HGH is one of the crucial factors responsible for human development. It also stimulates the production of insulin-like growth factor 1 (IGF-1) and increases the concentration of glucose and free fatty acids. Its recombinant form—somatotropin—is available by prescription and used in the treatment of growth hormone deficiency [25,26,27]. When considering the electrochemical possibilities of hGH determination, there are not many papers with such assays. The lowest obtained detection limit was expressed in the picogram units, which allows for performing analyses on blood or serum samples. The working electrodes used for the high sensitive determination of hGH comprised either specific hGH antibodies or the receptor membrane was constructed via direct electro-polymerization of aniline on the surface of electrodes in the presence of hGH as a template (Table 1). Additionally, it was proven that, based on the voltammetric measurements, it is possible to determine hGH in spiked human serum and plasma and in saliva samples.
Adrenocorticotropic hormone (ACTH) is a peptide hormone of the pituitary gland, classified as a tropic hormone. It stimulates the adrenal cortex to secrete corticosteroids, mineralocorticoids and androgens. Increasing the concentration of ACTH in the blood is one of the body’s first responses to stress. This hormone indirectly influences the body’s protein, carbohydrate and mineral metabolism and also inhibits cell proliferation. Moreover, it has anti-inflammatory and antiallergic properties. Its synthetic form is used to diagnose or exclude primary and secondary adrenal insufficiency, Addison’s disease, and related conditions [28,29]. In the current literature, only two voltammetric assays of ACTH determination are reported. In both cases, the screen-printed carbon electrode was modified with immobilized anti-ACTH antibodies. The lowest limit of detection obtained using such prepared working electrodes was equal to 18 ng/L (Table 1), and the assays were applied for sensitive ACTH determination in human serum samples.
Prolactin (PRL) is a protein hormone best known as a stimulant of breast milk production in mammals. It is secreted in response to physical activity, eating, nursing or mating. Its secretion is also inhibited in some cells in the course of certain cancers and in the endometrium. Excess prolactin (hyperprolactinaemia), often caused by pituitary adenomas, may be responsible for infertility and amenorrhea-galactorrhea syndrome [30,31,32]. For the voltammetric detection of prolactin, mainly the differential pulse technique has been involved for a highly sensitive prolactin determination. Considering the type of sensors being used as working electrodes, the biggest group comprises immunosensors with specific anti-PRL antibodies placed in the receptor layer. The detection limit obtained with this type of sensor is about 4 pg/mL. Apart from the immunosensors, the hanging mercury drop electrode and electrodes decorated with gold nanoparticles, conducting polymers or carbon nanomaterials were used for a PRL determination as well, with good sensitivity and detection limits occurring as low as 38.9 pg/ms (Table 1). Prolactin was determined using voltammetric assays in the samples, such as human urine, saliva, serum and different pharmaceutical formulations.
Thyroid-stimulating hormone (TSH) is a glycoprotein hormone produced by the pituitary gland and comprises alpha and beta subunits. In humans, it causes an increase in the mass of the thyroid gland, an increase in blood flow through this organ and an increase in the production and secretion of thyroid hormones: thyroxine and triiodothyronine. The regulation of thyrotropin secretion is based on the principle of negative feedback with thyroid hormones; secretion is also inhibited by somatostatin and dopamine and stimulated by thyreoliberin and stress or cold [33,34,35]. Only a few voltammetric assays of TSH determination have been reported sincse 2000. Most of them use specific anti-TSH antibodies immobilized on the surface of the working glassy carbon or gold electrode. Such a modification allows for achieving a detection limit as low as 0.005 µIU mL−1, and the proposed biosensors were successfully applied for a highly sensitive TSH determination in serum samples, which confirms the usefulness of the developed method (Table 1). TSH was measured electrochemically in human serum samples and in pharmaceutical formulations (tablets).
Follicle-stimulating hormone (FSH) is a glycoprotein hormone comprising 207 amino acids arranged into two subunits. It is secreted by the anterior pituitary gland in both women and men. Acting together with the luteinizing hormone in women, it stimulates the maturation of ovarian follicles and the production of estrogens, and in men, it controls the function of the testicles. In women, FSH stimulates follicular maturation and the secretion of oestrogens from the follicular cells of the ovaries. It also increases the activity of the aromatase enzyme. In men, it causes enlargement of the seminal tubes, stimulates spermatogenesis and increases the production of the androgen-binding protein necessary for the proper functioning of testosterone. During menopause, due to the extinction of the hormonal activity of the gonads, both women and men have elevated levels of FSH in the blood and, and thus, in the urine. Recent research indicates that follicle-stimulating hormone receptors are found in the cells of many types of cancer. This may be important in the diagnosis of neoplasms and allow the creation of drugs targeting cells with FSH receptors [36,37,38,39,40]. Considering the current electrochemical methods of FSH determination, only a few assays have been reported since 2000. Two of them are based on the use of the FSH-specific antibodies entrapped in the modifier layer with reduced graphene oxide, thionine, gold nanoparticles and multi-walled carbon nanotubes. The lowest obtained detection limit obtained with the use of such immunosensors was about 0.05 mIU/mL. In another reported voltammetric assay, the molecularly imprinted polymer, designed in the presence of the FSH particle, was used as a receptor layer along with nickel–cobalt oxide and reduced graphene oxide. The FSH detection limit, in this case, was equal to 0.1 pM (Table 1). The FSH hormone was also measured in samples such as whole human blood and human serum using voltammetric assays.
In Table 1, the electrochemical methods of hGH, ACTH, prolactin, TSH and FSH determination are compared.
Table 1. Electrochemical methods of pituitary gland hormones determination.
Table 1. Electrochemical methods of pituitary gland hormones determination.
AnalyteTechniqueWorking ElectrodeModifierMediumPreconcentration Time, sDetection LimitLinear RangeSource
Human Growth HormoneDPVSPCEAuNP/PEDOT/CNT/anti-hGH0.1 M PBS pH 7.4n/i4.4 pg mL−10.005–1000 ng mL−1[41]
SWVGCEMIP/Fe3O40.2 M PBS pH 6.92n/i0.6 × 10−10 g cm−31.0 × 10−10–1.0 × 10−7 g cm−3[42]
SWVSPAuETsMBs–mAbhGH–hGH–pAbhGH– anti-IgG–AP0.1 M Trizma + 1 mM MgCl2 buffer pH 9.01200.005 ng mL−10.01–100 ng mL−1[43]
Adrenocorticotropic hormone (ACTH)DPVSPCEStrept-AP/Biotin-ACTH/anti-ACTH/APBAn/in/i40 pg L−15.0 × 10−3 –0.1 ng mL−1[44]
DPVSPCEStrept-AP/Biotin-ACTH/anti-ACTH/APBAn/in/i18 pg L−10.025–1.0 pg mL−1[45]
ProlactinDPVSPCEAnti-PRL–streptavidin-MBs (magnetic beads)n/in/i3.7 ng mL−110–2000 ng mL−1[46]
DPVGCEGPPD-labeled HRP-anti-PRLABS pH 5.0n/i0.1 ng mL−10.5–180 ng mL−1[47]
DPVCPEHRP-Ab/PRL/Ab/TGA/nano-Au/CILE0.1 M PBS pH 7.040012.5 mIU L−125.0–2000.0 mIU L−1[48]
DPVGCEAP-anti-PRL–PRL-pPPA/MWCNTs0.1 M PBS pH 7.2n/i3 pg mL−110−2–104 ng mL−1[49]
DPVGCEGraphene/AuNPs0.01 M PBS pH 7.4n/i38.9 pg mL−1100 pg mL−1–50 ng mL−1[50]
DPVGCEAnti-PRL/pPPA/MWCNTsPBS pH 7.4n/i4 pg mL−110−2–104 ng mL−1[51]
DPVCNT/SPCEsAuNPs/PEDOT0.1 M PBS pH 7.4n/i0.22 pg mL−10.1–150 ng mL−1[41]
SWVHMDE-phosphate buffer pH 6.590n/i0.089–16.36 ng mL−1[52]
DPVGCEGraphene/SWCNT/AuNPs/CT5.0 mL DEA + 0.75 mg mL−1 α-NPn/i47 pg mL−150–3200 pg mL−1[53]
TSHSWVGCEazo compound film0.1 M phosphate buffer pH 8.0n/i0.04 μIU mL−10.2–20.0 μIU mL−1[54]
DPVAuanti-TSH/AuNP-GO0.1 M ABS + 6 mM H2O2 pH 6.0n/i0.005 µIU mL−10.01–20 µIU mL−1[55]
DPVAuGPG-labeled HRP-Ab20.1 M ABS + 6 mM H2O2 pH 5.0n/i0.005 µIU mL−10.01–20 µIU mL−1[56]
DPVCPEAuNPs/anti-TSH0.1 M PBS pH 7.0 + 5.0 mM OAP + 1 mM H2O2n/i0.1 ng mL−10.2–90.0 ng mL−1[57]
FSHDPVSPEr-GO/thionine Thi/Au NPs/anti- FSH0.1 M PBSn/i1 mIU mL−11–100 mIU mL−1[58]
DPVSPEr-GO/MWCNTs/ Thi/Au NPs/anti- FSH0.1 M PBS pH 7.415000.05 mIU mL−11–250 mIU mL−1[59]
LSVindium tin oxide (ITO)FSH-MIP/NiCo2O4/rGO/0.1 M PBS pH 8.5n/i0.1 × 10−12 M0.1 × 10−12–1 × 10−6 M[60]

3.2. Adrenal Gland Hormones

The adrenal gland is a paired, small endocrine gland located retroperitoneally at the upper pole of the kidney. The adrenal gland comprises cortical and spinal parts, which differ in structure and function. The cortex is the main mass of the gland (80% to 90% of the entire adrenal gland). The cortex produces steroids, which can be divided into three subgroups: mineralocorticosteroids, of which aldosterone has the strongest effect; glucocorticosteroids, the most important of which is cortisol and sex hormones (androgens). The adrenal medulla produces catecholamines. It constantly secretes small amounts of adrenaline into the blood, while all emotional states suddenly release large amounts of it into the blood. Small amounts of norepinephrine are also produced in the adrenal medulla. Hormones secreted by the adrenal cortex maintain the body’s water and mineral balance (aldosterone), help in situations of long-term stress and increase blood glucose levels [12,13,61].
Adrenaline (epinephrine) is an animal hormone and a catecholamine neurotransmitter produced by the endocrine glands of the nerve crest and is secreted at the end of sympathetic nervous system fibers. The term adrenaline is used interchangeably with epinephrine, as both terms refer to exactly the same substance. Adrenaline is also known as the 3xF hormone—the hormone of fear, fight and flight. Adrenaline plays a decisive role in the stress mechanism, the rapid response of the human body and vertebrate animals to a threat, and is manifested by an accelerated heartbeat, increase in blood pressure, bronchial and laryngeal expansion, dilatation of the pupils, etc. In addition, adrenaline regulates the level of glucose in the blood by increasing the breakdown of glycogen into glucose in the liver (glycogenolysis). Adrenaline is also found in plants. Its pharmacological significance is limited due to the low durability of the hormone. Adrenaline is used in cases of cardiac arrest regardless of the mechanism. It has the effect of stimulating the contractility of the heart muscle, improving the conduction of stimuli in the heart, as well as improving the effectiveness of electrical defibrillation. Adrenaline, given in the case of anaphylaxis, quickly relieves the symptoms of an acute allergic reaction. It causes the blood vessels to contract rapidly, which raises blood pressure. The smooth muscles of the bronchi, larynx and throat also relax, which makes breathing easier. Epinephrine also reduces swelling around the mouth and face. Adrenaline is the first-line drug of choice for the treatment of anaphylaxis and the second-line drug for the treatment of cardiogenic shock. It is also used in cases of bronchial asthma attacks and acute allergic reactions when the administration of other drugs does not help and the disease becomes life-threatening. Adrenaline is also used in laryngology and dentistry. It is sometimes used, for example, to reduce bleeding, as it strongly narrows blood vessels [62,63,64,65].
Noradrenaline (norepinephrine) is an organic chemical compound from the group of catecholamines, classified both as a neurotransmitter and hormone, and is secreted in the adrenal medulla and locus coeruleus, usually together with adrenaline. Norepinephrine mobilizes the brain and body to act. Its secretion is lowest during sleep and increases by 180% when awake. It achieves much higher levels in stressful and dangerous situations (fight-or-flight response). In the brain, norepinephrine increases agitation and alertness, supports wakefulness, enhances remembering and recalling and enables concentration, as well as increases anxiety and fear, the excess of which leads to anxiety disorders. In the rest of the body, norepinephrine speeds up the heart rate and increases blood pressure, releases stored glucose, increases blood flow to the skeletal muscles, reduces blood flow to the digestive system, and inhibits bladder emptying and motor activity in the gastrointestinal tract. Norepinephrine, as medicine, is injected in cases of critically low blood pressure [12,13,66,67].
In the current literature, there are numerous reports of adrenaline and noradrenaline determination by using popular voltammetric techniques—cyclic voltammetry, differential pulse voltammetry and square-wave voltammetry. Glassy carbon electrodes, along with the carbon paste electrode, were the most popular working electrodes used in the measurements. Almost in each case, they were modified with different materials in order to achieve higher sensitivity and lower limits of detection. The lowest obtained LOD values were equal to 8.7 × 10−10 M and 8.7 × 10−10 M for adrenaline and norepinephrine, respectively (Table 2). The voltammetric assays for adrenaline determination were tested on real sample analyses, such as body fluids (serum and urine) and pharmaceutical products in the form of injections.
Cortisol (hydrocortisone) is a natural steroid hormone produced by the band layer of the adrenal cortex. It is the main representative of glucocorticosteroids. It has a wide impact on metabolism and is sometimes called the stress hormone, along with adrenaline. It has an anti-inflammatory effect and retains salt in the body. Cortisol increases blood glucose levels, which is indicated in response to stress. Cortisol also releases amino acids from peripheral tissues and inhibits the rate of their absorption by skeletal muscles, accelerates gluconeogenesis, and finally accelerates the breakdown of fatty acids into ketone bodies. Chronic excess of cortisol in the blood leads to the characteristic displacement of adipose tissue deposits (buffalo neck, full moon face, abdominal obesity, lean limbs), thinning of the skin, the formation of characteristic pink stretch marks, acne and insulin resistance, which is a picture of Cushing’s syndrome [68,69,70,71]. The cortisol electrochemical detection assays, since 2000, were mostly performed on solid electrodes, and glassy carbon and gold electrode in particular. In some reported works, immunosensors with anti-cortisol antibodies were used, which allows for obtaining the lowest detection limit, which was equal to 0.64 pM. In such immunosensors, besides the antibody component of the modifier layer, other components, such as conducting polymers or metal nanoparticles, are used to provide the sensor’s stability and even enhance the electrochemical reaction of the analyte. Cortisol could also be measured using a refreshable mercury film electrode with a low detection limit of 4.8 nM (Table 2). Cortisol determination was also performed in the complex matrices, such as human serum and plasma, whole blood and saliva. Additionally, pharmaceutical formulations, such as tablets, creams and ointments, were tested for the possibility of hydrocortisone measurements with success. Samples of the hydrocortisone calibration graphs are presented in Figure 1 [72].
In Table 2, the electrochemical methods of adrenaline, norepinephrine and cortisol determination are compared.
Figure 1. Osteryoung square-wave voltammograms recorded for (a) PBS (background) at the bare EPPGE (· · ·) and (b) increasing concentration of HC at the bare EPPGE electrode (—). Curves were recorded at (a) 100 nM, (b) 250 nM, (c) 500 nM, (d) 750 nM, (e) 1000 nM, (f) 1500 nM and (g) 2000 nM concentration in PBS of pH 7.2. Reprinted from A comparison of edge- and basal-plane pyrolytic graphite electrodes towards the sensitive determination of hydrocortisone, Talanta, Vol 83, Rajendra N. Goyal, Sanghamitra Chatterjee, Anoop Raj Singh Rana, Pages 149–155, 2011, with permission from Elsevier [72].
Figure 1. Osteryoung square-wave voltammograms recorded for (a) PBS (background) at the bare EPPGE (· · ·) and (b) increasing concentration of HC at the bare EPPGE electrode (—). Curves were recorded at (a) 100 nM, (b) 250 nM, (c) 500 nM, (d) 750 nM, (e) 1000 nM, (f) 1500 nM and (g) 2000 nM concentration in PBS of pH 7.2. Reprinted from A comparison of edge- and basal-plane pyrolytic graphite electrodes towards the sensitive determination of hydrocortisone, Talanta, Vol 83, Rajendra N. Goyal, Sanghamitra Chatterjee, Anoop Raj Singh Rana, Pages 149–155, 2011, with permission from Elsevier [72].
Membranes 12 01225 g001
Table 2. Electrochemical methods of adrenal gland hormones determination.
Table 2. Electrochemical methods of adrenal gland hormones determination.
AnalyteTechniqueWorking ElectrodeModifierMediumPreconcentration Time, sDetection Limit, MLinear Range, MSource
AdrenalineSWVGCpoly(1-methylpyrrole)0.1 M PBS pH × 10−103.0 × 10−9–2.0 × 10−8[73]
DPVPIGEPR0.1 M PBS pH 7.0n/i8.0 × 10−73.0 × 10−6–90.0 × 10−6[74]
SWVCPECuFe2O4/ILs0.1 M PBS pH 7.4n/i0.07 × 10−60.1 × 10−6–400 × 10−6[75]
SWVCPEPtNP/IL/LAC0.1 M PBS pH 6.5n/i2.9 × 10−710.0 × 10−7–2.1 × 10−4[76]
DPVCPE2,2’-[1,2-Ethanediylbis(nitriloethylidyne)]-bishydroquinone0.1 M PBS pH 7.0n/i2.2 × 10−77.0 × 10−7–1.2 × 10−3[77]
AmperometryCPEGP/mineral oil/polyphenol oxidase0.1 M acetate buffer pH 4.401.5 × 10−55.0 × 10−5–3.5 × 10−4[78]
SWVCPEGP–Nujol–peroxidase—CHIT0.1 M PBS pH 7.0n/i4.0 × 10−72.0 × 10−6–1.1 × 10−4[79]
SWVCPEGP–Nujol–BMIPF6–peroxidase—CHIT0.1 M PBS pH 7.0n/i2.3 × 10−79.9 × 10−7–1.2 × 10−4[79]
CVCPEGP–binder–poly(isonicotinic acid)0.1 M PBS pH 5.3n/i1.0 × 10−65.0 × 10−6–1.0 × 10−4[80]
DPVGCPoly (eriochrome Black T)0.05 M PBS pH 3.5n/i3.0 × 10−72.5 × 10−6–5.1 × 10−5[81]
DPVGC5,5-ditetradecyl-2-(2-trimethyl-ammonioethyl)-1,3-dioxane bromide0.1 M PBS pH 6.0n/i1.0 × 10−81.0 × 10−8 –1.0 × 10−4[82]
DPVAuMeso-2,3-dimercaptosuccinic0.1 M PBS pH 7.7n/i5.3 × 10−84.0 × 10−4–4.0 × 10−3[83]
CVSPE-0.1 M H2SO4 + 0.01 M KCl pH 16001.3 × 10−72.9 × 10−7–1.0 × 10−4[84]
CVGCCaffeic acid0.1 M PBS pH 7.7n/i2.0 × 10−72.0 × 10−6–8.0 × 10−5[85]
CVAuEAuNP/DTT0.1 M PBS pH 7.0n/i6.0× 10−81.0 × 10−7–8.0 × 10−4[86]
SWVAuETriazole0.1 M B-R buffer pH 4.41801.0 × 10−81.0 × 10−7–1.0 × 10−5[87]
DPVCPELaccase-peroxidase0.1 M PBS pH 6.0602.5 × 10−86.1 × 10−6-1.0 × 10−4[88]
DPVGCEHT/MWCNT0.1 M PBS pH 7.0n/i0.024 × 10−60.2 × 10−6–319.7 × 10−6[89]
SWVBDDFE-0.5 M HClO4n/i0.21 × 10−60.7 × 10−6–60 × 10−6[90]
DPVCPEFePC/MWCNTPBS pH 7.4n/i2.1 × 10−7-[91]
DPVCPEIL/CNTPBS pH 7.0n/i0.09 × 10−60.3 × 10−6–450 × 10−6[92]
DPVGCESWCNT/CT/ILPBS pH 7.0600.09 × 10−61 × 10−6–580 × 10−6[93]
DPVGCEPP/MWCNTPBS pH 6.0600.04 × 10−60.1×10−6–8 × 10−6[94]
DPVAuEPMPPBS pH 7.2n/i0.1 × 10−6-[95]
DPVGCEAu/PP0.1 M PBS pH 7.02400.03 × 10−60.3 × 10−6–21 × 10−6[96]
DPVGCEPTPBS pH 7.4n/i0.3 × 10−62 × 10−6–600 × 10−6[97]
DPVGCEPMPPBS pH 4.0n/i0.17 × 10−60.75 × 10−6–200 × 10−6[98]
DPVGCEPt-AuNPPBS pH 7.0n/i57 × 10−663–400 × 10−6[99]
DPVCPEacetylene black0.5 M H2SO4 + SDS701.0 × 10−85.0 × 10−8–7.0 × 10−6[100]
DPVGCEIMWCNT0.15 M PBS pH 7.0n/i0.96 × 10−61.3 × 10−6–833.3 × 10−6[101]
DPVMIP-0.1 M K4Fe(CN)6 + 0.1 M KNO3n/i2 × 10−91 × 10−9 –100 × 10−9[102]
DPVGCERuON0.1 M PBS pH 7.0n/i0.45 × 10−62.0–65.5 × 10−6[103]
DPVGCEpEDOT-CH2OH-MIP/MXene/CNHs0.1 M phosphate buffer 7.44200.3 × 10−91 × 10−9–60 × 10−6[104]
DPVCNTPEpoly(phenylmethanoic acid) PPMAM0.2 M PBS pH 7.0604.5 × 10−810–110 × 10−6[105]
DPVGCEPd/BiVO4PBSn/i0.154 × 10−60.9–27.5 × 10−6[106]
SWVGCEphosphorus-doped microporous carbon spheroidal structures (P-MCSs)0.1 M PB pH 7.0n/i2 × 10−90.01–2 × 10−6[107]
DPVCPEsodium alpha-olefin sulfonate (SAOS)0.2 M PBS pH 7.4n/i0.14 × 10−610–70 × 10−6[108]
DPVCPEtriiodide ions immobilized in an anion-exchange resinPBS pH 6.0n/i3.9 × 10−62.0 × 10−5–3.1 × 10−4[109]
DPVAuME/Au SAMs0.04 M B-R buffer pH 4.02503.3 × 10−81.0 × 10−7–1.0 × 10−4[110]
NorepinephrineSWVGCETAPPPBS pH 7.4n/i-1.0 × 10−6–5.0 × 10−5[111]
SWVPdgraphenePBS pH 7.2n/i67.4 × 10−90.0005–0.5 × 10−3[112]
CVGCEgraphenePBS pH 7.0120400 × 10−96.00 × 10−7–1.20 × 10−4[113]
CVGCEgraphenePBS pH 4.0n/i100 × 10−90.6–1000 × 10−6[114]
DPVGCEPEDOPA-NFs0.1 M PBS pH 7.4n/i50 × 10−90.3–10 × 10−6[115]
DPVGCEPolyisonicotinic acidPBS pH 5.6n/i6.0 × 10−94.0 × 10−7–2.0 × 10−4[116]
CVGCESWCNTB–R buffer pH 5.72n/i6000 × 10−91.0 × 10−5–1.1 × 10−3[117]
DPVGCEC-NiPBS pH 7.012060 × 10−92.0 × 10−7–8.0 × 10−5[118]
CVGraphiteβ-CD/CNT0.1 M PBS pH 6.0n/i5.0 × 10−71.0 × 10−6–3.0 × 10−4[119]
CVAuTLAPBS pH 5.9122.0 × 10−64.0 × 10−5–2.0 × 10−3[120]
SWVEPPGEMWNTPBS pH 7.2n/i0.90 × 10−100.5–100 × 10−9[121]
DPVCPEZrO2NPs0.1 M PBS pH 7.0n/i8.9 × 10−81.0 × 10−7–2.0 × 10−3[122]
CVGCECalix[4]arene crown-40.1 M PB pH 6.0n/i2.8 × 10−75.5 × 10−7–2.3 × 10−4[123]
CVAuC60-[dimethyl-(β-cyclode×trin)]2/Nafion0.1 M PB pH 6.0n/i8.0 × 10−65.0 × 10−5–5.8 × 10−4[124]
SWVGCEPoly2,4,6-trimethylpyridinePBS pH 7.4n/i8.0 × 10−65.0 × 10−3–1.0 × 10−1[125]
CVGCEPoly(cresol red)0.1 M PBS pH 3.0n/i2.0 × 10−73.0 × 10−6–3.0 × 10−5[126]
CVGCENickel(II) complex0.1 M PBS pH 7.4n/i7.7 × 10−91.0 × 10−7–1.0 × 10−5[127]
DPVGCEAu NPsPBS pH 7.0n/i2.0 × 10−85.0 × 10−7–8.0 × 10−5[128]
DPVTiO2 NPs—CPE2,2’-[1,2-butanediylbis(nitriloethylidyne)]-bishydroquinonepH 8.0n/i5.0 × 10−74.0 × 10−6–1.1 × 10−3[129]
CPVSPEPAA-MWCNTs0.1 M PBS pH 7.515001.3 × 10−70–1.0 × 10−5[130]
SWVITOAuNPsPBS pH 7.2n/i87 × 10−9100 × 10−9–25 × 10−6[131]
DPVCPEMCM-41PBS pH 7.0n/i4.0 × 10−87.0 × 10−8–2.0 × 10−3[132]
DPVCPEMolybdenum (VI) complexPBS pH 7.0n/i4.3 × 10−88.0 × 10−8–7.0 × 10−4[133]
DPVGCEHematoxylin0.15 M PBS pH 7.0n/i1.4 × 10−75.0 × 10−7–2.7 × 10−4[134]
DPVCPE3,4-dihydroxybenzaldehyde-2,4-dinitrophenylhydrazone0.1 M PBS pH 7.0n/i7.7 × 10−81.0 × 10−7–8.0 × 10−4[135]
DPVCPEFerrocenemonocarboxylic acid (FMC)0.1 M phosphate buffer pH 7.0n/i1.6 × 10−75.2 × 10−7–5.3 × 10−4[136]
DPVCPEChloranile0.1 M PBS pH 7.0n/i1.12 × 10−83.0 × 10−8 –5.0 × 10−4[137]
DPVGCEPolycalconcarboxylic acidPBS pH 6.0n/i0.1 × 10−60.63–62.5 × 10−6[138]
DPVGCEAu-NPs/poly(2-amino-2-hydroxymethyl-propane-1,3-diol)PBS pH 3.0n/i0.07 × 10−61.3–230.1 × 10−6[139]
CVGCEMWCNT/FCo98 (cobalt ferrite nanoparticles)0.1 M PBS pH 7.0n/i0.76 × 10−60.16–1.91 × 10−3[140]
CVCPEpoly (rhodamine B)0.2 M PBS pH 7.4n/i1.8 × 10−620–90 × 10−6[141]
SWVGCEGQDs/AuNPs (quantum dots)PBS pH 7.0300.15 × 10−60.5–7.5 × 10−6[142]
DPVAuCys/CDs/Tyr0.1 M PBS pH 7.0n/i196 × 10−91–200 × 10−6[143]
SWVGCEP(L-Arg)/ERGOPBS pH 7.0n/i4.22 × 10−82 × 10−5–8 × 10−7[144]
DPVCPEGQDs/IL0.1 M PBS pH 7.0n/i0.06 × 10−60.2–400 × 10−6[145]
SWVPGE-0.1 M PBS pH 7.4n/i9.92 × 1072.5 × 10−4–2.5 × 10−6[146]
CVCPEMnCr2O40.2 M PBS pH 7.4n/i0.034 × 10−60.3 × 10−6–4.5 × 10−6[147]
DPVCPEMWCNTs/CILE0.1 M PBS pH 7.0n/i0.09 × 10−60.3–450 × 10−6[148]
SWVCPE5-mino-3′,4′-dimethyl-biphenyl-2-ol0.1 M PBS pH 7.0n/i5.9 × 10−71.2 × 10−6–9.0 × 10−4[149]
DPVCPEpoly(glutamic acid)0.2 M PBS pH 7.4n/i0.43 × 10−6n/i[150]
DPVCPECNT + ferrocene (FC)0.1 M PBS pH 7.0n/i0.21 × 10−60.47–500.0 × 10−6[151]
CVCPETx-1000.1 M PBS pH 7.0n/i5.0 × 10−60.5 × 10−4–2.0 × 10−4[152]
SWVCPEMWNTs/MBIDZCl0.1 M PBS pH 7.0n/i0.08 × 10−60.2–500 × 10−6[153]
Cortisol (hydrocortisone)DPVHg(Ag)FE-Acetate buffer pH 4.2304.8 × 10−90.02 × 10−6–1.2 × 10−6[154]
SWVEPPG-PBS pH 7.2-88 × 10−9100–2000 × 10−9[72]
SWVSPEmAbCPBS pH 7.4-1.7 × 10−91.7 × 10−9–1.2 × 10−7[155]
CVAuBSA/C-Mab/PPAuNPPBS pH 7.0-1 × 10−121 × 10−12–100 × 10−9[156]
CVAuEA/anti-AbC/DTSP0.05 M PBS pH 7.4n/i2.8 × 10−1110 × 10−12–100 × 10−9[157]
DPVIToAbC/NiOPBS pH 7.0n/i0.89 × 10−122.8 × 10−12–27.5 × 10−3[158]
amperometryAuAbC0.01 M PBS pH 7.5 + glucosen/i2.8 × 10−93.4 × 10−9–5.5 × 10−7[159]
amperometrySPERGO/ AbCPBS pH 7.4n/i2.8 × 10−102.8 × 10−10–5.5 × 10−7[160]
CVAuZnO/AbC0.01 M PBS pH 7.4n/i1 × 10−121 × 10−12–100 × 10−9[161]
DPVGCEHRP-Strept-Biotin-AbC/AuNPs/MrGO/Nafion0.1 M pH 7.0 PBS + 2 mM o-PD + 4 mM H2O2n/i1.4 × 10−102.8 × 10−10–2.8 × 10−6[162]
DPVCPEβ-cyclodextrin0.04 M B-R pH 3.01503.7 × 10−74.2 × 10−7–2.5 × 10−5[163]
DPVSPEAbC/ protein A-magnetic beads0.1 M Trizma + 1 mM MgCl2 pH 9.0n/i9.7 × 10−121.4 × 10−11–4.1 × 10−7[164]
SWVAuAuNPs/AbC0.02 mM PBS pH 7.4n/i4.4 × 10−110.14 × 10−9–7 × 10−9[165]
CVIDE/Cr/SiAbC /DTSP-SAMPBS pH 7.4n/i2.8 × 10−112.8 × 10−11–2.8 × 10−8[166]
CVSPEMIP-PPy0.01 M PBS pH 7.4n/i1 × 10−121 × 10−12–10 × 10−6[167]
SWVCPEAuNPs/MWCNT/IL0.1 M Trizma buffer pH 9.0n/i2.5 × 10−72.8 × 10−7–3.3 × 10−4[53]
DPVGCECoO NPs/Naf0.1 M NaOH pH 12.0n/i0.49 × 10−90.001–9.0 × 10−6[168]
DPVSPCEcortisol-AP/anti-cortisol/APBAn/in/i1.0 × 10−102.8 × 10−10–1.4 × 10−6[44]
DPVGCEPDA-ERGO polydopamine/rGO0.1 M acetate buffer pH 5.2n/i0.006 × 10−90.001–50 × 10−6[169]
CVSPCEMIPK3[Fe(CN)6]/K4[Fe(CN)6] + 0.1 M KCln/i1.2 × 10−91.3–20 × 10−9[170]
DPVNano-porous GCE-0.1 M PBS pH 2n/i30 × 10−90.1–42 × 10−6[171]
CVAuBSA/Anti-Cab/Ag@AgO–PANIPBS pH 7.0 + 0.9% NaCln/i0.64 × 10−121 × 10−12–1 × 10−6[172]
CVPtAnti-CabPBSn/i2.8 × 10−92.8 × 10−9–2.8 × 10−8[173]
CVSirGO/Au IDA0.05 M bicarbonate–carbonate buffer pH 9.6n/i2.8 × 10−90–500 × 10−6[174]

3.3. Pancreatic Hormones

The pancreas is a glandular organ of vertebrates, while the islet pancreas also occurs in other chordates. It takes various forms in different taxa. It can be a compact organ, or it can be scattered among other tissues. It arises from three buds in the intestinal epithelium, one of which disappears in mammals. It consists of two types of tissue: follicular and insular. Pancreatic follicles are exocrine glands that produce many digestive enzymes and break down different types of food. They combine with the secretions of the walls of the exit ducts leading into the intestine to form pancreatic juice. Pancreatic islets diffuse or form a separate organ. There are five types of cells. They function as endocrine glands, secreting, e.g., hormones, such as insulin, somatostatin, and also glucagon in gnathostomatas [175,176,177,178].
Insulin is an anabolic peptide hormone with a systemic effect that plays an essential role in the metabolism of carbohydrates, as well as proteins and fats, secreted by the endocrine part of the pancreas, more specifically by the beta cells of Langerhans islands. The primary task of insulin is to lower blood glucose levels. This happens in four different ways: by increasing glucose transport to insulin-responsive tissues, increasing the use and storage of glucose by tissues, increasing the use of amino acids and increasing fat synthesis. A synthetic form of insulin is commonly used in the treatment of type 1 diabetes, where the pancreatic beta islet cells stop producing this hormone, which in turn causes chronic hyperglycemia [179,180,181,182]. When considering the still-growing amount of diabetes causes and the importance of the accurate systems of direct insulin measurements in the human body, new electrochemical sensors for insulin determination are still demanded. Since 2000, numerous works of voltammetric and amperometric insulin determination methods have been reported. Most of them used glassy carbon electrodes as working electrodes, modified by different types of nanomaterials, such as carbon nanotubes, nickel nanoparticles or reduced graphene oxide. Among the various materials, transition metal oxides and hydroxides have attracted great interest in electrochemical studies because of their excellent electrocatalytic activity toward different compounds. The use of such modifiers allows for obtaining picomolar insulin limits of detection (Table 3). The great interest in insulin determination, therefore, results in the preparation of voltammetric assays for its sensitive measurement in human serum and plasma samples and in injections commonly used by people with diabetes.
In Table 3, the electrochemical methods of insulin determination are compared.
Table 3. Electrochemical methods of pancreatic hormones determination.
Table 3. Electrochemical methods of pancreatic hormones determination.
AnalyteTechniqueWorking ElectrodeModifierMediumDetection LimitLinear RangeSource
InsulinamperometryCNT-NiCoO2 /Nafion-0.1 M PBS pH 7.50.22 µg mL−10.1–31.5 µg mL−1[183]
FIACCECHN0.3 M PBS pH 100.11 × 10−9 M0.5–15 × 10−9 M[184]
AmperometryGCEIrOx0.1 mM Na3IrCl6 + 0.2 M HCl pH 7.420 × 10−9 M50–500 × 10−9 M[185]
AmperometryCCE[Ru(bpy) (tpy)CI]PF60.1 M PBS pH 7.00.4 × 10−9 M0.5–850 × 10−9 M[186]
FIACPERuOx0.1 M NaCl + 0.05 M phosphate buffer pH 7.450 × 10−9 M100–1000 × 10−9 M[187]
FIAGCERuOx-CNT0.05 M PBS pH 7.41 × 10−9 M10–80 × 10−9 M[188]
AmperometrySPEMWCNT/NiONPs0.1 M NaOH pH 136.1 × 10−9 M20–260 × 10−9 M[189]
FIAGCESiCPBS pH 7.40.0033 × 10−9 M0.1–0.6 × 10−9 M[190]
AmperometryCPESiPBS pH 2.036 × 10−12 M90–1400 × 10−12 M[191]
FIACRuRDMs0.2 M PBS pH 7.02 × 10−9 M6–400 × 10−9 M[192]
AmperometryGCECT/CNTPBS pH 7.430 × 10−9 M100–3000 × 10−9 M[193]
CVITONiNPs0.1 M NaOH10 × 10−9 M1 × 10−9–125 × 10−9 M[194]
CVCFMENiNPs/CNTs0.1 M NaOH270 × 10−9 M2–20 × 10−6 M[195]
DPVGCESiO2 NPs/Nafion0.1 M PBS pH 7.353.1 × 10−9 M10–50 × 10−9 M[196]
FIAGCCNT0.05 M PBS pH 7.414 × 10−9 M100–1000 × 10−9 M[197]
FIACCENiNPs0.1 M PBS pH 132.6 × 10−12 M15–100 × 10−12 M[198]
CVGCrGO0.1 M PBS pH 7.4350 × 10−12 M4–640 × 10−9 M[199]
amperometryGCNiO/guaninePBS pH 7.422 × 10−12 M100 × 10−12 M–4 × 10−6 M[200]
amperometryGCENi(OH)2NPs/Nafion-MWCNT0.1 M NaOH85 × 10−9 M0–40 × 10−6 M[201]
SWVPGENiNPs/MBB-R buffer pH 7.033.17 × 10−9 M25–450 × 10−9 M[202]
CVTFT microelectrodesMWCNT0.05 M PBS pH 7.4250 × 10−9 M250 × 10−9–1.6 × 10−6 M[203]
FIAGCECoOxPBS pH 9.025 × 10−12 M100 × 10−12 M–15 × 10−9 M[204]

3.4. Pineal Gland Hormones

The pineal gland is one of the endocrine glands, which lies between the upper mounds of the lamina. The pineal gland cells—pinealocytes—produce the so-called sleep hormone – melatonin, a derivative of tryptophan [205,206,207]. Melatonin and its derivative metabolites are secreted into the cerebrospinal fluid and into the blood. Its secretion is closely related to light stimulation; its presence inhibits the production of this hormone. In mammals, it also has an inhibitory effect on the secretion of gonadotropic hormones, preventing premature sexual maturation. The secretory activity of the pineal gland follows the daily rhythm of changes in lighting and probably affects the rhythmicity of various physiological functions. In mammals, the secretion of the pineal gland is controlled by impulses sent by the eye’s retina. Disturbances in the work of this gland cause disturbance of the circadian rhythm and, in the long term, disturbances in the development of gonads. Melatonin is sold in the form of over-the-counter tablets as a drug to help people fall asleep, who have disturbed circadian rhythms, or for blind patients and those with sleep disorders related to changing time zones (sudden change in time zone syndrome) [208,209,210,211,212].
A large variety of sensors based on polymers, nanoparticles, carbon-based materials, hybrid arrangements and biomolecules were used for the highly sensitive determination of melatonin. According to the literature, melatonin determination on an unmodified solid electrode has been performed on a boron-doped diamond electrode, carbon paste electrode and glassy carbon electrode thus far. In order to obtain a high sensitivity of the performed measurements, different types of electrode modifications have been developed since then. The most popular include multi-walled carbon nanotubes, palladium nanoparticles, nanorods of ZnO2, graphene or carbon black. The lowest detection limit obtained for melatonin was measured using the alternating current voltammetry with a carbon paste electrode as a working electrode, and it was equal to 9 × 10−11 M (Table 4). Samples of the melatonin calibration graphs are presented in Figure 2 [213]. Melatonin measurements were performed using voltammetric techniques in the samples, such as human serum and plasma, urine, and in pharmaceutical formulations in the form of tablets.
In Table 4, the electrochemical methods of melatonin determination are compared.
Figure 2. Melatonin calibration graphs (A) with corresponding voltammograms (B) measured on a glassy carbon electrode modified with carbon black [213]. The following curves in picture A stand for preconcentration times: a: 0 s, b: 3 s, c: 6 s, d: 10 s and e: 20 s, measurements carried out in the 0.1 mol L−1 phosphate buffer pH 6.2. Reprinted from Carbon black as a glassy carbon electrode modifier for high sensitive melatonin determination, Journal of Electroanalytical Chemistry, Vol 799, Joanna Smajdor, Robert Piech, Magdalena Pięk, Beata Paczosa-Bator, Pages 278–284, 2017, with permission from Elsevier.
Figure 2. Melatonin calibration graphs (A) with corresponding voltammograms (B) measured on a glassy carbon electrode modified with carbon black [213]. The following curves in picture A stand for preconcentration times: a: 0 s, b: 3 s, c: 6 s, d: 10 s and e: 20 s, measurements carried out in the 0.1 mol L−1 phosphate buffer pH 6.2. Reprinted from Carbon black as a glassy carbon electrode modifier for high sensitive melatonin determination, Journal of Electroanalytical Chemistry, Vol 799, Joanna Smajdor, Robert Piech, Magdalena Pięk, Beata Paczosa-Bator, Pages 278–284, 2017, with permission from Elsevier.
Membranes 12 01225 g002
Table 4. Electrochemical methods of pineal gland hormones determination.
Table 4. Electrochemical methods of pineal gland hormones determination.
AnalyteTechniqueWorking ElectrodeModifierMediumPreconcentration Time, sDetection Limit, MLinear Range, MSource
MelatoninDPVGCECB/DMF0.1 M phosphate buffer pH 6.2451.9 × 10−80.05 × 10−6–12 × 10−6[213]
CVBDD-1 M KCln/i1.03 × 10−53.4 × 10−4–6.8 × 10−4[214]
SWVGCEAHNSA/PdNPs/ErGO1 M phosphate buffer pH 7.2n/i0.09 × 10−65 × 10−6–100 × 10−6[215]
SWVBDD-0.1 M B-R buffer pH 3.0601.1 × 10−70.5 × 10−6–4.0 × 10−6[216]
DPVGCE-0.5 M H2SO4 + 20% methanol pH 2.15n/i5.86 × 10−620 × 10−6–80 × 10−6[217]
amperometryGCEMnHCF/PEDOT0.1 M KCl buffer pH 1.53100 × 10−6100–4600 × 10−6[218]
DPVGCERGO/RuO2PBS pH 7.0n/i0.18 × 10−62–20 × 10−6[219]
LSVGCE-0.05 M phosphate buffer pH 3.0n/i1.1 × 10−52.7 × 10−5–2.2 × 10−4[220]
DPVGCE3DG/AuNPs0.04 M PBS pH 7.4n/i0.0082 × 10−60.05-50 × 10−6[221]
amperometryCPE-0.1 M HClO408 × 10−910−8–10−5[222]
DPVCILEMWCNTs–CoHNPs0.01 M PBS pH 7.5900.004 × 10−60.01–50 × 10−6[223]
SWVGPT/WPE-0.1 M phosphate buffer pH 7.4n/i32.5 × 10−90.8–100 × 10−6[224]
SWVSPE-0.1 M phosphate buffer pH 5.0n/i25.8 × 10−90.25–75 × 10−6[225]
LSVGCEMWNTs-DHP0.01 M PBS pH 7.51800.02 × 10−60.08–10 × 10−6[226]
OSWSVAGCE-0.04 M B-R buffer pH 6.71200.05 × 10−60.8–10 × 10−6[227]
SWVCPEGraphene/Fe2O3B–R buffer pH 5.0n/i8.4 × 10−90.02–5.8 × 10−6[228]
ACVCPE-0.1 M HClO46009.0 × 10−111.0 × 10−10–1.0 × 10−9[229]
SWVHMDE-acetate buffer pH 5.0303.1 × 10−101 × 10−9–1 × 10−7[230]
SWVGCEGR/AHNSA/MMPBS pH 7.224060 × 10−100.05–100 × 10−6[231]
SWVGr-AV-0.5 M McIlvaine buffer solution pH 7.0n/i0.49 × 10−610–100 × 10−6[232]
DPVCPEPdNP@Al2O30.1 M PB pH 7.0n/i21.6 × 10−96 × 10−9–1.4 × 10−3[233]
DPVGCE-B–R buffer pH 4.3n/i1.48 × 10−610–500 × 10−6[234]
SWVAuacetylene black NPs-chitosan (AB-C)0.1 M PBS pH 7.001.9 × 10−62 × 10−5–4.5 × 10−4[235]
DPVSPEMWCNTs50 mM phosphate buffer pH 7.6n/i1.1 × 10−60.005–3 × 10−3[236]
CVSPEgraphene0.1 M PBS pH 7.0n/i0.87 × 10−61–300 × 10−6[237]

3.5. Ovarian Hormones

The ovarium is a gonad found in the females of most animals (except for sponges). Usually, a paired organ is found in females, which is the developmental equivalent of the testicles. The ovaries lie inside the peritoneal cavity at the side walls of the pelvis on the posterior surface of the broad ligaments of the uterus, to which they are attached by the short mesentery. The ovaries serve a dual purpose: the production of eggs and the secretion of female sex hormones (estrogens, progesterone, relaxin and androgens). From the moment a woman reaches sexual maturity until the end of her reproductive function (menopause), the so-called Graaf’s follicle contains an egg. A follicle that is ripe to rupture is 1–1.5 cm in diameter, and the egg cell is about 0.2 mm. Follicle maturation occurs under the influence of the follicle-stimulating hormone, and under the influence of the luteinizing hormone, the amount of fluid in the follicle increases, and finally, it ruptures. When the follicle ruptures, the egg enters the fallopian tube, and the rest of the follicle produces a red body—and a corpus luteum from it—which releases the progesterone necessary to implant a fertilized egg into the uterine mucosa [238,239,240].
Estrogens are a group of sex hormones that include the three main forms of estrogen naturally occurring in women: estrone (E1), estradiol (E2) and estriol (E3), as well as the estrogen produced only during pregnancy, estetrol (E4). Estrogens are called female hormones, and they play the most important role in the female body, but they are also essential for men, where a deficiency in the testes can cause infertility. Estrogens are steroidal hormones; they differ in the number and arrangement of the hydroxyl groups. They affect many features and functions of the body, especially the female body. They are mainly responsible for the development of second or third-order sexual characteristics of a woman’s body, regulation of the menstrual cycle, lipid and calcium metabolism or increasing blood clotting. During the menstrual cycle, the estradiol levels fluctuate, which produces specific physiological effects that prepare the uterus to receive and facilitate a fertilized egg, mainly by causing endometrial growth [241,242,243,244].
In the current literature, the topic of estrogen-compound determination is still gaining popularity due to being considered as a group of one of the biggest environmental pollutants, which has the ability to interfere with the endocrine system. In particular, the electrochemical methods have received extensive attention from researchers because of its sensitivity and short time of analysis. Square wave voltammetry and differential pulse voltammetry are especially useful for the detection of small amounts of estrogen. The lowest detection limits for E1, E2 and E3 were equal to 0.23 pM, 0.54 pM and 0.5 nM, respectively (Table 5). In order to check the utility of the proposed methods for routine quality control analyses, the measurements were performed in samples, such as water (tap water, wastewater and surface water) human urine, blood, serum, plasma, animal tissues and milk. Samples of the estradiol calibration graphs are presented in Figure 3 [245].
Progesterone (lutein) is a female sex hormone with a steroid structure, produced mainly by the luteal cells in the luteal phase. It is one of the most important hormones secreted by the ovaries. This hormone enables the embryo to implant in the uterine mucosa and maintains the pregnancy. If pregnancy does not occur, progesterone secretion is reduced, and corpus luteum luteolysis occurs. The rapid reduction in blood progesterone levels results in a controlled shedding of the lining of the womb (menstruation). After fertilization, progesterone is initially secreted by the corpus luteum, and in the 14–18 weeks of pregnancy (in humans), it is also produced by the placenta. In the female body, progesterone works through the appropriate receptors located, among others, in the uterus, mammary glands, CNS (central nervous system) and pituitary gland. Progesterone acts synergistically with estrogens on the mammary gland, stimulating the growth of the glandular cells and ductal epithelium and participating in the expression of the receptors necessary for lactation. Other metabolic effects of progesterone include an increasing body temperature, stimulating breathing, lowering the concentration of amino acids in the blood serum, normalization of blood glucose levels, and antiandrogenic activity consisting in the activity’s inhibition of 5-alpha reductase, which transforms testosterone into dihydrotestosterone. The fall in progesterone levels after childbirth causes mood swings, known as postnatal depression [246,247,248,249]. Many electrochemical techniques of progesterone determination are based on the modification of solid electrodes with a layer comprising progesterone-specific antibodies or aptamers. The use of such immunosensors allows for obtaining a progesterone limit of detection as low as 1.86 pM. Additionally, modifiers, such as metal oxides, multi-walled carbon nanotubes, conducting polymers or other carbon nanomaterials, are commonly used in progesterone determination assays. The limits of detection, obtained in the literature since 2000, allow for the measurement of progesterone in samples, such as human serum, plasma, milk, and in pharmaceutical formulations in the form of injections.
In Table 5, the electrochemical methods of estradiol, estriol, estrone and progesterone determination are compared.
Figure 3. Estradiol calibration graphs (A) with corresponding voltammograms for the preconcentration time of 60 s (B) measured on a glassy carbon electrode modified with carbon black [245]. The following curves in picture A stand for preconcentration times: a: 60 s, b: 20 s and c: 5 s, measurements carried out in the 0.1 mol L−1 phosphate buffer pH 6.2. Reprinted from Glassy carbon electrode modified with carbon black for sensitive estradiol determination by means of voltammetry and flow injection analysis with amperometric detection, Analytical Biochemistry, Vol 544, Joanna Smajdor, Robert Piech, Martyna Ławrywianiec, Beata Paczosa-Bator, Pages 7–12, 2018, with permission from Elsevier.
Figure 3. Estradiol calibration graphs (A) with corresponding voltammograms for the preconcentration time of 60 s (B) measured on a glassy carbon electrode modified with carbon black [245]. The following curves in picture A stand for preconcentration times: a: 60 s, b: 20 s and c: 5 s, measurements carried out in the 0.1 mol L−1 phosphate buffer pH 6.2. Reprinted from Glassy carbon electrode modified with carbon black for sensitive estradiol determination by means of voltammetry and flow injection analysis with amperometric detection, Analytical Biochemistry, Vol 544, Joanna Smajdor, Robert Piech, Martyna Ławrywianiec, Beata Paczosa-Bator, Pages 7–12, 2018, with permission from Elsevier.
Membranes 12 01225 g003
Table 5. Electrochemical methods of ovarian hormone determination.
Table 5. Electrochemical methods of ovarian hormone determination.
AnalyteTechniqueWorking ElectrodeModifierMediumPreconcentration Time, sDetection LimitLinear RangeSource
EstradiolDPVGCECB/DMF0.1 M phosphate buffer pH 6.2609.2 × 10−8 M0.15 × 10−6–3.5 × 10−6 M[245]
DPVGCERGO/CuTthP0.1 M PBS pH 7.0n/i5.3 × 10−9 M0.1–1.0 × 10−6 M[250]
LSVGCENafionphosphate buffer pH 8.0 + CTAB3601 × 10−9 M2.5 × 10−8–1.5 × 10−6 M[251]
SWVGCECNT–Ni (cyclam)0.1 M PBS pH 7.2n/i60 × 10−9 M0.5–40 × 10−6 M[252]
amperometrySPCanti-estradiol-Biotin-Strept-ABAg0.05 M PBS pH 6.002.8 × 10–12 M3.7 × 10–12 –9.2 × 10–10 M[253]
SWVWGECCh0.1 M PBS pH 7.0604 × 10−7 M4 × 10−6–4 × 10−5 M[254]
SWVAuAuNPs/Protein G0.02 M PBS pH 7.4n/i6.6 × 10–12 M6.6 × 10–12 –4.4 × 10−9 M[255]
FFTSWVCPE(Tb2(CO3)3) NPsPBS pH 5.0n/i3.7 × 10–11 M3.7 × 10–10–3.7 × 10–5 M[256]
DPVGCE-0.05 M H2SO4 methanol/water 9:1n/i1.21 × 10−5 M4 × 10−5–1 × 10−3 M[257]
DPVGCEBPIDSPBS pH 10.01805.0 × 10−8 M1.0 × 10−7–1.0 × 10−5 M[258]
DPVCPEGNR-FS-Au-CA0.1 M PBS pH 5.01800.0074 × 10−6 M0.1–5.0 × 10−6 M[259]
LSVGCERGO-DHP0.05 M PBS pH 7.02400.077 × 10−6 M0.4–10 × 10−6 M[260]
SWVHMDE-0.03 M B-R buffer pH 10.0300.3 µg L−1Up to 21.8 µg L−1[261]
DPVCPECu-BTCphosphate buffer pH 7.01200.001 × 10−6 M0.003–0.75 × 10−6 M[262]
SWVGCENiFe2O4-MC0.1 M TBATFBn/i6.88 × 10−9 M20–566 × 10−9 M[263]
SWVGCEPt/MWNTsPBS pH 7.01801.8 × 10−7 M5.0 × 10−7–1.5 × 10−5 M[264]
amperometryCPEFeTPyPz0.1 M PBS pH 6.001.3 × 10−5 M4.5 × 10−5–4.5 × 10−4 M[265]
SWVCPECuO0.1 M B-R buffer pH 9.0n/i21 × 10−9 M60-800 × 10−9 M[266]
LSVGCEpoly(L-serine)0.1 M phosphate buffer pH 6.51202.0 × 10−8 M1.0 × 10−7–3.0 × 10−5 M[267]
CVGCEMWNT-[bmim]PF60.1 M PBS 7.02705.0 × 10−9 M1.0 × 10−8–1.0 × 10−6 M[268]
LSVGCEAl2O30.1 M phosphate buffer pH 8.01208 × 10−8 M4 × 10−7–4 × 10−5 M[269]
DPVGCECdSe-BSA-antiE20.1 M acetate buffer pH 4.51501.8 × 10–10 M1.8 × 10–10–3.7 × 10–10 M[270]
DPVGCELac/rGO-RhNP0.1 M PBS 7.0n/i0.54 × 10−12 M0.9–11 × 10−12 M[271]
SWVGCEMWNT-Nafion0.1 M phosphate buffer pH 7.03001 × 10–8 M2.5 × 10–7–10 × 10–6 M[272]
DPVGCnanosized biochar particles BCNPs0.05 M phosphate buffer pH 4.0120011.3 × 10−9 M-[273]
DPVSPECuP/ P6LC/Nafion film0.1 M phosphate buffer pH 5.0n/i5 × 10−9 M8 × 10−8–7.3 × 10−6 M[274]
SWVBDDCB0.1 M phosphate buffer pH 12.01202.2 × 10−9 M5–100 × 10−9 M[275]
SWVAuPEDOT/AuNPPBS pH 7.5n/i0.02 × 10−9 M0.1–100 × 10−9 M[276]
EstriolSWVCPEFe3O4NPs0.1 M B-R buffer pH 6.0-2.7 × 10−6 M3.0 × 10−6 –1.1 × 10−4 M[277]
DPVGCrGO–SbNPs0.1 M PBS pH 9.0305.0 × 10−10 M2.0 × 10−7–1.4 × 10−6 M[278]
DPVGCrGO/AgNPs0.2 M PBS pH 9.03021.0 × 10−9 M0.1–3.0 × 10−6 M[279]
SWVBDD-0.005 M NaOH pH 12.0n/i1.7 × 10−7 M2.0 × 10−7–2.0 × 10−5 M[280]
CVCPEPGM0.2 M PBS pH 6.0n/i8.7 × 10−7 M2 × 10−6–1 × 10−4 M[281]
DPVGCECNB/AgNPs0.1 M PBS pH 7.0n/i0.16 × 10−6 M0.2 -3.0 × 10−6 M[282]
SWVGCEPt/MWNTsPBS pH 7.0180620 × 10−9 M1.0 × 10−6–7.5 × 10−5 M[264]
CVGCENi0.1 M NaOH pH 12.0n/i1.0 × 10−7 M5.0 × 10−6–1.0 × 10−4 M[283]
LSVGCERGO/GNPs/PS0.2 M PBS pH 5.7n/i0.48 × 10−6 M1.5–22 × 10−6 M[284]
DPVCPESDS- PXAMCNTG0.1 M PBS pH 7.0801.9 × 10−7 M10–70 × 10−6 M[285]
DPVCPEL-proline0.1 M PBS pH 6.5n/i2.2 × 10−7 M6 × 10−6-6 × 10−5 M[286]
DPVGCECo-poly(Met)0.1 M PBS pH 7.0n/i0.034 × 10−6 M0.596-4.76 × 10−6 M[287]
CVGCENi/Co0.1 M PBS pH 7.0n/i0.42 × 10−9 M1 × 10−9–14 × 10−9 M[288]
amperometryGCELac/rGO/Sb2O50.1 M PBS pH 7.0-1.1 × 10−8 M2.5 × 10−8–1.03 × 10−6 M[289]
EstronSWVGCEAuNPs-pNapCBS pH 5.0n/i2.3 × 10−13 pg mL−13.0 × 10−13–2 × 10−4 pg mL−1[290]
SWVWGECCh0.1 M PBS pH 7.0601 × 10−7 M3 × 10−7–3 × 10−5 M[254]
SWVBDD-0.25 M H2SO4n/i0.10 × 10−6 M0.1–2.0 × 10−6 M[291]
SWVGCEPt/MWNTsPBS pH 7.0180840 × 10−9 M2.0 × 10−6–5.0 × 10−5 M[264]
SWVCPEFe3O4 NP-BMI.PF60.2 M B–R buffer pH 12.050.47 × 10−6 M4–100 × 10−6 M[292]
SWVCPE-0.1 M PBS pH 8.01804.0 × 10−8 M9.0 × 10−8–8.0 × 10−6 M[293]
LSVGCEMWNT/CR0.1 M PBS pH 8.04005.0 × 10−9 M5.0 × 10−8–2.0 × 10−5 M[294]
SWVGCEMWCNT-COOHB-R buffer pH 7.0n/i0.117 × 10−6 M1.0–9.0 × 10−6 M[295]
DPVGCEMoSI NWsPBS pH 7.2n/i5.2 × 10−12 g mL−12 × 10−12–2 × 10−11 g mL−1[296]
ProgesteroneSWVBiFE-0.1 M B–R buffer pH 12.0600.18 × 10−6 M0.40–7.90 × 10−6 M[297]
amperometryGCEMn(III)-SB0.1 M NaOH pH 13.0n/i11.4 × 10−9 M0.022–0.25 × 10−6 M[298]
SWVGCE-0.1 M N(C4H9)4PF6 + acetonitrilen/i500 × 10−9 M4.0–1000 × 10−6 M[299]
SWVGCEGO-IMZ0.1 M NaOH pH 13.0n/i68 × 10−9 M0.22–14.0 × 10−6 M[300]
SWVAumAbP4-AuNPs0.001 M CBS pH 5.0n/i0.25 × 10−9 M0.0016–0.038 × 10−6 M[301]
DPVGCEFe3O4@GQD/f–MWCNTs0.1 M PBS pH 7.01402.2 × 10−9 M0.01–3.0 × 10−6 M[302]
DPVGCESn nanorods0.2 M NaOH pH 13.0-0.12 × 10−6 M40–600 × 10−6 M[303]
amperometrySPEmAbP40.1 M Diethanolamine–HCl buffer pH 9.85--0.0–0.079 × 10−6 M[304]
DPVSPE(prog)–BSA conjugatemilkn/i9.5 × 10−9 M0.05–0.81 × 10−6 M[305]
DPVCFP carbon fiber paperCNS Carbon nanospheresPBS pH 7.0n/i0.012 × 10−9 M37.4 × 10−12–0.25 × 10−9 M[306]
SWVnsBiFE-0.1 M Na-PBS60-0.1– 0.7 × 10−6 M[307]
amperometrygold-graphite-TeflonmAbP40.1 M diethanolamine-HCl buffer pH 10.0-2.7 × 10−9 M0.0–0.095 × 10−6 M[308]
amperometryGCEmAbP4/HRP/pyrocatechol0.01 M PBS pH 7.0-0.63 × 10−9 M0.0016–0.04 × 10−6 M[309]
amperometrygold–graphite–TeflonmAbP40.1 M TRIS pH 7.0 + 20 µM phenyl phosphate-1.4 × 10−9 M0.0–0.13 × 10−6 M[310]
SWVCPEGd2(WO4)3NPs0.1 M B–R buffer pH 11.5n/i50 × 10−9 M0.1–1 × 10−6 M[311]
SWVSPEAuNPs/AMBI/rGO0.1 M sodium hydroxiden/i0.28 × 10−9 M0.9 × 10−9–27 × 10−6 M[312]
DPVGCEPEDOT/ZrO2-NPsCBS 0.1 M, pH 4n/i0.32 × 10−9 M1 × 10−9–6 × 10−3 M[313]
DPVSPEBSA/aptamer/GQDs–NiO-AuNFs/f-MWCNTs0.1 M KCl + 5.0 mM K3[Fe(CN)6]n/i1.86 × 10−12 M0.01–1000 × 10−9 M[314]
DPVGCEGQD-PSSA/GO0.1 M CBS pH 6.01800.31 × 10−9 M0.1–6.0 × 10−6 M[315]
DPVGCEPEDOT/ZrO2-NPsn/in/i0.32 × 10−9 M1–100 × 10−9 M[313]

3.6. Testicular Hormones

The testes are gonads found in most males of animals (except sponges). Male mammals have two testicles that are most often found in the scrotum—the fascia-dermal sac originating from the abdominal wall. In most mammals, the testes are located outside the body, suspended by a spermatic cord in the scrotum. This is because spermatogenesis is more efficient at temperatures lower than about 37 degrees Celsius inside the body. Similar to the ovaries (whose counterparts are), the testes are a component of two systems: the reproductive system (as gonads) and the endocrine system (as endocrine glands). The functions of the testicles are sperm production and the production of male sex hormones (including testosterone). Both sperm-forming and endocrine functions are under the control of the hormones produced by the anterior pituitary gland, which are lutropin (LH) and follicle-stimulating hormone (FSH) [316,317,318].
Testosterone is an organic chemical compound from the group of androgens, the basic male sex steroid hormone. It is produced by Leydig interstitial cells in the testes under the influence of the luteinizing hormone and also in small amounts by the adrenal cortex, ovaries and placenta. In the blood, only a small part of testosterone is in the free form and bound to albumin, with the rest being bound (inactive) with the SHBG transport protein (sex hormone binding globulin). In target tissues, testosterone is converted into a 2.5 times stronger form of 5-α-dihydrotestosterone. In order to exert its biological effects, testosterone binds with the receptors for steroid hormones located in the cytoplasm and nucleus of the effector cells. The treatment uses testosterone derivatives—esters for oral use or injection with a slow release from the muscle tissue. Testosterone is responsible for shaping sex and sexual characteristics in utero, spermatogenesis, development of secondary sexual characteristics, stimulating protein synthesis, increasing blood cholesterol and stimulating the development of the prostate gland, which stimulates the development of prostate cancer. Testosterone, when used in women, has an anabolic effect; however, it is very rarely practiced medicinally due to undesirable effects, such as masculinization and hirsutism. It is most often used in the case of advanced, hormonally active tumors [319,320,321].
A variety of electrochemical techniques among the different types of working electrodes were implemented for highly sensitive testosterone determination. Aside from the classic construction of the hanging mercury drop electrode, on which the testosterone limit of detection was equal, mostly solid electrodes modified with different layers and carbon paste electrodes were used. The lowest testosterone detection limit reported in the papers since 2000 was obtained using the gold electrode modified by a layer of molecularly imprinted polysiloxane thin film formed in the presence of testosterone, and it was equal to 10 fM. In the construction of other modifier layers, testosterone antibodies, carbon nanotubes, metal nanoparticles and oxides were commonly used (Table 6). In order to check the utility of the proposed methods for routine quality control analysis, the measurements of testosterone were performed in samples such as human urine, blood, plasma, serum and saliva.
In Table 6, the electrochemical methods of testosterone determination are compared.
Table 6. Electrochemical methods of testicular hormones determination.
Table 6. Electrochemical methods of testicular hormones determination.
AnalyteTechniqueWorking ElectrodeModifierMediumPreconcentration Time, sDetection LimitLinear RangeSource
TestosteroneOSWVEPPGESWCNTPBS pH 7.2n/i2.8 × 10−9 M5–1000 × 10−9 M[322]
SWVGCE-0.1 M B-R buffer pH 5.0 + 3 mM CTAB1201.2 × 10−9 M10–70 × 10−9 M[323]
CVGCECoOx0.10 M NaOH pH 12.5n/i0.16 × 10−6 M0.33–2.00 × 10−6 M[324]
DPVGCErGOborate buffer pH 5.4 + CTABn/i0.1 × 10−9 M2.0–210.0 × 10−9 M[325]
SWVBiFE-0.1 M B-R buffer pH 5.0 + 3 mM CTAB1200.3 × 10−9 M1–45 × 10−9 M[326]
DPVCPEMWCNT/MDn/in/i1.33 × 10−11 M10 × 10−10–10 × 10−8 M[327]
amperometryTeflonantitestosterone/MWCNT/AuNPs0.5 mM catechol+ PBS of pH 7.4 + H2O2-2.9 × 10−10 M3.5 × 10−9–3.5 × 10−8 M[328]
SWVGCEPb0.05 M acetate buffer pH 5.2 + Pb(NO3)21209 × 10−9 M2 × 10−8–3 × 10−7 M[329]
SWVAuDMIP0.01 M PBS pH 7.2-10 × 10−15 M10–100 × 10−15 M[330]
amperometrySiα-testosterone mAbPBS pH 7.0 + 1 mM H2O2 + 1 mM HQn/i43 × 10−12 M34 × 10−12 – 34 × 10−9 M[331]
DPVHMDE-B-R buffer pH 6.53005 × 10−9 M1 × 10−8 – 7.3 × 10−6 M[332]
amperometrySPCEpBDBT/AbTES5.0 mM [Fe(CN)6]3−/4− in 0.1 M KCln/i17 ng mL−110–500 ng mL−1[333]

3.7. Other Hormones and Steroids

Aside from the previously described, the human body produces many other hormones, not only by the glands (e.g., human chorionic gonadotropin, thyroxine) but also by the adipose cells (leptin) or intestinal tract (serotonin). Thanks to modern medicine, we are able to compensate for the deficiency of the natural hormone by replacing it with an artificial one (e.g., sodium levothyroxine). Additionally, the still-growing industry of contraceptive drugs causes the development of new synthetic hormones that are similar to the natural ones (e.g., ethinylestradiol, drospirenon) [334,335,336,337,338]. Samples of the sodium levothyroxine and human chorionic gonadotropin sodium calibration graphs are presented in Figure 4 [339] and Figure 5 [340].
Figure 4. Spironolactone calibration graphs (A) with corresponding voltammograms for the preconcentration time of 20 s (B) measured on refreshable silver-based amalgam film electrode [339]. The following curves in picture A stand for preconcentration times: a: 0 s, b: 3 s, c: 5 s, d: 10 s, e: 20 s, f: 30 s and g: 45 s, measurements carried out in the 0.031 mol L−1 acetate buffer, pH 4.6. Reprinted from Spironolactone voltammetric determination on renewable amalgam film electrode, Steroids, Vol 130, Joanna Smajdor, Robert Piech, Beata Paczosa-Bator, Pages 1–6, 2018, with permission from Elsevier.
Figure 4. Spironolactone calibration graphs (A) with corresponding voltammograms for the preconcentration time of 20 s (B) measured on refreshable silver-based amalgam film electrode [339]. The following curves in picture A stand for preconcentration times: a: 0 s, b: 3 s, c: 5 s, d: 10 s, e: 20 s, f: 30 s and g: 45 s, measurements carried out in the 0.031 mol L−1 acetate buffer, pH 4.6. Reprinted from Spironolactone voltammetric determination on renewable amalgam film electrode, Steroids, Vol 130, Joanna Smajdor, Robert Piech, Beata Paczosa-Bator, Pages 1–6, 2018, with permission from Elsevier.
Membranes 12 01225 g004
Figure 5. Calibration curves of the electrochemical immunosensor toward hCG standards in pH 7.0 PBS containing 2 mmol L−1 H2O2. Reprinted from Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotube–graphene composite and functionalized mesoporous materials, Biosensors and Bioelectronics, Vol 33, Juanjuan Lu, Shiquan Liu, Shenguang Ge, Mei Yan, Jinghua Yu, Xiutao Hu, Pages 29–35, 2012, with permission from Elsevier [340].
Figure 5. Calibration curves of the electrochemical immunosensor toward hCG standards in pH 7.0 PBS containing 2 mmol L−1 H2O2. Reprinted from Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotube–graphene composite and functionalized mesoporous materials, Biosensors and Bioelectronics, Vol 33, Juanjuan Lu, Shiquan Liu, Shenguang Ge, Mei Yan, Jinghua Yu, Xiutao Hu, Pages 29–35, 2012, with permission from Elsevier [340].
Membranes 12 01225 g005
Another important class of biologically active compounds present in the WHO list of essential medicines is the steroid group. Steroids can be naturally produced by the organism and synthesized through chemical reactions. What they have in common is a tetracyclic carbon skeleton with 21 carbon atoms. In the human body, two classes of steroids can be distinguished: glucocorticoids and mineralocorticoids. Glucocorticoids are natural hormones that are produced by the adrenal cortex. They are of great importance in terms of metabolism, the immunological system, as well as the secretion of other hormones. The main representatives of this class of steroids are prednisone, dexamethasone or betamethasone. Mineralocorticosteroids are hormones produced in the human body by the glomerular layer of the adrenal cortex. They affect the inorganic metabolism. The main representative of mineralocorticosteroids is aldosterone. Its most important activity is the retention of sodium ions (Na+) in the body and the intracellular influx of potassium ions (K+) and the secondary retention of water in the body.
The construction of the working electrodes in the assays of steroid determination usually comprises the solid electrode covered by the modifier layer. Additionally, classical mercury electrodes can be found in the literature, as well as carbon paste electrodes comprising carbon nanomaterials, often with the addition of nanoparticles (Table 7). Samples of the dexamethasone calibration graphs are presented in Figure 6 [341] and Figure 7 [342]. Steroids and synthetic hormones were measured in different matrices, such as human urine, serum and plasma, using voltammetric methods.
Figure 6. Dexamethasone calibration graphs (A) with corresponding voltammograms for the preconcentration time of 30 s (B) measured on refreshable silver-based amalgam film electrode [341]. The following curves in picture A stand for preconcentration times: a: 3 s, b: 5 s, c: 10 s, d: 20 s, e: 30 s, and f: 45 s, measurements carried out in the 0.04 mol L−1 acetate buffer pH 4.4. Reprinted from Highly sensitive voltammetric determination of dexamethasone on amalgam film electrode, Journal of Electroanalytical Chemistry, Vol 809, Joanna Smajdor, Robert Piech, Beata Paczosa-Bator, Pages 147–152, 2018, with permission from Elsevier.
Figure 6. Dexamethasone calibration graphs (A) with corresponding voltammograms for the preconcentration time of 30 s (B) measured on refreshable silver-based amalgam film electrode [341]. The following curves in picture A stand for preconcentration times: a: 3 s, b: 5 s, c: 10 s, d: 20 s, e: 30 s, and f: 45 s, measurements carried out in the 0.04 mol L−1 acetate buffer pH 4.4. Reprinted from Highly sensitive voltammetric determination of dexamethasone on amalgam film electrode, Journal of Electroanalytical Chemistry, Vol 809, Joanna Smajdor, Robert Piech, Beata Paczosa-Bator, Pages 147–152, 2018, with permission from Elsevier.
Membranes 12 01225 g006
Figure 7. Square-wave voltammograms for DMZ in BR buffer (pH 2.0) on the HMDE with f = 100 s−1, a = 15 mV, dEs = 2 mV, Eacc = −0.60 V, tacc = 15 s, and concentrations in the interval from 4.98 × 10−8 to 6.10 × 10−7 mol L−1 DMZ. Inset: Analytical curves obtained from voltammograms presented in the main panel. Reprinted from Square-wave adsorptive voltammetry of dexamethasone: Redox mechanism, kinetic properties, and electroanalytical determinations in multicomponent formulations, Analytical Biochemistry, Vol 413, Thiago Mielle B.F. Oliveira, Francisco Wirley P. Ribeiro, Janete E.S. Soares, Pedro de Lima-Neto, Adriana N. Correia, Pages 148–156, 2011, with permission from Elsevier [342].
Figure 7. Square-wave voltammograms for DMZ in BR buffer (pH 2.0) on the HMDE with f = 100 s−1, a = 15 mV, dEs = 2 mV, Eacc = −0.60 V, tacc = 15 s, and concentrations in the interval from 4.98 × 10−8 to 6.10 × 10−7 mol L−1 DMZ. Inset: Analytical curves obtained from voltammograms presented in the main panel. Reprinted from Square-wave adsorptive voltammetry of dexamethasone: Redox mechanism, kinetic properties, and electroanalytical determinations in multicomponent formulations, Analytical Biochemistry, Vol 413, Thiago Mielle B.F. Oliveira, Francisco Wirley P. Ribeiro, Janete E.S. Soares, Pedro de Lima-Neto, Adriana N. Correia, Pages 148–156, 2011, with permission from Elsevier [342].
Membranes 12 01225 g007
Table 7. Electrochemical methods of other hormones and steroid determination.
Table 7. Electrochemical methods of other hormones and steroid determination.
AnalyteTechniqueWorking ElectrodeModifierMediumPreconcentration Time, sDetection LimitLinear RangeSource
CyproteroneSWVGCPAuNPs/f-MWCNTPBS pH 5.0301.7 × 10−8 M9.9 × 10−8–1.2 × 10−5 M[343]
DDPDME-B-R buffer pH 10-3.1 × 10−7 M1.2 × 10−6–7.7 × 10−5 M[344]
DanazolSW-AdSVHMDE-0.04 M B–R buffer pH 2605.7 × 10−9 M7.5 × 10−8–3.8 × 10−7 M[345]
DPPDME-B–R buffer pH 1.0-1.0 × 10−6 M5 × 10−6–1 × 10−4 M[346]
Human chorionic gonadotropinCVGCEGNPs/pPA/MWNTs0.1 M PBS pH 7.0n/i0.3 mIU mL−11.0–160.0 mIU mL−1[347]
DPVGCEHRP/Ab2/GNPs/PB/CNTs0.1 M PBS pH 6.0n/i0.023 mIU mL−10.05–150 mIU mL−1[348]
amperometryGCEAnti-hCG/NPG-Gs0.067 M PBS pH 7.4n/i0.034 ng mL−10.5–40.00 ng mL−1[349]
amperometryGCEanti-hCG/Pt–Au alloy nanotube array0.1 M PBS pH 7.5n/i12 mIU mL−125–400 mIU mL−1[350]
CVGCEanti-hCG/nano-Au/MB0.1 M PBS pH 6.5n/i0.3 mIU mL−11.0–100.0 mIU mL−1[351]
Amperometry/CVSiCanti-HCG /Multi-layer epitaxial graphene (MEG)PBS pH 7.4n/i5.62 ng mL−10.62–5.6 ng mL−1[352]
DPVGr–IL–CtPtNPs0.1 M PBS pH 7.4 + 5 mM RU + 0.1 M KCln/i0.00035 mIU mL−10.001–350 mIU mL−1[353]
amperometryGCEAnti-hCG/nano-gold and CS hybrid film0.1 M PBS pH 6.5 + 0.99 mM H2O2n/i0.1 mIU mL−10.2–100 mIU mL−1[354]
CVGCEPd–Al alloy/HRP-Ab2/hCG/Ab1/GNps/PB/GNPs0.1 M PBS pH 7.2 + 0.8 mM H2O2n/i9.3 pg mL−10.5–200 pg mL−1[355]
amperometryGCEAnti-hCG/AuNPs0.1 M PBS pH 6.5 + 0.99 mM H2O2n/i0.08 × 10−9 M0.1–100 × 10−9 M[356]
DPVGCEAnti-hCG/Au/MWCNTs/GS0.1 M PBS pH 7.0 + 2 mM H2O2n/i0.0026 × 10−9 M0.005–500 × 10−9 M[340]
DPVAuAnti-hCG/AuNPs/Cys/AuNps0.1 M phosphate buffer pH 7.5n/i0.3 pg mL−10.001–60.7 ng mL−1[357]
CVGCEAnti-hCG/NP-Pd/MWCNTs-BMIMPF6PBS pH 7.2 + 0.2 M KCln/i3.2 pg mL−10.05–50 ng mL−1[358]
amperometryGCEAnti-hCG/Pd@SBA-15/TH/HSO3-GSPBS pH 7.4n/i8.6 pg mL−10.01–16.00 ng mL−1[359]
amperometryGCEPt@MSNi/HRP/Ab2/hCG Antigene/Ab1/TH/Graphene0.1 M PBS pH 7.4n/i7.5 pg mL−10.01–12 ng mL−1[360]
DPVGE Graphite electrodeHRP-anti-hCG0.1 M PBS pH 7.0n/i0.3 × 10−9 M0.5–50 × 10−9 M[361]
DPVGCEBSA/anti-hCG/Au@SiC–CSPBS pH 7.4 + 0.1 M KCln/i0.042 IU L−10.1–100 IU L−1[362]
DPVSPEALP-IgG labeled GNPs/Ab2PBS pH 7.4n/i0.36 × 10−9 M1.0 × 10−9–100.0 × 10−6 M[363]
DPVGCCo-poly(Met)0.1 M PBS pH 7.0n/i0.113 × 10−6 M0.596–4.76 × 10−6 M[364]
SWVCPEβ-hCG-mAb/protein A0.05 M PBS pH 7.4n/i15 × 10−9 M30–200 × 10−9 M[365]
DPVGCEGS/IL/HNP-AuAgPBS pH 7.2 + 0.2 M KCln/i0.01 ng mL−10.05–35 ng mL−1[366]
DPVGCEHRP-anti-hCG/hCG/AuNPs-SG0.1 M PBS pH 7.0n/i1.4 × 10−9 M5.0–30.0 × 10−9 M[367]
DPVCEAu/Mab/hCGs0.05 M PBS pH 7.4n/i612 × 10−15 M0–2 ng mL−1[368]
amperometryGCEAuNPs/TB/Hb/MWNT–CSPBS pH 6.5 + 2.1 mM H2O2n/i0.3 × 10−9 M0.8 - 500 × 10−9 M[369]
DPVGCEAgNPNPs/Gr-IL-Ct0.1 M phosphate buffer pH 7.0 + 5 mM riboflavinn/i0.0066 × 10−9 M0.0212–530 × 10−9 M[370]
SWVGCEBSA/anti-hCG/CNOs/AuNPs/PEG[Fe(CN)6]3−/4−n/i0.1 fg mL−10.1 fg mL−1– 1 ng mL−1[371]
DPVGCEAnti-hCG/AuNPs/Gr-IL-Chitn/in/i0.0016 mIU mL−10.005-411.28 mIU mL−1[372]
amperometryAuHb/anti-HCG/AuNPs/{NPB/l-cys}20.025 M PBS pH 6.5n/i0.2 × 10−9 M0.5–200 × 10−9 M[373]
LeptinDPVGCESWCNTs-CTDEA buffer solution + 0.75 mg mL−1 α-NPn/i5 pg mL−10–1000 ng mL−1[374]
SWVGCEPG-BP0.1 M PBS pH 7.4n/i0.036 pg mL−10.150–2500 pg mL−1[375]
DPVGCESWNTs/CTDEA buffer solution + 1 mg mL−1 α-NP pH 9.5n/i30 pg mL−10.05–500 ng mL−1[376]
CVGCEProtein G/PPy/PPa/Au0.01 M PBS + 1% serum pH 7.4n/i10 ng mL−110–100000 ng mL−1[377]
DPVSPEBSA/anti-LEP/EDC/NHS/MPA/Au/ Ce3NbO7/CeO20.1 M PBS pH 7.4n/i0.138 pg mL−10.5–12000 pg mL−1[378]
CVITO-PET sheetscyanogen bromide (CNBr) anti-leptin antibodyn/in/i0.0086 pg mL−10.05–100 pg mL−1[379]
DPVSPCEsMagnetic beads SPCETris buffer+ 5% BSA pH 7.2n/i0.5 pg mL−15–100 pg mL−1[380]
LevonorgestrelSWVHMDE-B–R buffer pH 31504.8 × 10−10 M1 × 10−9–1 × 10−7 M[381]
SWVsolid amalgam electrodeAgNPs0.04 M B-R buffer pH 6.0.709.09 × 10−8 M5.0 × 10−7–1.0 × 10−5 M[382]
MethylprednisoloneDPVGCEfullerene-C600.5 M PBS pH 7.2n/i5.6 × 10−9 M5.0 × 10−9–1.0 × 10−6 M[383]
SWVEPPGESWNTs1.0 M PBS pH 7.2n/i4.5 × 10−9 M5–500 × 10−9 M[384]
DPVITOAuNPs0.5 M PBS pH 7.2n/i2.7 × 10−7 M0.01–1.0 × 10−6 M[385]
NandroloneSWVGCEfullerene-C600.05 M PBS pH 7.2n/i0.42 × 10−9 M50 × 10−6–0.1 × 10−9 M[386]
OSWVEPPGE-0.05 M PBS pH 7.2n/i1.5 × 10−11 M0.01–50 × 10−9 M[387]
DPVITOAuNPsPBS pH 7.2n/i1.4 × 10−7 M50 × 10−9–1.5 × 10−6 M[388]
OxytocinamperometryBDD-Tris buffer pH 7.4n/i50 × 10−9 M0.1–10 × 10−6 M[389]
SerotoninDPVGCEMWCNTphosphate buffer pH 7.01205 × 10−9 M2 × 10−8–5 × 10−6 M[390]
DPVGCEcholine0.1 M PBS pH 4.0n/i5 × 10−7 M1 × 10−6–3 × 10−5 M[391]
OSWCPEiron(II) phthalocyanine complexes [FeTSPc]4−pH 7.4n/i1 × 10−6 M1 × 10−6 –1.51 × 10−5 M[392]
SWVGCEC-undecylcalix [4]resorcinarene (CUCR)0.2 M phosphate buffer pH 7.01203.0 × 10−8 M1.0 × 10−7–1.0 × 10−5 M[393]
DPVgraphiteMWCNT50 mM phosphate buffer pH 7.4n/i0.2 × 10−6 M1.0–15 × 10−6 M[394]
SWVITOAuNPs0.1 M PBS pH 7.2n/i3.0 × 10−9 M1.0 × 10−8–2.5 × 10−4 M[395]
SWVEPPGpolymelaminePBS pH 7.2n/i30 × 10−9 M0.1–100 × 10−6 M[396]
DPVGCEnano-Au/PPyox0.1 M PBS pH 7.02401.0 × 10−9 M7.0 × 10−9–2.2 × 10−6 M[397]
DPVGCEreduced graphene oxide (RGO)0.1 M PBS pH 7.4n/i3.2 × 10−8 M1.0 × 10−6–1.0 × 10−4 M[398]
CVpencil graphite electrode (PGE)poly(pyrrole-3-carboxylicacid) (p(P3CA)0.1 M PBS pH 5.0902.5 × 10−9 M0.01–1.0 × 10−6 M[399]
DPVPtMWCNT/PPy/AgNPs0.2 M PBS pH 8.0n/i0.15 × 10−6 M0.50–5.0 × 10−6 M[400]
DPVGCEpoly(phenosafranine)0.1 M PBS pH 7.1n/i20 × 10−9 M-[401]
amperometryBDD-0.1 M phosphate buffer pH 7.0-10 × 10−9 M10 × 10−9 –50 × 10−6 M[402]
SWVAuacetylene black nanoparticles-chitosan (AB-C)0.1 M PBS pH 7.001.6 × 10−7 M5 × 10−7–1.0 × 10−4 M[235]
SWVGCEAuNPs0.2 M PBS pH 7.0n/i2.0 × 10−8 M6.0 × 10−8–6.0 × 10−6 M[403]
DPVGCE5-hydroxytryptophan (5-HTP)0.1 M PBS pH 6.0n/i1.7 × 10−6 M5.0 × 10−6–3.5 × 10−5 M[404]
DPVGCEMWNTs-MO-Gel0.1 M phosphate buffer pH 7.02408.0 × 10−8 M20 × 10−9–7 × 10−6 M[405]
TriamcinoloneSWVGCE-0.1 M KOH pH 13.0602.5 × 10−8 M3.8 × 10−8–1.2 × 10−4 M[406]
OSWVEPPGSWNTs/fullerene-C60phosphate buffer pH 7.2 8.9 × 10−10 M0.1-25 × 10−9 M[407]
ThyroxineDPVAg1, 3 diacryl urea, (DAU)PBS pH 6.01507.7 × 10−12 M1.3 × 10−11–2.2 × 10−8 M[408]
CVCPEPVP0.1 M NaOH + CTAB pH 13.03008 × 10−8 M2 × 10−7–9 × 10−6 M[409]
LSVGCESWNT0.1 M NaOH + CTAB pH 13.01202 × 10−8 M1 × 10−7–7 × 10−6 M[410]
CVCPE-0.1 M HCl + CTAB3006.5 × 10−9 M2 × 10−7–9 × 10−6 M[411]
DPVGCEMWCNT0.1 M HCl1206.4 × 10−9 M1.9 × 10−8–5.1 × 10−7 M[412]
CVCPEAuNPs/rGO0.1 M HCln/i1.0 × 10−9 M1.0–14.0 × 10−9 M[413]
MometasoneSWVGESWCNT0.1 M phosphate buffer pH 7.2 + CTAB-1.23 × 10−6 M10–1000 × 10−6 M[414]
DienogestDPPDME-phosphate buffer pH 10.8-0.58 × 10−6 M2.0 × 10−6 –1.0 × 10−4 M[415]
SWVGCEERGO/f-MWCNT/AuNPs0.1 M PB solution pH 3.0601.88 × 10−8 M2.0 × 10−7–6.0 × 10−6 M[416]
DrospirenoneDPVHg(Ag)FE-Acetate buffer pH 6.0 + Marlinat601.7 × 10−9 M2.5 × 10−9–1.0 × 10−8 M[417]
SWVHMDE-0.04 M B-R buffer pH 8.0300.027 µg mL−11.36 × 10−6–1.91 × 10−7 M[418]
FinasterideDPPCGME-Ethanol + 0.0625 M H2SO4 pH<2n/i7.59 × 10−6 M5 × 10−5–5 × 10−4 M[419]
SpironolactoneDPVHg(Ag)FE-0.03 M acetate buffer pH 4.6454.7·10−9 M15·10−9–3.0·10−6 M[339]
DPVHMDE-B-R buffer pH 9.0601.1 × 10−11 M1.2 × 10−10–9.6 × 10−7 M[420]
SWVCPEAuNPs@FCBN-PEPBS pH 4.0603.34 × 10−9 M12–1200 × 10−9 M[421]
DPVHMDE-B-R buffer pH 2.5901.72 × 10−10 M1 × 10−8–2.5 × 10−7 M[422]
EthinylestradiolDPVGCECB/DMF0.01 M borate buffer pH 10.0200.13 × 10−6 M0.25 × 10−6–3.0 × 10−6 M[423]
SWVGCEMWCNTs10 mM H2SO4 pH 2603.4 × 10–14 M1.2 × 10–13–2.4 × 10–10 M[424]
amperometryGCEAgNPs/SiO2/GO/anti-EE20.1 M PBS pH 7.2 + 45 µL1 mM HQ + 5 µL 50 mM H2O202.2 × 10–11 M3.4 × 10–11-1.7 × 10–7 M[425]
SWVHMDE-B–R buffer pH 7.0605.9 × 10−10 M2.9 × 10−9–5 × 10−7 M[426]
LSVCPE-0.07 M phosphate buffer pH 8.04 + CPB1503.0 × 10−8 M5.0 × 10−8–2.0 × 10−5 M[427]
SWVFTOChi/CNTs0.01 M PBS pH 7.01500.09 × 10−6 M0.05–20 × 10−6 M[428]
DPVHMDE-0.03 M B-R buffer pH 10.0309.7 µg L−1Up to 400.5 µg L−1[261]
DPVHMDE-0.04 M B-R buffer pH 8.0303.58 ng mL−16.75 × 10−8–6.07 × 10−7 M[418]
SWVGCEMWCNTs-CoPc0.1 M phosphate buffer pH 7.0n/i2.2 × 10−6 M2.5–90 × 10−6 M[429]
DPVHMDE-B–R buffer pH 7.01501.7 × 10–9 M1.3 × 10–8–2.0 × 10–7 M[430]
SWVBDD-0.1 M B-R buffer pH 8.0n/i2.4 × 10−7 M9.9 × 10−7–5.2 × 10−6 M[431]
DPVGCErGO/RuO20.1 M PBS pH 7.0n/i2.0 × 10−9 M5.5 × 10−8 –1.2 × 10−6 M[432]
PrednisoloneDPVHg(Ag)FE-0.075 M acetate buffer pH 3.8200.01 × 10−6 M0.05 × 10−6–2.25 × 10−6 M[433]
amperometryFTOα-NiCe1.0 M KOH08.4 × 10−9 M0.5–76.9 × 10−6 M[434]
OSWVEPPGSWNTPhosphate buffer pH 7.2n/i0.45 × 10−8 M0.01–100 × 10−6 M[435]
DPVAuFullerene C600.1 M PBS pH 7.2n/i26 × 10−9 M1 × 10−6–0.1 × 10−3 M[436]
DPVHMDE-0.04 M B-R buffer pH 3.5401.1 × 10–7 M2.0 × 10–7–4.0 × 10–7 M[437]
DPVCPEβ-cyclode × trinB-R buffer pH 3.01504.8 × 10−7 M5.6 × 10−7–2 × 10−5 M[438]
OSWVEPPGFullerene C60PBS pH 7.2n/i4.8 × 10−8 M0.05–50 × 10−6 M[439]
SWVGCOMC0.05 M PBS pH 7.2n/i0.057 × 10−6 M0.06–40 × 10−6 M[440]
DPVMIPMWCNTPhosphate buffer pH 4.0600.05 × 10−6 M0.08–160 × 10−6 M[441]
DPVHMDE-B-R buffer pH 3.78n/i1.6 × 10–8 M5.6 × 10–8 –1.1 × 10–6 M[442]
SWVGCEcarbon nano sphere (CNSs) modified0.1 M PBS pH 7.2n/i73 × 10−9 M3-50 × 10−6 M[163]
BetamethasoneDPVHg(Ag)FE-0.1 M acetate buffer pH 3.0451.6 × 10−9 M5.0 × 10−9 –0.8 × 10−6 M[443]
SWVEPPGSWNT1 M PBS pH 7.2n/i0.25 × 10−9 M0.5–100 × 10−9 M[444]
OSWVEPPGSWNT1 M PBS pH 7.2n/i0.5 × 10−9 M1–25 × 10−9 M[445]
DPPHMDE-0.04 M B-R buffer pH 1.7n/i2.7 × 10−6 M3.9 × 10–6–1.1 × 10–4 M[446]
Sodium levothyroxineDPVHg(Ag)FE-0.1 M sodium tetraborate solution + 300 µl HCl (1:10) pH 2.3301.8 × 10−8 M0.025 × 10−6–4.0 × 10−6 M[447]
DPVSPECNT0.1 M acetate buffer pH 4.030030 × 10−9 M0.1–0.9 × 10−9 M[448]
CVCPE-0.1 M HCl + 0.1 mM phenyl hydrazinen/i2.5 × 10−6 M0.025–0.1 × 10−3 M[449]
CVCPE-0.1 M HCln/in/i2 × 10−4–2.2 × 10−3 M[450]
DPVGCEMWCNTs/CC-SH/AuPBS pH 7.2n/i2.84 × 10−9 M10–120 × 10−9 M[451]
DexamethasoneDPVHg(Ag)FE-0.04 M acetate buffer pH 4.4451.6 × 10−9 M2.5 × 10−9 –2.3 × 10−7 M[341]
SWVHMDE-0.04 M B-R buffer pH 2.0152.54 × 10−9 M5.0 × 10−8 –6.1 × 10−7 M[342]
SWVPGEFullerene C60PBS pH 7.2n/i5.5 × 10−8 M0.05–100 × 10−6 M[452]
SWVHMDE-0.04 M B-R buffer pH 2.0152.54 × 10–9 M7.5 × 10–9–1.8 × 10–8 M[453]
DPVCPEΒ-cyclodextrinB-R buffer pH 3.01503.6 × 10–7 M4.1 × 10–7–2 × 10–5 M[163]
DPVCFMS-0.1 M PBS pH 7.3n/i4 × 10−9 M10 × 10−9–40 × 10−6 M[454]
DPVCILEFe3O4/PANI–Cu0.1 M KH2PO4 pH 2.0n/i3.0 × 10–9 M0.05–30 × 10−6 M[455]
DPPHMDE-Acetate buffer pH 5.007.6 × 10−6 M25.5–122.3 × 10−6 M[456]
LSVCPEpolyglycine-MWCNTsB-R buffer pH 3.0602.2 × 10–7 M4.8 × 10–7–4.9 × 10–5 M[457]
SWVAuDNA aptamer0.01 M PBS buffer pH 7.4n/i2.12 × 10−9 M2.5–100 × 10−9 M[458]
DPVNano-porous GCE-0.1 M PBS pH 2n/i5 × 10−9 M0.02–22 × 10−6 M[171]
DPVGCEGraphene nanoplate GNP0.1 M PBS pH 7.3n/i15 × 10–9 M0.1-5000 × 10–6 M[459]
SWVEPPGESWNTphosphate buffer pH 7.2n/i9.1 × 10−10 M8.2 × 10−8–9.1 × 10−10 M[460]
SWVPEMWCNTsAcetate buffer pH 4.0300.09 × 10−6 M0.15–100 × 10−6 M[461]

4. Future Trends

There is still a growing interest in designing a new construction of the working electrodes to prepare new measurement assays and obtain lower limits of detection. There is still a wide variety of possible modifier combinations that may result in discovering new analytical assays of hormones in steroids. Specifically, the field of immunosensors is very promising for this case, considering the possibilities of obtaining low detection limits by using specific antibodies for the selected analyte. Additionally, increased interest in the construction of the new hybrid composites of modifier layers is promising, considering the new possibilities of developing voltammetric assays for highly sensitive hormone and steroid determinations. The choice of electrode modifier is always connected with the possibility of improving the sensitivity of the measurements. One way of making such an improvement is by increasing the working surface of the working electrode, which is a natural consequence of nanomaterials usage in the modifier layer. Another way of improving the sensitivity of the measurements is the impact of the electrocatalytic properties of the modifiers. Hybrid materials are nowadays gaining more interest as electrode modifiers due to the possibility of mixing the properties of different components. Modifiers, such as metal nanoparticles or metal oxides, positively affect the easiness of electron transference during the electrode process, which influences the current response of the analyte. Modifiers’ compositions of the nanoparticles mixed with carbon nanomaterials can be described as the increased density of active sites and large surface area, which ensures multiple absorption active sites and better electrical conductivity in comparison with the unmodified electrode. However, the use of electrochemical techniques for the highly sensitive hormone and steroid determination may also be limited in the case of analyses of non-electroactive compounds. Additionally, an analysis of the real samples, such as human body fluids, may be troublesome due to its complex organic matrix, which may interfere with the measurements and influence the lower sensitivity of the detection. However, considering all the above, it can be said that the voltammetric techniques can be useful in the context of pharmaceutical formulation quality control.

5. Conclusions

Numerous cases of voltammetric measurements of electroactive samples with biological significance, such as hormones and steroids, have been reported since 2000. The voltammetric and polarographic techniques, due to their sensitivity and easiness, could be used alternatively to other, more complicated analytical assays. The process of sample preparation for electrochemical measurements is usually quick and does not require expensive procedures. Moreover, the mechanisms of analyte reactions on the surface of a working electrode and its redox properties, which can be investigated using the cyclic voltammetry technique, could provide additional knowledge about the interaction of the compound with cells and tissues. It has also been proven that electrochemical techniques are useful for hormone and steroid determination, not only in a simple supporting electrolyte but also in more complex matrices, such as tablets, ointments, creams and different biological fluids.

Author Contributions

Conceptualization, J.S.; writing—original draft preparation, J.S.; writing—review and editing, J.S.; supervision, R.P. and B.P.-B.; project administration, R.P. and B.P.-B.; funding acquisition, R.P. All authors have read and agreed to the published version of the manuscript.


The publication is financed by subsidy No. of the Polish Ministry of Science and Education.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflict of interest.


  1. IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN), The nomenclature of steroids. Eur. J. Biochem. 1989, 186, 429–458. [CrossRef]
  2. Rhen, T.; Cidlowski, J.A. Antiinflammatory Action of Glucocorticoids—New Mechanisms for Old Drugs. N. Engl. J. Med. 2005, 353, 1711–1723. [Google Scholar] [CrossRef] [Green Version]
  3. Browne, F.; Wilkinson, S.M. Effective prescribing in steroid allergy: Controversies and cross-reactions. Clin. Dermatol. 2011, 29, 287–294. [Google Scholar] [CrossRef]
  4. Kamisawa, T.; Shimosegawa, T.; Okazaki, K.; Nishino, T.; Watanabe, H.; Kanno, A.; Okumura, F.; Nishikawa, T.; Kobayashi, K.; Ichiya, T.; et al. Standard steroid treatment for autoimmune pancreatitis. Gut 2009, 58, 1504–1507. [Google Scholar] [CrossRef]
  5. Benagiano, M.; Bianchi, P.; D’Elios, M.M.; Brosens, I.; Benagiano, G. Autoimmune diseases: Role of steroid hormones. Best Pract. Res. Clin. Obstet. Gynaecol. 2019, 60, 24–34. [Google Scholar] [CrossRef]
  6. Mcewen, B.S.; Biegon, A.; Davis, P.G.; Krey, L.C.; Luine, V.N.; Mcginnis, M.Y.; Paden, C.M.; Parsons, B.; Rainbow, T.C. Steroid Hormones: Humoral Signals Which Alter Brain Cell Properties and Functions. In Recent Progress in Hormone Research; GREEP, R.O., Ed.; Academic Press: Boston, FL, USA, 1982; Volume 38, pp. 41–92. ISBN 978-0-12-571138-8. [Google Scholar]
  7. Sarwal, M.M.; Yorgin, P.D.; Alexander, S.; Millan, M.T.; Belson, A.; Belanger, N.; Granucci, L.; Major, C.; Costaglio, C.; Sanchez, J.; et al. Promising Early Outcomes With A Novel, Complete Steroid Avoidance Immunosuppression Protocol In Pediatric Renal Transplantation. Transplantation 2001, 72, 13–21. [Google Scholar] [CrossRef] [Green Version]
  8. Ratcliffe, P.J.; Dudley, C.R.K.; Higgins, R.M.; Firth, J.D.; Smith, B.; Morris, P.J. Randomised controlled trial of steroid withdrawal in renal transplant recipients receiving triple immunosuppression. Lancet 1996, 348, 643–648. [Google Scholar] [CrossRef]
  9. Grennan, D.; Wang, S. Steroid Side Effects. JAMA 2019, 322, 282. [Google Scholar] [CrossRef] [Green Version]
  10. Citterio, F. Steroid side effects and their impact on transplantation outcome. Transplantation 2001, 72, S75–S80. [Google Scholar]
  11. Kershner, P.; Wang-Cheng, R. Psychiatric Side Effects of Steroid Therapy. Psychosomatics 1989, 30, 135–139. [Google Scholar] [CrossRef]
  12. Norman, W.A.; Litwack, G. Hormones; Academic Press: San Diego, CA, USA, 1997; ISBN 978-0-12-521441-4. [Google Scholar]
  13. Henry, H.; Norman, A. Encyclopedia of Hormones; Academic Press: San Diego, CA, USA, 2003. [Google Scholar]
  14. Filicori, M. The role of luteinizing hormone in folliculogenesis and ovulation induction. Fertil. Steril. 1999, 71, 405–414. [Google Scholar] [CrossRef] [PubMed]
  15. Wagner, R.L.; Apriletti, J.W.; McGrath, M.E.; West, B.L.; Baxter, J.D.; Fletterick, R.J. A structural role for hormone in the thyroid hormone receptor. Nature 1995, 378, 690–697. [Google Scholar] [CrossRef] [PubMed]
  16. Hull, K.L.; Harvey, S. Growth hormone: Roles in female reproduction. J. Endocrinol. 2001, 168, 1–23. [Google Scholar] [CrossRef]
  17. Soares, C.R.J.; Gomide, F.I.C.; Ueda, E.K.M.; Bartolini, P. Periplasmic expression of human growth hormone via plasmid vectors containing the λPL promoter: Use of HPLC for product quantification. Protein Eng. Des. Sel. 2003, 16, 1131–1138. [Google Scholar] [CrossRef] [Green Version]
  18. Strickley, R.G.; Brandl, M.; Chan, K.W.; Straub, K.; Gu, L. High-Performance Liquid Chromatographic (HPLC) and HPLC-Mass Spectrometric (MS) Analysis of the Degradation of the Luteinizing Hormone-Releasing Hormone (LH-RH) Antagonist RS-26306 in Aqueous Solution. Pharm. Res. 1990, 7, 530–536. [Google Scholar] [CrossRef]
  19. Szécsi, M.; Tóth, I.; Gardi, J.; Nyári, T.; Julesz, J. HPLC–RIA analysis of steroid hormone profile in a virilizing stromal tumor of the ovary. J. Biochem. Biophys. Methods 2004, 61, 47–56. [Google Scholar] [CrossRef]
  20. He, P.; Aga, D.S. Comparison of GC-MS/MS and LC-MS/MS for the analysis of hormones and pesticides in surface waters: Advantages and pitfalls. Anal. Methods 2019, 11, 1436–1448. [Google Scholar] [CrossRef]
  21. Hansen, M.; Jacobsen, N.W.; Nielsen, F.K.; Björklund, E.; Styrishave, B.; Halling-Sørensen, B. Determination of steroid hormones in blood by GC–MS/MS. Anal. Bioanal. Chem. 2011, 400, 3409–3417. [Google Scholar] [CrossRef]
  22. Krone, N.; Hughes, B.A.; Lavery, G.G.; Stewart, P.M.; Arlt, W.; Shackleton, C.H.L. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J. Steroid Biochem. Mol. Biol. 2010, 121, 496–504. [Google Scholar] [CrossRef]
  23. Harris, G.W. Neural control of the pituitary gland. Am. Physiol. Soc. 1948, 28. [Google Scholar] [CrossRef] [Green Version]
  24. Holmes, R.L. The Pituitary Gland; Univ of California Press: San Diego, CA, USA, 1974; Volume 4. [Google Scholar]
  25. Salomon, F.; Cuneo, R.C.; Hesp, R.; Sönksen, P.H. The Effects of Treatment with Recombinant Human Growth Hormone on Body Composition and Metabolism in Adults with Growth Hormone Deficiency. N. Engl. J. Med. 1989, 321, 1797–1803. [Google Scholar] [CrossRef] [PubMed]
  26. Raben, M.S. Growth Hormone. N. Engl. J. Med. 1962, 266, 82–86. [Google Scholar] [CrossRef] [PubMed]
  27. Strobl, J.S.; Thomas, M.J. Human growth hormone. Pharmacol. Rev. 1994, 46, 1–34. [Google Scholar] [PubMed]
  28. Arnason, B.G.; Berkovich, R.; Catania, A.; Lisak, R.P.; Zaidi, M. Mechanisms of action of adrenocorticotropic hormone and other melanocortins relevant to the clinical management of patients with multiple sclerosis. Mult. Scler. J. 2012, 19, 130–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  29. Jones, M.T.; Gillham, B. Factors involved in the regulation of adrenocorticotropic hormone/beta-lipotropic hormone. Physiol. Rev. 1988, 68, 743–818. [Google Scholar] [CrossRef] [PubMed]
  30. Bernichtein, S.; Touraine, P.; Goffin, V. New concepts in prolactin biology. J. Endocrinol. 2010, 206, 69. [Google Scholar] [CrossRef]
  31. Bachelot, A.; Binart, N. Reproductive role of prolactin. Reproduction 2007, 133, 361–369. [Google Scholar] [CrossRef]
  32. Freeman, M.E.; Kanyicska, B.; Lerant, A.; Nagy, G. Prolactin: Structure, Function, and Regulation of Secretion. Physiol. Rev. 2000, 80, 1523–1631. [Google Scholar] [CrossRef]
  33. Galliford, T.M.; Murphy, E.; Williams, A.J.; Bassett, J.H.D.; Williams, G.R. Effects of thyroid status on bone metabolism: A primary role for thyroid stimulating hormone or thyroid hormone? Minerva Endocrinol. 2005, 30, 237–246. [Google Scholar]
  34. Jensen, E.; Petersen, P.H.; Blaabjerg, O.; Hansen, P.S.; Brix, T.H.; Kyvik, K.O.; Hegedüs, L. Establishment of a serum thyroid stimulating hormone (TSH) reference interval in healthy adults. The importance of environmental factors, including thyroid antibodies. Clin. Chem. Laboratory Med. 2004, 42, 824–832. [Google Scholar] [CrossRef]
  35. Coutelier, J.-P.; Kehrl, J.H.; Bellur, S.S.; Kohn, L.D.; Notkins, A.L.; Prabhakar, B.S. Binding and functional effects of thyroid stimulating hormone on human immune cells. J. Clin. Immunol. 1990, 10, 204–210. [Google Scholar] [CrossRef]
  36. Hillier, S.G. Current concepts of the roles of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Hum. Reprod. 1994, 9, 188–191. [Google Scholar] [CrossRef]
  37. Schally, A.V.; Kastin, A.J.; Arimura, A. Hypothalamic Follicle-Stimulating Hormone (FSH) and Luteinizing Hormone (LH)-Regulating Hormone: Structure, Physiology, and Clinical Studies**The work described here has been supported by research grants from the Veterans Administration, United States Public Health Service Grants AM-07467 and AM-09094, and the Population Council, New York, N.Y.††This paper was presented at the Twenty-Seventh Annual Meeting of the American Fertility Society, New Orleans, Louisiana, March 25–27, 1971. Fertil. Steril. 1971, 22, 703–721. [Google Scholar] [CrossRef]
  38. Santi, D.; Crépieux, P.; Reiter, E.; Spaggiari, G.; Brigante, G.; Casarini, L.; Rochira, V.; Simoni, M. Follicle-Stimulating Hormone (FSH) Action on Spermatogenesis: A Focus on Physiological and Therapeutic Roles. J. Clin. Med. 2020, 9, 1014. [Google Scholar] [CrossRef] [Green Version]
  39. Mayorga, M.P.; Gromoll, J.; Behre, H.M.; Gassner, C.; Nieschlag, E.; Simoni, M. Ovarian Response to Follicle-Stimulating Hormone (FSH) Stimulation Depends on the FSH Receptor Genotype*. J. Clin. Endocrinol. Metab. 2000, 85, 3365–3369. [Google Scholar] [CrossRef]
  40. Gemzell, C.A.; Diczfalusy, E.; Tillinger, G. Clinical Effect Of Human Pituitary Follicle-Stimulating Hormone (Fsh)*. J. Clin. Endocrinol. Metab. 1958, 18, 1333–1348. [Google Scholar] [CrossRef]
  41. Serafín, V.; Martínez-García, G.; Agüí, L.; Yçñez-Sedeño, P.; Pingarrón, J.M. Multiplexed determination of human growth hormone and prolactin at a label free electrochemical immunosensor using dual carbon nanotube-screen printed electrodes modified with gold and PEDOT nanoparticles. Analyst 2014, 139, 4556–4563. [Google Scholar] [CrossRef]
  42. Bohlooli, S.; Kia, S.; Bohlooli, S.; Sariri, R. Development of molecularly imprinted polymer on ferric oxide nanoparticles modified electrode as electrochemical sensor for detection of human growth hormone. Monatshefte Chemie 2022, 153, 39–48. [Google Scholar] [CrossRef]
  43. Serafín, V.; Úbeda, N.; Agüí, L.; Yáñez-Sedeño, P.; Pingarrón, J.M. Ultrasensitive determination of human growth hormone (hGH) with a disposable electrochemical magneto-immunosensor. Anal. Bioanal. Chem. 2012, 403, 939–946. [Google Scholar] [CrossRef]
  44. Moreno-Guzmán, M.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Multiplexed Ultrasensitive Determination of Adrenocorticotropin and Cortisol Hormones at a Dual Electrochemical Immunosensor. Electroanalysis 2012, 24, 1100–1108. [Google Scholar] [CrossRef] [Green Version]
  45. Moreno-Guzmán, M.; Ojeda, I.; Villalonga, R.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Ultrasensitive detection of adrenocorticotropin hormone (ACTH) using disposable phenylboronic-modified electrochemical immunosensors. Biosens. Bioelectron. 2012, 35, 82–86. [Google Scholar] [CrossRef] [PubMed]
  46. Moreno-Guzmán, M.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. A disposable electrochemical immunosensor for prolactin involving affinity reaction on streptavidin-functionalized magnetic particles. Anal. Chim. Acta 2011, 692, 125–130. [Google Scholar] [CrossRef] [PubMed]
  47. Chen, H.; Cui, Y.; Zhang, B.; Liu, B.; Chen, G.; Tang, D. Poly(o-phenylenediamine)-carried nanogold particles as signal tags for sensitive electrochemical immunoassay of prolactin. Anal. Chim. Acta 2012, 728, 18–25. [Google Scholar] [CrossRef] [PubMed]
  48. Beitollahi, H.; Nekooei, S.; Torkzadeh-Mahani, M. Amperometric immunosensor for prolactin hormone measurement using antibodies loaded on a nano-Au monolayer modified ionic liquid carbon paste electrode. Talanta 2018, 188, 701–707. [Google Scholar] [CrossRef]
  49. Serafín, V.; Agüí, L.; Yáñez-Sedeño, P.; Pingarrón, J.M. Determination of prolactin hormone in serum and urine using an electrochemical immunosensor based on poly(pyrrolepropionic acid)/carbon nanotubes hybrid modified electrodes. Sensors Actuators Chem. 2014, 195, 494–499. [Google Scholar] [CrossRef]
  50. Sun, X.; Jiang, Z.; Wang, H.; Zhao, H. Highly Sensitive Detection of Peptide Hormone Prolactin Using Gold Nanoparticles-Graphene Nanocomposite Modified Electrode. Int. J. Electrochem. Sci. 2015, 10, 9714–9724. [Google Scholar] [CrossRef]
  51. Sun, B.; Zhou, L.; Meng, F.; Ou, J.; Wang, Z.; Du, J.; Wu, P.; Li, J.; Piao, J. Investigation of prolactin based on a novel electrochemical immunosensor. Int. J. Electrochem. Sci. 2017, 12, 10633–10641. [Google Scholar] [CrossRef]
  52. Al-Jawadi, E.A.M. Comparison of Serum Prolactin Level during Pregnancy Determined by Square Wave Voltammetric and Minividas Methods. Medicine 2015, 4, 1–7. [Google Scholar]
  53. Moreno-Guzmán, M.; Agüí, L.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Gold nanoparticles/carbon nanotubes/ionic liquid microsized paste electrode for the determination of cortisol and androsterone hormones. J. Solid State Electrochem. 2013, 17, 1591–1599. [Google Scholar] [CrossRef]
  54. Smaniotto, A.; Mezalira, D.Z.; Zapp, E.; Gallardo, H.; Vieira, I.C. Electrochemical immunosensor based on an azo compound for thyroid-stimulating hormone detection. Microchem. J. 2017, 133, 510–517. [Google Scholar] [CrossRef]
  55. Zhang, B.; Tang, D.; Liu, B.; Cui, Y.; Chen, H.; Chen, G. Nanogold-functionalized magnetic beads with redox activity for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Anal. Chim. Acta 2012, 711, 17–23. [Google Scholar] [CrossRef] [PubMed]
  56. Cui, Y.; Chen, H.; Hou, L.; Zhang, B.; Liu, B.; Chen, G.; Tang, D. Nanogold-polyaniline-nanogold microspheres-functionalized molecular tags for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Anal. Chim. Acta 2012, 738, 76–84. [Google Scholar] [CrossRef] [PubMed]
  57. Beitollahi, H.; Ivari, S.G.; Torkzadeh-Mahani, M. Application of antibody–nanogold–ionic liquid–carbon paste electrode for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Biosens. Bioelectron. 2018, 110, 97–102. [Google Scholar] [CrossRef]
  58. Luo, J.; Kong, Z.; Wang, Y.; Xie, J.; Liu, J.; Jin, H.; Cai, X. Label-free Paper-based Immunosensor with Graphene Nanocomposites for Electrochemical Detection of Follicle-stimulating Hormone. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Honolulu, HI, USA, 18–21 July 2018; pp. 2901–2904. [Google Scholar] [CrossRef]
  59. Fan, Y.; Guo, Y.; Shi, S.; Ma, J. An electrochemical immunosensor based on reduced graphene oxide/multiwalled carbon nanotubes/thionine/gold nanoparticle nanocomposites for the sensitive testing of follicle-stimulating hormone. Anal. Methods 2021, 13, 3821–3828. [Google Scholar] [CrossRef] [PubMed]
  60. Pareek, S.; Jain, U.; Balayan, S.; Chauhan, N. Ultra-sensitive nano- molecular imprinting polymer-based electrochemical sensor for Follicle-Stimulating Hormone (FSH) detection. Biochem. Eng. J. 2022, 180, 108329. [Google Scholar] [CrossRef]
  61. Rosol, T.J.; Yarrington, J.T.; Latendresse, J.; Capen, C.C. Adrenal Gland: Structure, Function, and Mechanisms of Toxicity. Toxicol. Pathol. 2001, 29, 41–48. [Google Scholar] [CrossRef]
  62. McLean-Tooke, A.P.C.; Bethune, C.A.; Fay, A.C.; Spickett, G.P. Adrenaline in the treatment of anaphylaxis: What is the evidence? BMJ 2003, 327, 1332–1335. [Google Scholar] [CrossRef] [Green Version]
  63. Luco, J. V THE DEFATIGUING EFFECT OF ADRENALINE. Am. J. Physiol. Content 1938, 125, 196–204. [Google Scholar] [CrossRef] [Green Version]
  64. BROWN, H.F.; DIFRANCESCO, D.; NOBLE, S.J. How does adrenaline accelerate the heart? Nature 1979, 280, 235–236. [Google Scholar] [CrossRef]
  65. Jacobs, I.G.; Finn, J.C.; Jelinek, G.A.; Oxer, H.F.; Thompson, P.L. Effect of adrenaline on survival in out-of-hospital cardiac arrest: A randomised double-blind placebo-controlled trial. Resuscitation 2011, 82, 1138–1143. [Google Scholar] [CrossRef]
  66. Sulser, F. Regulation and function of noradrenaline receptor systems in brain: Psychopharmacological aspects. Neuropharmacology 1984, 23, 255–261. [Google Scholar] [CrossRef] [PubMed]
  67. Manunta, Y.; Edeline, J.-M. Effects of noradrenaline on rate-level function of auditory cortex neurons: Is there a “gating” effect of noradrenaline? Exp. Brain Res. 1998, 118, 361–372. [Google Scholar] [CrossRef] [PubMed]
  68. Fraser, R.; Ingram, M.C.; Anderson, N.H.; Morrison, C.; Davies, E.; Connell, J.M.C. Cortisol Effects on Body Mass, Blood Pressure, and Cholesterol in the General Population. Hypertension 1999, 33, 1364–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  69. Whitworth, J.A.; Mangos, G.J.; Kelly, J.J. Cushing, Cortisol, and Cardiovascular Disease. Hypertension 2000, 36, 912–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  70. Kelly, J.J.; Mangos, G.; Williamson, P.M.; Whitworth, J.A. CORTISOL AND HYPERTENSION. Clin. Exp. Pharmacol. Physiol. 1998, 25, S51–S56. [Google Scholar] [CrossRef]
  71. Shields, G.S.; Sazma, M.A.; Yonelinas, A.P. The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neurosci. Biobehav. Rev. 2016, 68, 651–668. [Google Scholar] [CrossRef] [Green Version]
  72. Goyal, R.N.; Chatterjee, S.; Rana, A.R.S. A comparison of edge- and basal-plane pyrolytic graphite electrodes towards the sensitive determination of hydrocortisone. Talanta 2010, 83, 149–155. [Google Scholar] [CrossRef]
  73. Norouzi, P.; Garakani, T.M. Application of Modified Glassy Carbon Paste Electrode for Nanomolar Determination of Adrenaline Using FFT Admittance Voltammetry in Flow Analysis. Anal. Bioanal. Electrochem. 2009, 1, 188–199. [Google Scholar]
  74. Jin, G.P.; Chen, Q.Z.; Ding, Y.F.; He, J.B. Electrochemistry behavior of adrenalin, serotonin and ascorbic acid at novel poly rutin modified paraffin-impregnated graphite electrode. Electrochim. Acta 2007, 52, 2535–2541. [Google Scholar] [CrossRef]
  75. Bavandpour, R.; Karimi-Maleh, H.; Asif, M.; Gupta, V.K.; Atar, N.; Abbasghorbani, M. Liquid phase determination of adrenaline uses a voltammetric sensor employing CuFe2O4 nanoparticles and room temperature ionic liquids. J. Mol. Liq. 2016, 213, 369–373. [Google Scholar] [CrossRef]
  76. Brondani, D.; Scheeren, C.W.; Dupont, J.; Vieira, I.C. Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline. Sensors Actuators Chem. 2009, 140, 252–259. [Google Scholar] [CrossRef]
  77. Beitollahi, H.; Ardakani, M.M.; Ganjipour, B.; Naeimi, H. Novel 2,2′-[1,2-ethanediylbis(nitriloethylidyne)]-bis-hydroquinone double-wall carbon nanotube paste electrode for simultaneous determination of epinephrine, uric acid and folic acid. Biosens. Bioelectron. 2008, 24, 362–368. [Google Scholar] [CrossRef] [PubMed]
  78. Felix, F.S.; Yamashita, M.; Angnes, L. Epinephrine quantification in pharmaceutical formulations utilizing plant tissue biosensors. Biosens. Bioelectron. 2006, 21, 2283–2289. [Google Scholar] [CrossRef] [PubMed]
  79. Brondani, D.; Dupont, J.; Spinelli, A.; Vieira, I.C. Development of biosensor based on ionic liquid and corn peroxidase immobilized on chemically crosslinked chitin. Sens. Actuators Chem. 2009, 138, 236–243. [Google Scholar] [CrossRef]
  80. Zhou, Y.Z.; Zhang, L.J.; Chen, S.L.; Dong, S.Y.; Zheng, X.H. Electroanalysis and simultaneous determination of dopamine and epinephrine at poly(isonicotinic acid)-modified carbon paste electrode in the presence of ascorbic acid. Chinese Chem. Lett. 2009, 20, 217–220. [Google Scholar] [CrossRef]
  81. Yao, H.; Sun, Y.; Lin, Y.; Tang, Y.; Liu, A.; Li, G.; Li, W.; Zhang, S. Selective Determination of Epinephrine in the Presence of Ascorbic Acid and Uric Acid by Electrocatalytic Oxidation at Poly(eriochrome Black T) Film-modified Glassy Carbon Electrode. Anal. Sci. 2007, 23, 677–682. [Google Scholar] [CrossRef] [Green Version]
  82. Gong, J.; Lin, X. A glassy carbon supported bilayer lipid-like membrane of 5,5-ditetradecyl-2-(2-trimethyl-ammonioethyl)-1,3-dioxane bromide for electrochemical sensing of epinephrine. Electrochim. Acta 2004, 49, 4351–4357. [Google Scholar] [CrossRef]
  83. Bing Li, N.; Mei Niu, L.; Qun Luo, H. Electrochemical behavior of uric acid and epinephrine at a meso-2,3-dimercaptosuccinic acid self-assembled gold electrode. Microchim. Acta 2006, 153, 37–44. [Google Scholar] [CrossRef]
  84. Chernyshov, D.V.; Shvedene, N.V.; Antipova, E.R.; Pletnev, I.V. Ionic liquid-based miniature electrochemical sensors for the voltammetric determination of catecholamines. Anal. Chim. Acta 2008, 621, 178–184. [Google Scholar] [CrossRef]
  85. Ren, W.; Luo, H.Q.; Li, N.B. Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid. Biosens. Bioelectron. 2006, 21, 1086–1092. [Google Scholar] [CrossRef]
  86. Wang, L.; Bai, J.; Huang, P.; Wang, H.; Zhang, L.; Zhao, Y. Self-assembly of gold nanoparticles for the voltammetric sensing of epinephrine. Electrochem. Commun. 2006, 8, 1035–1040. [Google Scholar] [CrossRef]
  87. Sun, Y.X.; Wang, S.F.; Zhang, X.H.; Huang, Y.F. Simultaneous determination of epinephrine and ascorbic acid at the electrochemical sensor of triazole SAM modified gold electrode. Sensors Actuators B Chem. 2006, 113, 156–161. [Google Scholar] [CrossRef]
  88. Leite, O.D.; Lupetti, K.O.; Fatibello-Filho, O.; Vieira, I.C.; Barbosa, A. de M. Synergic effect studies of the bi-enzymatic system laccaseperoxidase in a voltammetric biosensor for catecholamines. Talanta 2003, 59, 889–896. [Google Scholar] [CrossRef] [PubMed]
  89. Zare, H.R.; Nasirizadeh, N. Simultaneous determination of ascorbic acid, adrenaline and uric acid at a hematoxylin multi-wall carbon nanotube modified glassy carbon electrode. Sens. Actuators Chem. 2010, 143, 666–672. [Google Scholar] [CrossRef]
  90. Sochr, J.; Švorc, Ľ.; Rievaj, M.; Bustin, D. Electrochemical determination of adrenaline in human urine using a boron-doped diamond film electrode. Diam. Relat. Mater. 2014, 43, 5–11. [Google Scholar] [CrossRef]
  91. Patrascu, D.; David, I.; David, V.; Mihailciuc, C.; Stamatin, I.; Ciurea, J.; Nagy, L.; Nagy, G.; Ciucu, A.A. Selective voltammetric determination of electroactive neuromodulating species in biological samples using iron(II) phthalocyanine modified multi-wall carbon nanotubes paste electrode. Sens. Actuators Chem. 2011, 156, 731–736. [Google Scholar] [CrossRef]
  92. Tavana, T.; Khalilzadeh, M.A.; Karimi-Maleh, H.; Ensafi, A.A.; Beitollahi, H.; Zareyee, D. Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode. J. Mol. Liq. 2012, 168, 69–74. [Google Scholar] [CrossRef]
  93. Babaei, A.; Babazadeh, M.; Afrasiabi, M. A Sensitive Simultaneous Determination of Adrenalin and Paracetamol on a Glassy Carbon Electrode Coated with a Film of Chitosan/Room Temperature Ionic Liquid/Single-Walled Carbon Nanotubes Nanocomposite. Chin. J. Chem 2011, 11, 2157–2164. [Google Scholar] [CrossRef]
  94. Shahrokhian, S.; Saberi, R.S. Electrochemical preparation of over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application in epinephrine determination. In Proceedings of the Electrochimica Acta; Elsevier Ltd.: Amsterdam, The Netherlands, 2011; Volume 57, pp. 132–138. [Google Scholar]
  95. Erdogdu, G. Selective Voltammetric Detection of Epinephrine in the Presence of Ascorbic Acid at Poly(4-Methoxyphenol)-Modified Electrode. J. Anal. Chem. 2002, 57, 741–744. [Google Scholar]
  96. Li, J.; Lin, X.Q. Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid. Anal. Chim. Acta 2007, 596, 222–230. [Google Scholar] [CrossRef]
  97. Wang, Y.; Chen, Z. zhen A novel poly(taurine) modified glassy carbon electrode for the simultaneous determination of epinephrine and dopamine. Colloids Surfaces Bioint. 2009, 74, 322–327. [Google Scholar] [CrossRef] [PubMed]
  98. Aslanoglu, M.; Kutluay, A.; Karabulut, S.; Abbasoglu, S. Voltammetric Determination of Adrenaline Using a Poly(1-Methylpyrrole) Modified Glassy Carbon Electrode. J. Chinese Chem. Soc. 2008, 55, 794–800. [Google Scholar] [CrossRef]
  99. Thiagarajan, S.; Chen, S.M. Applications of nanostructured Pt-Au hybrid film for the simultaneous determination of catecholamines in the presence of ascorbic acid. J. Solid State Electrochem. 2009, 13, 445–453. [Google Scholar] [CrossRef]
  100. Xie, P.; Chen, X.; Wang, F.; Hu, C.; Hu, S. Electrochemical behaviors of adrenaline at acetylene black electrode in the presence of sodium dodecyl sulfate. Colloids Surfaces Bioint. 2006, 48, 17–23. [Google Scholar] [CrossRef] [PubMed]
  101. Nasirizadeh, N.; Shekari, Z.; Zare, H.R.; Reza Shishehbore, M.; Fakhari, A.R.; Ahmar, H. Electrosynthesis of an imidazole derivative and its application as a bifunctional electrocatalyst for simultaneous determination of ascorbic acid, adrenaline, acetaminophen, and tryptophan at a multi-wall carbon nanotubes modified electrode surface. Biosens. Bioelectron. 2013, 41, 608–614. [Google Scholar] [CrossRef]
  102. Huynh, T.P.; Bikram , K.C.C.; Lisowski, W.; D’Souza, F.; Kutner, W. Molecularly imprinted polymer of bis(2,2’-bithienyl)methanes for selective determination of adrenaline. Bioelectrochemistry 2013, 93, 37–45. [Google Scholar] [CrossRef] [PubMed]
  103. Zare, H.R.; Ghanbari, Z.; Nasirizadeh, N.; Benvidi, A. Simultaneous determination of adrenaline, uric acid, and cysteine using bifunctional electrocatalyst of ruthenium oxide nanoparticles. Comptes Rendus Chim. 2013, 16, 287–295. [Google Scholar] [CrossRef]
  104. Chen, S.; Shi, M.; Yang, J.; Yu, Y.; Xu, Q.; Xu, J.; Duan, X.; Gao, Y. MXene / carbon nanohorns decorated with conductive molecularly for voltammetric detection of adrenaline. Microchim. Acta 2021, 188, 11. [Google Scholar] [CrossRef]
  105. Charithra, M.M.; Manjunatha, J.G.; Sreeharsha, N.; Asdaq, S.M.B.; Anwer, M.K. Polymerized carbon nanotube paste electrode as a sensing material for the detection of adrenaline with folic acid. Monatshefte Chem. 2021, 152, 411–420. [Google Scholar] [CrossRef]
  106. Luk, H.N.; Chou, T.Y.; Huang, B.H.; Lin, Y.S.; Li, H.; Wu, R.J. Promotion effect of palladium on bivo4 sensing material for epinephrine detection. Catalysts 2021, 11, 1083. [Google Scholar] [CrossRef]
  107. Emran, M.Y.; Shenashen, M.A.; El-Safty, S.A.; Reda, A.; Selim, M.M. Microporous P-doped carbon spheres sensory electrode for voltammetry and amperometry adrenaline screening in human fluids. Microchim. Acta 2021, 188, 7–11. [Google Scholar] [CrossRef] [PubMed]
  108. Naik, T.S.S.K.; Swamy, B.E.K.; Singh, S.; Singh, J.; Naik, E.I.; Jayaprakash, G.K.; Ramamurthy, P.C. Fabrication and theoretical analysis of sodium alpha-olefin sulfonate-anchored carbon paste electrode for the simultaneous detection of adrenaline and paracetamol. J. Appl. Electrochem. 2022, 52, 697–708. [Google Scholar] [CrossRef]
  109. Lupetti, K.O.; Cruz Vieira, I.; Vieira, H.J.; Fatibello-Filho, O. Electroregenerable anion-exchange resin with triiodide carbon paste electrode for the voltammetric determination of adrenaline. Analyst 2002, 127, 525–529. [Google Scholar] [CrossRef] [PubMed]
  110. Zhang, X.H.; Wang, S.F. Differential pulse adsorptive stripping voltammetry determination of epinephrine with β-mercaptoethanol self-assembled monolayers modified electrode. Anal. Lett. 2002, 35, 995–1006. [Google Scholar] [CrossRef]
  111. Jeong, H.; Kim, H.; Jeon, S. Modified glassy carbon electrode by electropolymerization of tetrakis-(2-aminopheny)porphyrin for the determination of norepinephrine in the presence of ascorbic acid. Microchem. J. 2004, 78, 181–186. [Google Scholar] [CrossRef]
  112. Rosy; Yadav, S.K.; Agrawal, B.; Oyama, M.; Goyal, R.N. Graphene modified Palladium sensor for electrochemical analysis of norepinephrine in pharmaceuticals and biological fluids. Electrochim. Acta 2014, 125, 622–629. [Google Scholar] [CrossRef]
  113. Ma, X.; Chen, M.; Li, X.; Purushothaman, A.; Li, F. Electrochemical Detection of Norepinephrine in the Presence of Epinephrine, Uric Acid and Ascorbic Acid Using a Graphene-modified Electrode. Int. J. Electrochem. Sci 2012, 7, 991–1000. [Google Scholar]
  114. Ma, X.; Chao, M.; Chen, M. Simultaneous electrochemical determination of norepinephrine, ascorbic acid and uric acid using a graphene modified glassy carbon electrode. Russ. J. Electrochem. 2014, 50, 154–161. [Google Scholar] [CrossRef]
  115. Seol, H.; Jeong, H.; Jeon, S. A selective determination of norepinephrine on the glassy carbon electrode modified with poly(ethylenedioxypyrrole dicarboxylic acid) nanofibers. J. Solid State Electrochem. 2009, 13, 1881–1887. [Google Scholar] [CrossRef]
  116. Zhao, H.; Zhang, Y.; Yuan, Z. Poly(isonicotinic acid) Modified Glassy Carbon Electrode for Electrochemical Detection of Norepinephrine. Anal. Chim. Acta 2002, 454, 75–81. [Google Scholar] [CrossRef]
  117. Wang, J.; Li, M.; Shi, Z.; Li, N.; Gu, Z. Electrocatalytic Oxidation of Norepinephrine at a Glassy Carbon Electrode Modified with Single Wall Carbon Nanotubes. Electroanalysis 2002, 14, 225–230. [Google Scholar] [CrossRef]
  118. Bian, C.; Zeng, Q.; Xiong, H.; Zhang, X.; Wang, S. Electrochemistry of norepinephrine on carbon-coated nickel magnetic nanoparticles modified electrode and analytical applications. Bioelectrochemistry 2010, 79, 11. [Google Scholar] [CrossRef] [PubMed]
  119. Wang, G.; Liu, X.; Yu, B.; Luo, G. Electrocatalytic response of norepinephrine at a β-cyclodextrin incorporated carbon nanotube modified electrode. J. Electroanal. Chem. 2004, 567, 227–231. [Google Scholar] [CrossRef]
  120. Wang, Q.; Li, N. Electrocatalytic Response of Norepinephrine at a Thiolactic acid Self-Assembled Gold Electrode. Talanta 2001, 55, 1219–1225. [Google Scholar] [CrossRef]
  121. Goyal, R.N.; Bishnoi, S. Simultaneous determination of epinephrine and norepinephrine in human blood plasma and urine samples using nanotubes modified edge plane pyrolytic graphite electrode. Talanta 2011, 84, 78–83. [Google Scholar] [CrossRef]
  122. Mazloum-Ardakani, M.; Beitollahi, H.; Amini, M.K.; Mirkhalaf, F.; Abdollahi-Alibeik, M. New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon paste electrode. Sens. Actuators Chem. 2010, 151, 243–249. [Google Scholar] [CrossRef]
  123. Zhang, H.L.; Liu, Y.; Lai, G.S.; Yu, A.M.; Huang, Y.M.; Jin, C.M. Calix[4]arene crown-4 ether modified glassy carbon electrode for electrochemical determination of norepinephrine. Analyst 2009, 134, 2141–2146. [Google Scholar] [CrossRef]
  124. Wei, M.; Li, M.; Li, N.; Gu, Z.; Duan, X. Electrocatalytic oxidation of norepinephrine at a reduced C 60-[dimethyl-(b-cyclodextrin)] 2 and Nafion chemically modified electrode. Electrochim. Acta 2002, 47, 2673–2678. [Google Scholar] [CrossRef]
  125. Zhao, H.; Zhang, Y.; Yuan, Z. Electrochemical Behavior of Norepinephrine at Poly(2,4,6-trimethylpyridine) Modified Glassy Carbon Electrode. Electroanalysis 2002, 14, 445–448. [Google Scholar] [CrossRef]
  126. Chen, W.; Lin, X.; Luo, H.; Huang, L. Electrocatalytic oxidation and determination of norepinephrine at poly(cresol red) modified glassy carbon electrode. Electroanalysis 2005, 17, 941–945. [Google Scholar] [CrossRef]
  127. Xu, G.R.; Chang, H.Y.; Cho, H.; Meng, W.; Kang, I.K.; Bae, Z.U. Macrocyclic nickel(II) complex and hydrophilic polyurethane film electrodes for the electrocatalytic oxidation and selective detection of norepinephrine. Electrochim. Acta 2004, 49, 4069–4077. [Google Scholar] [CrossRef]
  128. Lu, L.P.; Wang, S.Q.; Lin, X.Q. Fabrication of layer-by-layer deposited multilayer films containing DNA and gold nanoparticle for norepinephrine biosensor. Anal. Chim. Acta 2004, 519, 161–166. [Google Scholar] [CrossRef]
  129. Mazloum-Ardakani, M.; Beitollahi, H.; Ganjipour, B.; Naeimi, H. Novel Carbon Nanotube Paste Electrode for Simultaneous Determination of Norepinephrine, Uric Acid and D-Penicillamine. Int. J. Electrochem. Sci 2010, 5, 531–546. [Google Scholar]
  130. Huang, S.H.; Liao, H.H.; Chen, D.H. Simultaneous determination of norepinephrine, uric acid, and ascorbic acid at a screen printed carbon electrode modified with polyacrylic acid-coated multi-wall carbon nanotubes. Biosens. Bioelectron. 2010, 25, 2351–2355. [Google Scholar] [CrossRef] [PubMed]
  131. Goyal, R.N.; Aziz, M.A.; Oyama, M.; Chatterjee, S.; Rana, A.R.S. Nanogold based electrochemical sensor for determination of norepinephrine in biological fluids. Sens. Actuators Chem. 2011, 153, 232–238. [Google Scholar] [CrossRef]
  132. Mazloum-Ardakani, M.; Sheikh-Mohseni, M.A.; Abdollahi-Alibeik, M.; Benvidi, A. Electrochemical sensor for simultaneous determination of norepinephrine, paracetamol and folic acid by a nanostructured mesoporous material. Sens. Actuators Chem. 2012, 171–172, 380–386. [Google Scholar] [CrossRef]
  133. Beitollahi, H.; Sheikhshoaie, I. Selective voltammetric determination of norepinephrine in the presence of acetaminophen and folic acid at a modified carbon nanotube paste electrode. J. Electroanal. Chem. 2011, 661, 336–342. [Google Scholar] [CrossRef]
  134. Nasirizadeh, N.; Zare, H.R. Differential pulse voltammetric simultaneous determination of noradrenalin and acetaminophen using a hematoxylin biosensor. Talanta 2009, 80, 656–663. [Google Scholar] [CrossRef]
  135. Mazloum-Ardakani, M.; Beitollahi, H.; Amini, M.K.; Mirkhalaf, F.; Mirjalili, B.F. A highly sensitive nanostructure-based electrochemical sensor for electrocatalytic determination of norepinephrine in the presence of acetaminophen and tryptophan. Biosens. Bioelectron. 2011, 26, 2102–2106. [Google Scholar] [CrossRef]
  136. Reza Taheri, A.; Mohadesi, A.; Afzali, D.; Karimi-Maleh, H.; Mahmoudi Moghaddam, H.; Zamani, H.; rezayati zad, Z. Simultaneous Voltammetric Determination of Norepinephrine and Folic Acid at the Surface of Modified Carbon Nanotube Paste Electrode. Int. J. Electrochem. Sci 2011, 6, 171–180. [Google Scholar]
  137. Yaghoubian, H.; Soltani-Nejad, V.; Roodsaz, S. Simultaneous Voltammetric Determination of Norepinephrine, Uric Acid and Folic Acid at the Surface of Modified Chloranil Carbon Nanotube Paste Electrode. Int. J. Electrochem. Sci 2010, 5, 1411–1421. [Google Scholar]
  138. Liu, A.L.; Zhang, S.B.; Chen, W.; Lin, X.H.; Xia, X.H. Simultaneous voltammetric determination of norepinephrine, ascorbic acid and uric acid on polycalconcarboxylic acid modified glassy carbon electrode. Biosens. Bioelectron. 2008, 23, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
  139. Taei, M.; Ramazani, G. Simultaneous determination of norepinephrine, acetaminophen and tyrosine by differential pulse voltammetry using Au-nanoparticles/poly(2-amino-2-hydroxymethyl-propane-1,3-diol) film modified glassy carbon electrode. Colloids Surfaces Bioint. 2014, 123, 23–32. [Google Scholar] [CrossRef] [PubMed]
  140. de Queiroz, D.F.; de Dadamos, T.R.L.; Machado, S.A.S.; Martines, M.A.U. Electrochemical determination of norepinephrine by means of modified glassy carbon electrodes with carbon nanotubes and magnetic nanoparticles of cobalt ferrite. Sensors 2018, 18, 1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  141. Kuskur, C.M.; Kumara Swamy, B.E.; Jayadevappa, H.; Ganesh, P.S. Poly (rhodamine B) sensor for norepinephrine and paracetamol: A voltammetric study. Ionics 2018, 24, 3631–3640. [Google Scholar] [CrossRef]
  142. Fajardo, A.; Tapia, D.; Pizarro, J.; Segura, R.; Jara, P. Determination of norepinephrine using a glassy carbon electrode modified with graphene quantum dots and gold nanoparticles by square wave stripping voltammetry. J. Appl. Electrochem. 2019, 49, 423–432. [Google Scholar] [CrossRef]
  143. Baluta, S.; Lesiak, A.; Cabaj, J. Simple and cost-effective electrochemical method for norepinephrine determination based on carbon dots and tyrosinase. Sensors 2020, 20, 4567. [Google Scholar] [CrossRef]
  144. Anand, S.K.; Mathew, M.R.; Radecki, J.; Radecka, H.; Kumar, K.G. Individual and simultaneous voltammetric sensing of norepinephrine and tyramine based on poly(L-arginine)/reduced graphene oxide composite film modified glassy carbon electrode. J. Electroanal. Chem. 2020, 878, 114531. [Google Scholar] [CrossRef]
  145. Jahani, P.M.; Jafari, M.; Gupta, V.K.; Agarwal, S. Graphene quantum dots/ionic liquid-modified carbon paste electrode-based sensor for simultaneous voltammetric determination of norepinephrine and acetylcholine. Int. J. Electrochem. Sci. 2020, 15, 947–958. [Google Scholar] [CrossRef]
  146. Buleandră, M.; Popa, D.E.; David, I.G.; Ciucu, A.A. A simple and efficient cyclic square wave voltammetric method for simultaneous determination of epinephrine and norepinephrine using an activated pencil graphite electrode. Microchem. J. 2021, 160, 105621. [Google Scholar] [CrossRef]
  147. Priyanka, S.R.; Latha, K.P. MnCr2O4 nanocomposite modified carbon paste electrode based electrochemical sensor for determination of Norepinephrine: A cyclic voltammetry study. Chem. Data Collect. 2021, 35, 100769. [Google Scholar] [CrossRef]
  148. Salmanpour, S.; Tavana, T.; Pahlavan, A.; Khalilzadeh, M.A.; Ensafi, A.A.; Karimi-Maleh, H.; Beitollahi, H.; Kowsari, E.; Zareyee, D. Voltammetric determination of norepinephrine in the presence of acetaminophen using a novel ionic liquid/multiwall carbon nanotubes paste electrode. Mater. Sci. Eng. 2012, 32, 1912–1918. [Google Scholar] [CrossRef] [PubMed]
  149. Beitollahi, H.; Mohammadi, S. Selective voltammetric determination of norepinephrine in the presence of acetaminophen and tryptophan on the surface of a modified carbon nanotube paste electrode. Mater. Sci. Eng. 2013, 33, 3214–3219. [Google Scholar] [CrossRef] [PubMed]
  150. Ganesh, P.S.; Swamy, B.E.K. Simultaneous electroanalysis of norepinephrine, ascorbic acid and uric acid using poly(glutamic acid) modified carbon paste electrode. J. Electroanal. Chem. 2015, 752, 17–24. [Google Scholar] [CrossRef]
  151. Akhgar, M.R.; Beitollahi, H.; Salari, M.; Karimi-Maleh, H.; Zamani, H. Fabrication of a sensor for simultaneous determination of norepinephrine, acetaminophen and tryptophan using a modified carbon nanotube paste electrode. Anal. Methods 2012, 4, 259–264. [Google Scholar] [CrossRef]
  152. Chandrashekar, B.N.; Kumara Swamy, B.E. Simultaneous cyclic voltammetric determination of norepinephrine, ascorbic acid and uric acid using TX-100 modified carbon paste electrode. Anal. Methods 2012, 4, 849–854. [Google Scholar] [CrossRef]
  153. Ansari, M.; Kazemi, S.; Khalilzadeh, M.A.; Karimi-Maleh, H.; Bagher, M.; Zanousi, P. Sensitive and Stable Voltammetric Measurements of Norepinephrine at Ionic Liquid-Carbon Nanotubes Paste Electrodes. Int. J. Electrochem. Sci 2013, 8, 1938–1948. [Google Scholar]
  154. Smajdor, J.; Piech, R.; Rumin, M.; Paczosa-Bator, B. New high sensitive hydrocortisone determination by means of adsorptive stripping voltammetry on renewable mercury film silver based electrode. Electrochim. Acta 2015, 182, 67–72. [Google Scholar] [CrossRef]
  155. Kämäräinen, S.; Mäki, M.; Tolonen, T.; Palleschi, G.; Virtanen, V.; Micheli, L.; Sesay, A.M. Disposable electrochemical immunosensor for cortisol determination in human saliva. Talanta 2018, 188, 50–57. [Google Scholar] [CrossRef]
  156. Arya, S.K.; Dey, A.; Bhansali, S. Polyaniline protected gold nanoparticles based mediator and label free electrochemical cortisol biosensor. Biosens. Bioelectron. 2011, 28, 166–173. [Google Scholar] [CrossRef]
  157. Vasudev, A.; Kaushik, A.; Tomizawa, Y.; Norena, N.; Bhansali, S. An LTCC-based microfluidic system for label-free, electrochemical detection of cortisol. Sens. Actuators Chem. 2013, 182, 139–146. [Google Scholar] [CrossRef]
  158. Dhull, N.; Kaur, G.; Gupta, V.; Tomar, M. Highly sensitive and non-invasive electrochemical immunosensor for salivary cortisol detection. Sens. Actuators Chem. 2019, 293, 281–288. [Google Scholar] [CrossRef]
  159. Wu, H.; Ohnuki, H.; Ota, S.; Murata, M.; Yoshiura, Y.; Endo, H. New approach for monitoring fish stress: A novel enzyme-functionalized label-free immunosensor system for detecting cortisol levels in fish. Biosens. Bioelectron. 2017, 93, 57–64. [Google Scholar] [CrossRef] [PubMed]
  160. Tuteja, S.K.; Ormsby, C.; Neethirajan, S. Noninvasive Label-Free Detection of Cortisol and Lactate Using Graphene Embedded Screen-Printed Electrode. Nano-Micro Lett. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
  161. Vabbina, P.K.; Kaushik, A.; Pokhrel, N.; Bhansali, S.; Pala, N. Electrochemical cortisol immunosensors based on sonochemically synthesized zinc oxide 1D nanorods and 2D nanoflakes. Biosens. Bioelectron. 2015, 63, 124–130. [Google Scholar] [CrossRef]
  162. Sun, B.; Gou, Y.; Ma, Y.; Zheng, X.; Bai, R.; Ahmed Abdelmoaty, A.A.; Hu, F. Investigate electrochemical immunosensor of cortisol based on gold nanoparticles/magnetic functionalized reduced graphene oxide. Biosens. Bioelectron. 2017, 88, 55–62. [Google Scholar] [CrossRef]
  163. Balaji, K.; Reddy, G.V.R.; Reddy, T.M.; Reddy, S.J. Determination of prednisolone, dexamethasone and hydrocortisone in pharmaceutical formulations and biological fluid samples by voltammetric techniques using β-cyclodextrin modified carbon paste electrode. African J. Pharm. Pharmacol. 2008, 2, 157–166. [Google Scholar]
  164. Moreno-Guzmán, M.; Eguílaz, M.; Campuzano, S.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Disposable immunosensor for cortisol using functionalized magnetic particles. Analyst 2010, 135, 1926–1933. [Google Scholar] [CrossRef]
  165. Liu, X.; Zhao, R.; Mao, W.; Feng, H.; Liu, X.; Wong, D.K.Y. Detection of cortisol at a gold nanoparticleProtein G-DTBP-scaffold modified electrochemical immunosensor. Analyst 2011, 136, 5204–5210. [Google Scholar] [CrossRef]
  166. Pasha, S.K.; Kaushik, A.; Vasudev, A.; Snipes, S.A.; Bhansali, S. Electrochemical Immunosensing of Saliva Cortisol. J. Electrochem. Soc. 2014, 161, B3077–B3082. [Google Scholar] [CrossRef]
  167. Manickam, P.; Pasha, S.K.; Snipes, S.A.; Bhansali, S. A Reusable Electrochemical Biosensor for Monitoring of Small Molecules (Cortisol) Using Molecularly Imprinted Polymers. J. Electrochem. Soc. 2017, 164, B54–B59. [Google Scholar] [CrossRef]
  168. Sharma, N.; Seshadri, A.; Yun, K. Chemosphere Electrochemical detection of hydrocortisone using green-synthesized cobalt oxide nanoparticles with nafion-modified glassy carbon electrode. Chemosphere 2021, 282, 131029. [Google Scholar] [CrossRef] [PubMed]
  169. Cui, X.; Han, J.; Chen, G.; Wang, L.; Luo, Z.; Chang, C.; Zhang, J.; Fu, Q. Development of a Highly Sensitive Imprinted Electrochemical Sensor for the Detection of Hydrocortisone in Wastewater Development of a Highly Sensitive Imprinted Electrochemical Sensor for the Detection of Hydrocortisone in Wastewater. J. Electrochem. Soc. 2021, 168. [Google Scholar] [CrossRef]
  170. Klangphukhiew, S.; Srichana, R.; Patramanon, R. Cortisol Stress Biosensor Based on Molecular Imprinted Polymer. Proceedings 2017, 1, 538. [Google Scholar] [CrossRef] [Green Version]
  171. Paimard, G.; Shamsipur, M.; Mohsen Shahlaei, M.B.G. Simultaneous electrochemical investigation and detection of two glucocorticoids; interactions with human growth hormone, somatropin. Results Chem. 2022, 4, 100324. [Google Scholar] [CrossRef]
  172. Kaushik, A.; Vasudev, A.; Arya, S.K.; Bhansali, S. Mediator and label free estimation of stress biomarker using electrophoretically deposited Ag at AgO-polyaniline hybrid nanocomposite. Biosens. Bioelectron. 2013, 50, 35–41. [Google Scholar] [CrossRef]
  173. Yamaguchi, M.; Matsuda, Y.; Sasaki, S.; Sasaki, M.; Kadoma, Y.; Imai, Y.; Niwa, D.; Shetty, V. Immunosensor with fluid control mechanism for salivary cortisol analysis. Biosens. Bioelectron. 2013, 41, 186–191. [Google Scholar] [CrossRef] [Green Version]
  174. Ueno, Y.; Furukawa, K.; Hayashi, K.; Takamura, M.; Hinbino, H.; Tamechika, E. Graphene-modified Interdigitated Array Electrode: Fabrication, Characterization, and Electrochemical Immunoassay Application. Anal. Sci. 2013, 29, 55–60. [Google Scholar] [CrossRef] [Green Version]
  175. Jennings, R.E.; Berry, A.A.; Strutt, J.P.; Gerrard, D.T.; Hanley, N.A. Human pancreas development. Development 2015, 142, 3126–3137. [Google Scholar] [CrossRef] [Green Version]
  176. Slack, J.M. Developmental biology of the pancreas. Development 1995, 121, 1569–1580. [Google Scholar] [CrossRef]
  177. Zoppi, G.; Andreotti, G.; Pajno-Ferrara, F.; Njai, D.M.; Gaburro, D. Exocrine Pancreas Function in Premature and Full Term Neonates. Pediatr. Res. 1972, 6, 880–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  178. Ballian, N.; Brunicardi, F.C. Islet Vasculature as a Regulator of Endocrine Pancreas Function. World J. Surg. 2007, 31, 705–714. [Google Scholar] [CrossRef]
  179. Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  180. Le Roith, D.; Zick, Y. Recent Advances in Our Understanding of Insulin Action and Insulin Resistance. Diabetes Care 2001, 24, 588–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  181. Cheatham, B.; Kahn, C.R. Insulin Action and the Insulin Signaling Network*. Endocr. Rev. 1995, 16, 117–142. [Google Scholar] [CrossRef] [PubMed]
  182. Pirola, L.; Johnston, A.M.; Van Obberghen, E. Modulation of insulin action. Diabetologia 2004, 47, 170–184. [Google Scholar] [CrossRef] [Green Version]
  183. Arvinte, A.; Westermann, A.C.; Sesay, A.M.; Virtanen, V. Electrocatalytic oxidation and determination of insulin at CNT-nickel-cobalt oxide modified electrode. Sens. Actuators Chem. 2010, 150, 756–763. [Google Scholar] [CrossRef]
  184. Habibi, E.; Omidinia, E.; Heidari, H.; Fazli, M. Flow injection amperometric detection of insulin at cobalt hydroxide nanoparticles modified carbon ceramic electrode. Anal. Biochem. 2016, 495, 37–41. [Google Scholar] [CrossRef]
  185. Pikulski, M.; Gorski, W. Iridium-based electrocatalytic systems for the determination of insulin. Anal. Chem. 2000, 72, 2696–2702. [Google Scholar] [CrossRef]
  186. Salimi, A.; Pourbeyram, S.; Haddadzadeh, H. Sol/ gel derived carbon ceramic composite electrode containing a ruthenium complex for amperometric detection of insulin at physiological pH. J. Electroanal. Chem. 2003, 542, 39–49. [Google Scholar] [CrossRef]
  187. Wang, J.; Zhang, X. Needle-type dual microsensor for the simultaneous monitoring of glucose and insulin. Anal. Chem. 2001, 73, 844–847. [Google Scholar] [CrossRef] [PubMed]
  188. Wang, J.; Tangkuaram, T.; Loyprasert, S.; Vazquez-Alvarez, T.; Veerasai, W.; Kanatharana, P.; Thavarungkul, P. Electrocatalytic detection of insulin at RuOx/carbon nanotube-modified carbon electrodes. Anal. Chim. Acta 2007, 581, 84. [Google Scholar] [CrossRef] [PubMed]
  189. Rafiee, B.; Fakhari, A.R. Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode. Biosens. Bioelectron. 2013, 46, 130–135. [Google Scholar] [CrossRef] [PubMed]
  190. Salimi, A.; Mohamadi, L.; Hallaj, R.; Soltanian, S. Electrooxidation of insulin at silicon carbide nanoparticles modified glassy carbon electrode. Electrochem. Commun. 2009, 11, 1116–1119. [Google Scholar] [CrossRef]
  191. Jaafariasl, M.; Shams, E.; Amini, M.K. Silica gel modified carbon paste electrode for electrochemical detection of insulin. Electrochim. Acta 2011, 56, 4390–4395. [Google Scholar] [CrossRef]
  192. Cheng, L.; Pacey, G.E.; Cox, J.A. Carbon electrodes modified with ruthenium metallodendrimer multilayers for the mediated oxidation of methionine and insulin at physiological pH. Anal. Chem. 2001, 73, 5607–5610. [Google Scholar] [CrossRef]
  193. Zhang, M.; Mullens, C.; Gorski, W. Insulin oxidation and determination at carbon electrodes. Anal. Chem. 2005, 77, 6396–6401. [Google Scholar] [CrossRef]
  194. Yu, Y.; Guo, M.; Yuan, M.; Liu, W.; Hu, J. Nickel nanoparticle-modified electrode for ultra-sensitive electrochemical detection of insulin. Biosens. Bioelectron. 2016, 77, 215–219. [Google Scholar] [CrossRef]
  195. Lu, L.; Liang, L.; Xie, Y.; Tang, K.; Wan, Z.; Chen, S. A nickel nanoparticle/carbon nanotube-modified carbon fiber microelectrode for sensitive insulin detection. J. Solid State Electrochem. 2018, 22, 825–833. [Google Scholar] [CrossRef]
  196. Amini, N.; Gholivand, M.B.; Shamsipur, M. Electrocatalytic determination of traces of insulin using a novel silica nanoparticles-Nafion modified glassy carbon electrode. J. Electroanal. Chem. 2014, 714–715, 70–75. [Google Scholar] [CrossRef]
  197. Wang, J.; Musameh, M. Electrochemical detection of trace insulin at carbon-nanotube-modified electrodes. Anal. Chim. Acta 2004, 511, 33–36. [Google Scholar] [CrossRef]
  198. Salimi, A.; Roushani, M.; Soltanian, S.; Hallaj, R. Picomolar detection of insulin at renewable nickel powder-doped carbon composite electrode. Anal. Chem. 2007, 79, 7431–7438. [Google Scholar] [CrossRef] [PubMed]
  199. Noorbakhsh, A.; Alnajar, A.I.K. Antifouling properties of reduced graphene oxide nanosheets for highly sensitive determination of insulin. Microchem. J. 2016, 129, 310–317. [Google Scholar] [CrossRef]
  200. Salimi, A.; Noorbakhash, A.; Sharifi, E.; Semnani, A. Highly sensitive sensor for picomolar detection of insulin at physiological pH, using GC electrode modified with guanine and electrodeposited nickel oxide nanoparticles. Biosens. Bioelectron. 2008, 24, 792–798. [Google Scholar] [CrossRef]
  201. Martínez-Periñán, E.; Revenga-Parra, M.; Gennari, M.; Pariente, F.; Mas-Ballesté, R.; Zamora, F.; Lorenzo, E. Insulin sensor based on nanoparticle-decorated multiwalled carbon nanotubes modified electrodes. Sens. Actuators Chem. 2016, 222, 331–338. [Google Scholar] [CrossRef] [Green Version]
  202. Kouchakinejad, S.; Babaee, S.; Roshani, F.; Kouchakinejad, R.; shirmohammadi, N.; Kaki, S. The performance of the new modified pencil graphite electrode in quantifying of insulin. Chem. Phys. Lett. 2020, 759, 137987. [Google Scholar] [CrossRef]
  203. Businova, P.; Prasek, J.; Chomoucka, J.; Drbohlavova, J.; Pekarek, J.; Hrdy, R.; Hubalek, J. Voltammetric sensor for direct insulin detection. In Proceedings of the Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; Volume 47, pp. 1235–1238. [Google Scholar]
  204. Salimi, A.; Hallaj, R. Cobalt oxide nanostructure-modified glassy carbon electrode as a highly sensitive flow injection amperometric sensor for the picomolar detection of insulin. J. Solid State Electrochem. 2012, 16, 1239–1246. [Google Scholar] [CrossRef]
  205. Reiter, R.J. The ageing pineal gland and its physiological consequences. BioEssays 1992, 14, 169–175. [Google Scholar] [CrossRef]
  206. Moore, R.Y. Neural control of the pineal gland. Behav. Brain Res. 1995, 73, 125–130. [Google Scholar] [CrossRef]
  207. Wurtman, R.J.; Axelrod, J. THE PINEAL GLAND. Sci. Am. 1965, 213, 50–63. [Google Scholar] [CrossRef]
  208. Hardeland, R.; Pandi-Perumal, S.R.; Cardinali, D.P. Melatonin. Int. J. Biochem. Cell Biol. 2006, 38, 313–316. [Google Scholar] [CrossRef] [PubMed]
  209. Arendt, J.; Skene, D.J. Melatonin as a chronobiotic. Sleep Med. Rev. 2005, 9, 25–39. [Google Scholar] [CrossRef]
  210. Reiter, R.J. Melatonin: Clinical relevance. Best Pract. Res. Clin. Endocrinol. Metab. 2003, 17, 273–285. [Google Scholar] [CrossRef]
  211. Maestroni, G.J.M. The immunoneuroendocrine role of melatonin. J. Pineal Res. 1993, 14, 10. [Google Scholar] [CrossRef] [PubMed]
  212. Hardeland, R. Atioxidative protection by melatonin. Endocrine 2005, 27, 119–130. [Google Scholar] [CrossRef] [PubMed]
  213. Smajdor, J.; Piech, R.; Pi?k, M.; Paczosa-Bator, B. Carbon black as a glassy carbon electrode modifier for high sensitive melatonin determination. J. Electroanal. Chem. 2017, 799, 278–284. [Google Scholar] [CrossRef]
  214. Ball, A.T.; Patel, B.A. Rapid voltammetric monitoring of melatonin in the presence of tablet excipients. Electrochim. Acta 2012, 83, 196–201. [Google Scholar] [CrossRef]
  215. Kumar, N.; Rosy; Goyal, R.N. Nanopalladium grained polymer nanocomposite based sensor for the sensitive determination of Melatonin. Electrochim. Acta 2016, 211, 18–26. [Google Scholar] [CrossRef]
  216. Levent, A. Electrochemical determination of melatonin hormone using a boron-doped diamond electrode. Diam. Relat. Mater. 2012, 21, 114–119. [Google Scholar] [CrossRef]
  217. Uslu, B.; Demircigil, B.T.; Ozkan, S.A.; Senturk, Z.; Aboul-Enein, H.Y. Simultaneous determination of melatonin and pyridoxine in tablet formulations by differential pulse voltammetry. Pharmazie 2001, 56, 938–942. [Google Scholar]
  218. Tsai, T.-H.; Huang, Y.-C.; Chen, S.-M. Manganese Hexacyanoferrate with Poly(3,4-ethylenedioxythiophene) Hybrid Film Modified Electrode for the Determination of Catechin and Melatonin. Int. J. Electrochem. Sci 2011, 6, 3238–3253. [Google Scholar]
  219. Devadas, B.; Madhu, R.; Chen, S.M.; Veeramani, V.; Rajkumar, M. Electrochemical preparation of a reduced graphene oxide/ruthenium oxide modified electrode and its application to the simultaneous determination of serotonin and melatonin. Sci. Adv. Mater. 2015, 7, 654–662. [Google Scholar] [CrossRef]
  220. Raggi, M.A.; Bugamelli, F.; Pucci, V. Determination of melatonin in galenic preparations by LC and voltammetry. J. Pharm. Biomed. Anal. 2002, 29, 283–289. [Google Scholar] [CrossRef]
  221. Rahmati, R.; Hemmati, A.; Mohammadi, R.; Hatamie, A.; Tamjid, E.; Simchi, A. Sensitive Voltammetric Detection of Melatonin in Pharmaceutical Products by Highly Conductive Porous Graphene-Gold Composites. ACS Sustain. Chem. Eng. 2020, 8, 18224–18236. [Google Scholar] [CrossRef]
  222. Corujo-Antuña, J.L.; Abad-Villar, E.M.; Fernández-Abedul, M.T.; Costa-García, A. Voltammetric and flow amperometric methods for the determination of melatonin in pharmaceuticals. J. Pharm. Biomed. Anal. 2003, 31, 421–429. [Google Scholar] [CrossRef]
  223. Babaei, A.; Taheri, A.R.; Khani Farahani, I. Nanomolar simultaneous determination of levodopa and melatonin at a new cobalt hydroxide nanoparticles and multi-walled carbon nanotubes composite modified carbon ionic liquid electrode. Sens. Actuators Chem. 2013, 183, 265–272. [Google Scholar] [CrossRef]
  224. Camargo, J.R.; Andreotti, I.A.A.; Kalinke, C.; Henrique, J.M.; Bonacin, J.A.; Janegitz, B.C. Waterproof paper as a new substrate to construct a disposable sensor for the electrochemical determination of paracetamol and melatonin. Talanta 2020, 208, 120458. [Google Scholar] [CrossRef] [PubMed]
  225. Gevaerd, A.; Watanabe, E.Y.; Janegitz, B.C.; Bergamini, M.F. Simple Melatonin Determination Using Disposable and Low-Cost Lab- Made Screen-Printed Carbon Electrode Simple Melatonin Determination Using Disposable and Low-Cost Lab-Made Screen-Printed Carbon Electrode. J. Electrochem. Soc. 2022, 169, 037503. [Google Scholar] [CrossRef]
  226. Qu, W.; Wang, F.; Hu, S.; Cui, D. Electrocatalytic properties and voltammetric determination of melatonin at a nanostructured film electrode. Microchim. Acta 2005, 150, 109–114. [Google Scholar] [CrossRef]
  227. Xiao-Ping, W.; Lan, Z.; Wen-Rong, L.; Jian-Ping, D.; Hong-Qing, C.; Guo-Nan, C. Study on the electrochemical behavior of melatonin with an activated electrode. Electroanal. An Int. J. Devoted to Fundam. Pract. Asp. Electroanal. 2002, 14, 1654–1660. [Google Scholar] [CrossRef]
  228. Bagheri, H.; Afkhami, A.; Hashemi, P.; Ghanei, M. Simultaneous and sensitive determination of melatonin and dopamine with Fe3O4 nanoparticle-decorated reduced graphene oxide modified electrode. RSC Adv. 2015, 5, 21659–21669. [Google Scholar] [CrossRef]
  229. Corujo-Antuña, J.L.; Martínez-Montequín, S.; Fernández-Abedul, M.T.; Costa-García, A. Sensitive adsorptive stripping voltammetric methodologies for the determination of melatonin in biological fluids. Electroanalysis 2003, 15, 773–778. [Google Scholar] [CrossRef]
  230. Beltagi, A.M.; Khashaba, P.Y.; Ghoneim, M.M. Determination of Melatonin Hormone in Bulk Form, Tablets and Human Serum by Square-Wave Cathodic Adsorptive Stripping Voltammetry. Electroanalysis 2003, 15, 1121–1128. [Google Scholar] [CrossRef]
  231. Gupta, P.; Goyal, R.N. Graphene and Co-polymer composite based molecularly imprinted sensor for ultratrace determination of melatonin in human biological fl uids. RSC Adv. 2015, 5, 40444–40454. [Google Scholar] [CrossRef]
  232. Freitas, R.C.; Orzari, L.O.; Ferreira, L.M.C.; Paixão, T.R.L.C.; Coltro, W.K.T.; Vicentini, F.C.; Janegitz, B.C. Electrochemical determination of melatonin using disposable self-adhesive inked paper electrode. J. Electroanal. Chem. 2021, 897, 115550. [Google Scholar] [CrossRef]
  233. Soltani, N.; Tavakkoli, N.; Shahdost-fard, F.; Salavati, H.; Abdoli, F. A carbon paste electrode modified with Al2O3-supported palladium nanoparticles for simultaneous voltammetric determination of melatonin, dopamine, and acetaminophen. Microchim. Acta 2019, 186, 23–25. [Google Scholar] [CrossRef]
  234. Gamal, O.; Alaa, S. Voltammetric determination of melatonin in tablet dosage forms and human serum. Lat. Am. J. Pharm 2010, 29, 1235–1241. [Google Scholar]
  235. Thomas, A.; Kumar, K.G. Acetylene black-chitosan mediated electro-oxidation of serotonin and melatonin: An efficient platform for simultaneous voltammetric sensing. Ionics 2019, 25, 2337–2349. [Google Scholar] [CrossRef]
  236. Gomez, F.J.V.; Martín, A.; Silva, M.F.; Escarpa, A. Screen-printed electrodes modified with carbon nanotubes or graphene for simultaneous determination of melatonin and serotonin. Microchim. Acta 2015, 182, 1925–1931. [Google Scholar] [CrossRef]
  237. Apetrei, I.M.; Apetrei, C. Voltammetric determination of melatonin using a graphene-based sensor in pharmaceutical products. Int. J. Nanomedicine 2016, 11, 1859. [Google Scholar] [CrossRef] [Green Version]
  238. Hillier, S.G. Regulatory functions for inhibin and activin in human ovaries. J. Endocrinol. 1991, 131, 171–175. [Google Scholar] [CrossRef] [PubMed]
  239. VandeVoort, C.A.; Mtango, N.R.; Midic, U.; Latham, K.E. Disruptions in follicle cell functions in the ovaries of rhesus monkeys during summer. Physiol. Genomics 2015, 47, 102–112. [Google Scholar] [CrossRef] [PubMed]
  240. Mikhail, G. Hormone Secretion by the Human Ovaries. Gynecol. Obstet. Investig. 1970, 1, 5–20. [Google Scholar] [CrossRef] [PubMed]
  241. Kuhl, H. Pharmacology of estrogens and progestogens: Influence of different routes of administration. Climacteric 2005, 8 Suppl 1, 3–63. [Google Scholar] [CrossRef]
  242. Tapiero, H.; Nguyen Ba, G.; Tew, K.D. Estrogens and environmental estrogens. Biomed. Pharmacother. 2002, 56, 36–44. [Google Scholar] [CrossRef]
  243. Gruber, C.J.; Tschugguel, W.; Schneeberger, C.; Huber, J.C. Production and Actions of Estrogens. N. Engl. J. Med. 2002, 346, 340–352. [Google Scholar] [CrossRef]
  244. Straub, R.H. The Complex Role of Estrogens in Inflammation. Endocr. Rev. 2007, 28, 521–574. [Google Scholar] [CrossRef] [Green Version]
  245. Smajdor, J.; Piech, R.; Ławrywianiec, M.; Paczosa-Bator, B. Glassy carbon electrode modified with carbon black for sensitive estradiol determination by means of voltammetry and flow injection analysis with amperometric detection. Anal. Biochem. 2018, 544, 7–12. [Google Scholar] [CrossRef]
  246. Dinny Graham, J.; Clarke, C.L. Physiological action of progesterone in target tissues. Endocr. Rev. 1997, 18, 502–519. [Google Scholar] [CrossRef]
  247. Druckmann, R.; Druckmann, M.-A. Progesterone and the immunology of pregnancy. J. Steroid Biochem. Mol. Biol. 2005, 97, 389–396. [Google Scholar] [CrossRef]
  248. Kalkhoff, R.K. Metabolic effects of progesterone. Am. J. Obstet. Gynecol. 1982, 142, 735–738. [Google Scholar] [CrossRef]
  249. Taraborrelli, S. Physiology, production and action of progesterone. Acta Obstet. Gynecol. Scand. 2015, 94, 8–16. [Google Scholar] [CrossRef]
  250. Moraes, F.C.; Rossi, B.; Donatoni, M.C.; de Oliveira, K.T.; Pereira, E.C. Sensitive determination of 17β-estradiol in river water using a graphene based electrochemical sensor. Anal. Chim. Acta 2015, 881, 37–43. [Google Scholar] [CrossRef]
  251. Hu, S.; Wu, K.; Yi, H.; Cui, D. Voltammetric behavior and determination of estrogens at Nafion-modified glassy carbon electrode in the presence of cetyltrimethylammonium bromide. Anal. Chim. Acta 2002, 464, 209–216. [Google Scholar] [CrossRef]
  252. Liu, X.; Wong, D.K.Y. Electrocatalytic detection of estradiol at a carbon nanotube|Ni(Cyclam) composite electrode fabricated based on a two-factorial design. Anal. Chim. Acta 2007, 594, 184–191. [Google Scholar] [CrossRef]
  253. Ojeda, I.; López-Montero, J.; Moreno-Guzmán, M.; Janegitz, B.C.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical immunosensor for rapid and sensitive determination of estradiol. Anal. Chim. Acta 2012, 743, 117–124. [Google Scholar] [CrossRef]
  254. Jin, G.P.; Lin, X.Q. Voltammetric behavior and determination of estrogens at carbamylcholine modified paraffin-impregnated graphite electrode. Electrochim. Acta 2005, 50, 3556–3562. [Google Scholar] [CrossRef]
  255. Liu, X.; Duckworth, P.A.; Wong, D.K.Y. Square wave voltammetry versus electrochemical impedance spectroscopy as a rapid detection technique at electrochemical immunosensors. Biosens. Bioelectron. 2010, 25, 1467–1473. [Google Scholar] [CrossRef]
  256. Mofidi, Z.; Norouzi, P.; Larijani, B.; Seidi, S.; Ganjali, M.R.; Morshedi, M. Simultaneous determination and extraction of ultra-trace amounts of estradiol valerate from whole blood using FFT square wave voltammetry and low-voltage electrically enhanced microextraction techniques. J. Electroanal. Chem. 2018, 813, 83–91. [Google Scholar] [CrossRef]
  257. Salc, B.; Biryol, I. Voltammetric investigation of β-estradiol. J. Pharm. Biomed. Anal. 2002, 28, 753–759. [Google Scholar] [CrossRef]
  258. Wang, Z.; Wang, P.; Tu, X.; Wu, Y.; Zhan, G.; Li, C. A novel electrochemical sensor for estradiol based on nanoporous polymeric film bearing poly {1-butyl-3-[3-(N-pyrrole) propyl] imidazole dodecyl sulfonate} moiety. Sens. Actuators Chem. 2014, 193, 190–197. [Google Scholar] [CrossRef]
  259. Özcan, A.; Topçuoğulları, D. Voltammetric determination of 17-Β-estradiol by cysteamine self-assembled gold nanoparticle modified fumed silica decorated graphene nanoribbon nanocomposite. Sens. Actuators Chem. 2017, 250, 85–90. [Google Scholar] [CrossRef]
  260. Janegitz, B.C.; Dos Santos, F.A.; Faria, R.C.; Zucolotto, V. Electrochemical determination of estradiol using a thin film containing reduced graphene oxide and dihexadecylphosphate. Mater. Sci. Eng. 2014, 37, 14–19. [Google Scholar] [CrossRef]
  261. Triviño, J.J.; Gómez, M.; Valenzuela, J.; Vera, A.; Arancibia, V. Determination of a natural (17β-estradiol) and a synthetic (17α-ethinylestradiol) hormones in pharmaceutical formulations and urine by adsorptive stripping voltammetry. Sens. Actuators Chem. 2019, 297, 126728. [Google Scholar] [CrossRef]
  262. Ji, L.; Wang, Y.; Wu, K.; Zhang, W. Simultaneous determination of environmental estrogens: Diethylstilbestrol and estradiol using Cu-BTC frameworks-sensitized electrode. Talanta 2016, 159, 215–221. [Google Scholar] [CrossRef]
  263. Tanrıkut, E.; Özcan, İ.; Sel, E.; Köytepe, S.; Savan, E.K. Simultaneous Electrochemical Detection of Estradiol and Testosterone Using Nickel Ferrite Oxide Doped Mesoporous Carbon Nanocomposite Modified Sensor. J. Electrochem. Soc. 2020, 167, 087509. [Google Scholar] [CrossRef]
  264. Lin, X.; Li, Y. A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosens. Bioelectron. 2006, 22, 253–259. [Google Scholar] [CrossRef]
  265. Batista, I.V.; Lanza, M.R.V.; Dias, I.L.T.; Tanaka, S.M.C.N.; Tanaka, A.A.; Sotomayor, M.D.P.T. Electrochemical sensor highly selective for estradiol valerate determination based on a modified carbon paste with iron tetrapyridinoporphyrazine. Analyst 2008, 133, 1692–1699. [Google Scholar] [CrossRef]
  266. Antoniazzi, C.; de Lima, C.A.; Marangoni, R.; Spinelli, A.; de Castro, E.G. Voltammetric determination of 17β-estradiol in human urine and buttermilk samples using a simple copper(II) oxide-modified carbon paste electrode. J. Solid State Electrochem. 2018, 22, 1373–1383. [Google Scholar] [CrossRef]
  267. Song, J.; Yang, J.; Hu, X. Electrochemical determination of estradiol using a poly(l-serine) film-modified electrode. J. Appl. Electrochem. 2008, 38, 833–836. [Google Scholar] [CrossRef]
  268. Tao, H.; Wei, W.; Zeng, X.; Liu, X.; Zhang, X.; Zhang, Y. Electrocatalytic oxidation and determination of estradiol using an electrode modified with carbon nanotubes and an ionic liquid. Microchim. Acta 2009, 166, 53–59. [Google Scholar] [CrossRef]
  269. He, Q.; Yuan, S.; Chen, C.; Hu, S. Electrochemical properties of estradiol at glassy carbon electrode modified with nano-Al2O3 film. Mater. Sci. Eng. 2003, 23, 621–625. [Google Scholar] [CrossRef]
  270. Chaisuwan, N.; Xu, H.; Wu, G.; Liu, J. A highly sensitive differential pulse anodic stripping voltammetry for determination of 17β-estradiol (E2) using CdSe quantum dots based on indirect competitive immunoassay. Biosens. Bioelectron. 2013, 46, 150–154. [Google Scholar] [CrossRef]
  271. Povedano, E.; Cincotto, F.H.; Parrado, C.; Díez, P.; Sánchez, A.; Canevari, T.C.; Machado, S.A.S.; Pingarrón, J.M.; Villalonga, R. Decoration of reduced graphene oxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme biosensor for 17β-estradiol. Biosens. Bioelectron. 2017, 89, 343–351. [Google Scholar] [CrossRef] [Green Version]
  272. Terui, N.; Fugetsu, B.; Tanaka, S. Voltammetric behavior and determination of 17 beta-estradiol at multi-wall carbon nanotube-Nafion modified glassy carbon electrode. Anal. Sci. 2006, 22, 895–898. [Google Scholar] [CrossRef] [Green Version]
  273. Dong, X.; He, L.; Liu, Y.; Piao, Y. Preparation of highly conductive biochar nanoparticles for rapid and sensitive detection of 17β-estradiol in water. Electrochim. Acta 2018, 292, 55–62. [Google Scholar] [CrossRef]
  274. Wong, A.; Santos, A.M.; Fava, E.L.; Fatibello-Filho, O.; Sotomayor, M.D.P.T. Voltammetric determination of 17β-estradiol in different matrices using a screen-printed sensor modified with CuPc, Printex 6L carbon and Nafion film. Microchem. J. 2019, 147, 365–373. [Google Scholar] [CrossRef]
  275. Gan, P.; Compton, R.G.; Foord, J.S. The voltammetry and electroanalysis of some estrogenic compounds at modified diamond electrodes. Electroanalysis 2013, 25, 2423–2434. [Google Scholar] [CrossRef]
  276. Olowu, R.A.; Arotiba, O.; Mailu, S.N.; Waryo, T.T.; Baker, P.; Iwuoha, E. Electrochemical aptasensor for endocrine disrupting 17β-estradiol based on a Poly(3,4-ethylenedioxylthiopene)-gold nanocomposite platform. Sensors 2010, 10, 9872–9890. [Google Scholar] [CrossRef] [Green Version]
  277. da Silveira, J.P.; Piovesan, J.V.; Spinelli, A. Carbon paste electrode modified with ferrimagnetic nanoparticles for voltammetric detection of the hormone estriol. Microchem. J. 2017, 133, 22–30. [Google Scholar] [CrossRef]
  278. Cesarino, I.; Cincotto, F.H.; Machado, S.A.S. A synergistic combination of reduced graphene oxide and antimony nanoparticles for estriol hormone detection. Sens. Actuators Chem. 2015, 210, 453–459. [Google Scholar] [CrossRef]
  279. Donini, C.A.; da Silva, M.K.L.; Simões, R.P.; Cesarino, I. Reduced graphene oxide modified with silver nanoparticles for the electrochemical detection of estriol. J. Electroanal. Chem. 2018, 809, 67–73. [Google Scholar] [CrossRef] [Green Version]
  280. Santos, K.D.; Braga, O.C.; Vieira, I.C.; Spinelli, A. Electroanalytical determination of estriol hormone using a boron-doped diamond electrode. Talanta 2010, 80, 1999–2006. [Google Scholar] [CrossRef]
  281. Manjunatha, J.G. Electroanalysis of estriol hormone using electrochemical sensor. Sens. Bio-Sens. Res. 2017, 16, 79–84. [Google Scholar] [CrossRef]
  282. Raymundo-Pereira, P.A.; Campos, A.M.; Vicentini, F.C.; Janegitz, B.C.; Mendonça, C.D.; Furini, L.N.; Boas, N.V.; Calegaro, M.L.; Constantino, C.J.L.; Machado, S.A.S.; et al. Sensitive detection of estriol hormone in creek water using a sensor platform based on carbon black and silver nanoparticles. Talanta 2017, 174, 652–659. [Google Scholar] [CrossRef] [Green Version]
  283. Muna, G.W.; Kaylor, A.; Jaskowski, B.; Sirhan, L.R.; Kelley, C.T. Electrocatalytic oxidation of estrogenic phenolic compounds at a nickel-modified glassy carbon electrode. Electroanalysis 2011, 23, 2915–2924. [Google Scholar] [CrossRef]
  284. Jodar, L.V.; Santos, F.A.; Zucolotto, V.; Janegitz, B.C. Electrochemical sensor for estriol hormone detection in biological and environmental samples. J. Solid State Electrochem. 2018, 22, 1431–1438. [Google Scholar] [CrossRef]
  285. Hareesha, N.; Manjunatha, J.G. Surfactant and polymer layered carbon composite electrochemical sensor for the analysis of estriol with ciprofloxacin. Mater. Res. Innov. 2020, 24, 349–362. [Google Scholar] [CrossRef]
  286. Charithra, M.M.; Manjunatha, J.G. Poly (l-Proline) modified carbon paste electrode as the voltammetric sensor for the detection of Estriol and its simultaneous determination with Folic and Ascorbic acid. Mater. Sci. Energy Technol. 2019, 2, 365–371. [Google Scholar] [CrossRef]
  287. Gomes, E.S.; Leite, F.R.F.; Ferraz, B.R.L.; Mourão, H.A.J.L.; Malagutti, A.R. Voltammetric sensor based on cobalt-poly(methionine)-modified glassy carbon electrode for determination of estriol hormone in pharmaceuticals and urine. J. Pharm. Anal. 2019, 9, 347–357. [Google Scholar] [CrossRef]
  288. Fu, H.J.; Wang, Y.; Dong, X.X.; Liu, Y.X.; Chen, Z.J.; Shen, Y.D.; Yang, C.; Dong, J.X.; Xu, Z.L. Application of nickel cobalt oxide nanoflakes for electrochemical sensing of estriol in milk. RSC Adv. 2016, 6, 65588–65593. [Google Scholar] [CrossRef]
  289. Cincotto, F.H.; Canevari, T.C.; Machado, S.A.S.; Sánchez, A.; Barrio, M.A.R.; Villalonga, R.; Pingarrón, J.M. Reduced graphene oxide-Sb2O5 hybrid nanomaterial for the design of a laccase-based amperometric biosensor for estriol. Electrochim. Acta 2015, 174, 332–339. [Google Scholar] [CrossRef] [Green Version]
  290. Monerris, M.J.; D´Eramo, F.; Arévalo, F.J.; Fernández, H.; Zon, M.A.; Molina, P.G. Electrochemical immunosensor based on gold nanoparticles deposited on a conductive polymer to determine estrone in water samples. Microchem. J. 2016, 129, 71–77. [Google Scholar] [CrossRef]
  291. Brocenschi, R.F.; Rocha-Filho, R.C.; Biaggio, S.R.; Bocchi, N. DPV and SWV Determination of Estrone Using a Cathodically Pretreated Boron-Doped Diamond Electrode. Electroanalysis 2014, 26, 1588–1597. [Google Scholar] [CrossRef]
  292. Moreira, F.; de Andrade Maranhão, T.; Spinelli, A. Carbon paste electrode modified with Fe3O4 nanoparticles and BMI.PF6 ionic liquid for determination of estrone by square-wave voltammetry. J. Solid State Electrochem. 2018, 22, 1303–1313. [Google Scholar] [CrossRef]
  293. Yang, C.; Xie, P. Studies on Enhanced Oxidation of Estrone and Its Voltammetric Determination at Carbon Paste Electrode in the Presence of Cetyltrimethylammonium Bromide. Bull. Korean Chem. Soc. 2007, 28, 1729–1734. [Google Scholar]
  294. Yang, C.; Sang, Q.; Zhang, S.; Huang, W. Voltammetric determination of estrone based on the enhancement effect of surfactant and a MWNT film electrode. Mater. Sci. Eng. C 2009, 29, 1741–1745. [Google Scholar] [CrossRef]
  295. Okina, R.H.; Codognoto, L. Electroanalytical Determination of Estrone in Seawater Samples Using Functionalized Multiwalled Carbon. Electroanalysis 2021, 33, 1264–1270. [Google Scholar] [CrossRef]
  296. Sun, N.; McMullan, M.; Papakonstantinou, P.; Gao, H.; Zhang, X.; Mihailovic, D.; Li, M. Bioassembled nanocircuits of Mo6S9-xIx nanowires for electrochemical immunodetection of estrone hapten. Anal. Chem. 2008, 80, 3593–3597. [Google Scholar] [CrossRef]
  297. De Lima, C.A.; Spinelli, A. Electrochemical behavior of progesterone at an ex situ bismuth film electrode. Electrochim. Acta 2013, 107, 542–548. [Google Scholar] [CrossRef]
  298. Shamsipur, M.; Pashabadi, A.; Taherpour, A. (Arman); Bahrami, K.; Sharghi, H. Manganese mediated oxidation of progesterone in alkaline medium: Mechanism study and quantitative determination. Electrochim. Acta 2017, 225, 292–302. [Google Scholar] [CrossRef]
  299. Arévalo, F.J.; Molina, P.G.; Zón, M.A.; Fernández, H. Novel studies about the electrochemical reduction of progesterone (P4) in acetonitrile at glassy carbon electrodes. J. Electroanal. Chem. 2008, 619–620, 46–52. [Google Scholar] [CrossRef]
  300. Gevaerd, A.; Blaskievicz, S.F.; Zarbin, A.J.G.; Orth, E.S.; Bergamini, M.F.; Marcolino-Junior, L.H. Nonenzymatic electrochemical sensor based on imidazole-functionalized graphene oxide for progesterone detection. Biosens. Bioelectron. 2018, 112, 108–113. [Google Scholar] [CrossRef]
  301. Monerris, M.J.; Arévalo, F.J.; Fernández, H.; Zon, M.A.; Molina, P.G. Integrated electrochemical immunosensor with gold nanoparticles for the determination of progesterone. Sens. Actuators Chem. 2012, 166–167, 586–592. [Google Scholar] [CrossRef]
  302. Arvand, M.; Hemmati, S. Magnetic nanoparticles embedded with graphene quantum dots and multiwalled carbon nanotubes as a sensing platform for electrochemical detection of progesterone. Sens. Actuators Chem. 2017, 238, 346–356. [Google Scholar] [CrossRef]
  303. Das, A.; Sangaranarayanan, M.V. A sensitive electrochemical detection of progesterone using tin-nanorods modified glassy carbon electrodes: Voltammetric and computational studies. Sens. Actuators Chem. 2018, 256, 775–789. [Google Scholar] [CrossRef]
  304. Pemberton, R.M.; Hart, J.P.; Mottram, T.T. An Electrochemical Immunosensor for Milk Progesterone Using a Continuous Flow System Biosens. Bioelectron 2001, 16, 715–723. [Google Scholar] [CrossRef]
  305. Kreuzer, M.P.; McCarthy, R.; Pravda, M.; Guilbault, G.G. Development of Electrochemical Immunosensor for Progesterone Analysis in Milk. Anal. Lett. 2004, 37, 943–956. [Google Scholar] [CrossRef]
  306. Akshaya, K.B.; Bhat, V.S.; Varghese, A.; George, L.; Hegde, G. Non-Enzymatic Electrochemical Determination of Progesterone Using Carbon Nanospheres from Onion Peels Coated on Carbon Fiber Paper. J. Electrochem. Soc. 2019, 166, B1097–B1106. [Google Scholar] [CrossRef]
  307. Zidarič, T.; Jovanovski, V.; Hočevar, S.B. Nanostructured bismuth film electrode for detection of progesterone. Sensors (Switzerland) 2018, 18, 4233. [Google Scholar] [CrossRef] [Green Version]
  308. Carralero, V.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Nanostructured progesterone immunosensor using a tyrosinase-colloidal gold-graphite-Teflon biosensor as amperometric transducer. Anal. Chim. Acta 2007, 596, 86–91. [Google Scholar] [CrossRef]
  309. Arévalo, F.J.; Messina, G.A.; Molina, P.G.; Zón, M.A.; Raba, J.; Fernández, H. Determination of progesterone (P4) from bovine serum samples using a microfluidic immunosensor system. Talanta 2010, 80, 1986–1992. [Google Scholar] [CrossRef] [PubMed]
  310. Carralero, V.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Development of a progesterone immunosensor based on a colloidal gold-graphite-teflon composite electrode. Electroanalysis 2007, 19, 853–858. [Google Scholar] [CrossRef]
  311. Esmaeili, C.; Sadeghpour Karimi, M.; Norouzi, P.; Wu, F.; Ganjali, M.R.; Safitri, E. Gadolinium (III) Tungstate Nanoparticles Modified Carbon Paste Electrode for Determination of Progesterone Using FFT Square-Wave Voltammetry Method. J. Electrochem. Soc. 2020, 167, 067513. [Google Scholar] [CrossRef]
  312. Zhao, X.; Zheng, L.; Yan, Y.; Cao, R.; Zhang, J. An electrocatalytic active AuNPs/5-Amino-2-mercaptobenzimidazole/rGO/SPCE composite electrode for ultrasensitive detection of progesterone. J. Electroanal. Chem. 2021, 882, 115023. [Google Scholar] [CrossRef]
  313. Arvand, M.; Elyan, S.; Ardaki, M.S. Facile one-pot electrochemical synthesis of zirconium oxide decorated poly(3,4-ethylenedioxythiophene) nanocomposite for the electrocatalytic oxidation and detection of progesterone. Sens. Actuators Chem. 2019, 281, 157–167. [Google Scholar] [CrossRef]
  314. Samie, H.A.; Arvand, M. Label-free electrochemical aptasensor for progesterone detection in biological fluids. Bioelectrochemistry 2020, 133, 107489. [Google Scholar] [CrossRef]
  315. Arvand, M.; Hemmati, S. Analytical methodology for the electro-catalytic determination of estradiol and progesterone based on graphene quantum dots and poly(sulfosalicylic acid) co-modified electrode. Talanta 2017, 174, 243–255. [Google Scholar] [CrossRef]
  316. Bergmann, M.; Behre, H.M.; Nieschlag, E. Serum FSH and testicular morphology in male infertility. Clin. Endocrinol. (Oxf). 1994, 40, 133–136. [Google Scholar] [CrossRef]
  317. Bartsch, G.; Frank, S.; Marberger, H.; Mikuz, G. Testicular Torsion: Late Results with Special Regard to Fertility and Endocrine Function. J. Urol. 1980, 124, 375–378. [Google Scholar] [CrossRef]
  318. Relander, T.; Cavallin-Ståhl, E.; Garwicz, S.; Olsson, A.M.; Willén, M. Gonadal and sexual function in men treated for childhood cancer. Med. Pediatr. Oncol. 2000, 35, 52–63. [Google Scholar] [CrossRef]
  319. Eisenegger, C.; Haushofer, J.; Fehr, E. The role of testosterone in social interaction. Trends Cogn. Sci. 2011, 15, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  320. Traish, A.M.; Miner, M.M.; Morgentaler, A.; Zitzmann, M. Testosterone Deficiency. Am. J. Med. 2011, 124, 578–587. [Google Scholar] [CrossRef]
  321. Slater, S.; Oliver, R.T.D. Testosterone. Drugs Aging 2000, 17, 431–439. [Google Scholar] [CrossRef]
  322. Goyal, R.N.; Gupta, V.K.; Chatterjee, S. Electrochemical investigations of corticosteroid isomers-testosterone and epitestosterone and their simultaneous determination in human urine. Anal. Chim. Acta 2010, 657, 147–153. [Google Scholar] [CrossRef]
  323. Levent, A.; Altun, A.; Yardim, Y.; Şentürk, Z. Sensitive voltammetric determination of testosterone in pharmaceuticals and human urine using a glassy carbon electrode in the presence of cationic surfactant. Electrochim. Acta 2014, 128, 54–60. [Google Scholar] [CrossRef]
  324. Moura, S.L.; De Moraes, R.R.; Dos Santos, M.A.P.; Moreira, D.D.L.; Lopes, J.A.D.; Pividori, M.I.; Zucolotto, V.; Júnior, J.R.D.S. Electrochemical detection in vitro and electron transfer mechanism of testosterone using a modified electrode with a cobalt oxide film. Sens. Actuators Chem. 2014, 202, 469–474. [Google Scholar] [CrossRef]
  325. Heidarimoghadam, R.; Akhavan, O.; Ghaderi, E.; Hashemi, E.; Mortazavi, S.S.; Farmany, A. Graphene oxide for rapid determination of testosterone in the presence of cetyltrimethylammonium bromide in urine and blood plasma of athletes. Mater. Sci. Eng. 2016, 61, 246–250. [Google Scholar] [CrossRef]
  326. Levent, A.R.; Altun, A.; Taş, S.; Yardım, Y.; Şentürk, Z. Voltammetric Behavior of Testosterone on Bismuth Film Electrode:Highly SensitiveDetermination in Pharmaceuticals and Human Urine by Square-Wave AdsorptiveS tripping Voltammetry. Electroanalysis 2015, 27, 1219–1228. [Google Scholar] [CrossRef]
  327. Gugoasa, L.A.; Stefan-Van Staden, R.I.; Calenic, B.; Legler, J. Multimode sensors as new tools for molecular recognition of testosterone, dihydrotestosterone and estradiol in children’s saliva. J. Mol. Recognit. 2015, 28, 10–19. [Google Scholar] [CrossRef]
  328. Serafín, V.; Eguílaz, M.; Agüí, L.; Yáñez-Sedeño, P.; Pingarrón, J.M. An electrochemical immunosensor for testosterone using gold nanoparticles-carbon nanotubes composite electrodes. Electroanalysis 2011, 23, 169–176. [Google Scholar] [CrossRef]
  329. Tyszczuk, K. Application of an in situ plated lead film electrode to the analysis of testosterone by adsorptive stripping voltammetry. Anal. Bioanal. Chem. 2008, 390, 1951–1956. [Google Scholar] [CrossRef] [PubMed]
  330. Fourou, H.; Braiek, M.; Bonhomme, A.; Lagarde, F.; Zazoua, A.; Jaffrezic-Renault, N. Voltammetric Sensor Based on a Double-Layered Molecularly Imprinted Polymer for Testosterone. Anal. Lett. 2018, 51, 312–322. [Google Scholar] [CrossRef]
  331. Laczka, O.; Del Campo, F.J.; Muñoz-Pascual, F.X.; Baldrich, E. Electrochemical detection of testosterone by use of three-dimensional disc-ring microelectrode sensing platforms: Application to doping monitoring. Anal. Chem. 2011, 83, 4037–4044. [Google Scholar] [CrossRef]
  332. Hu, S.; Chen, Z.; Zhang, T. Adsorptive Stripping Voltammetry of Testosterone Propionate in Pharmaceutical Preparations; Springer-Verlag: Berlin/Heidelberg, Germany, 1993; Volume 346. [Google Scholar]
  333. Bulut, U.; Sanli, S.; Cevher, S.C.; Cirpan, A.; Donmez, S.; Timur, S. A biosensor platform based on amine functionalized conjugated benzenediamine-benzodithiophene polymer for testosterone analysis. J. Appl. Polym. Sci. 2020, 137, 1–10. [Google Scholar] [CrossRef]
  334. Cole, L.A. New discoveries on the biology and detection of human chorionic gonadotropin. Reprod. Biol. Endocrinol. 2009, 7, 8. [Google Scholar] [CrossRef] [Green Version]
  335. Jiang, S. Rejoinder Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Prev. Sch. Fail. 1986, 51, 49–51. [Google Scholar]
  336. Mohammad-Zadeh, L.F.; Moses, L.; Gwaltney-Brant, S.M. Serotonin: A review. J. Vet. Pharmacol. Ther. 2008, 31, 187–199. [Google Scholar] [CrossRef]
  337. Zhang, H.; Cui, D.; Wang, B.; Han, Y.-H.; Balimane, P.; Yang, Z.; Sinz, M.; Rodrigues, A.D. Pharmacokinetic Drug Interactions Involving 17α-Ethinylestradiol. Clin. Pharmacokinet. 2007, 46, 133–157. [Google Scholar] [CrossRef]
  338. Dong, B.J.; Hauck, W.W.; Gambertoglio, J.G.; Gee, L.; White, J.R.; Bubp, J.L.; Greenspan, F.S. Bioequivalence of Generic and Brand-name Levothyroxine Products in the Treatment of Hypothyroidism. JAMA 1997, 277, 1205–1213. [Google Scholar] [CrossRef]
  339. Smajdor, J.; Piech, R.; Paczosa-Bator, B. Spironolactone voltammetric determination on renewable amalgam film electrode. Steroids 2018, 130, 6. [Google Scholar] [CrossRef] [PubMed]
  340. Lu, J.; Liu, S.; Ge, S.; Yan, M.; Yu, J.; Hu, X. Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotube-graphene composite and functionalized mesoporous materials. Biosens. Bioelectron. 2012, 33, 29–35. [Google Scholar] [CrossRef] [PubMed]
  341. Smajdor, J.; Piech, R.; Paczosa-Bator, B. Highly sensitive voltammetric determination of dexamethasone on amalgam film electrode. J. Electroanal. Chem. 2018, 809, 147–152. [Google Scholar] [CrossRef]
  342. Oliveira, T.M.B.F.; Ribeiro, F.W.P.; Soares, J.E.S.; De Lima-Neto, P.; Correia, A.N. Square-wave adsorptive voltammetry of dexamethasone: Redox mechanism, kinetic properties, and electroanalytical determinations in multicomponent formulations. Anal. Biochem. 2011, 413, 148–156. [Google Scholar] [CrossRef]
  343. Ibrahim, M.; Ibrahim, H.; Almandil, N.; Kawde, A.N. Gold nanoparticles/f-MWCNT nanocomposites modified glassy carbon paste electrode as a novel voltammetric sensor for the determination of cyproterone acetate in pharmaceutical and human body fluids. Sens. Actuators Chem. 2018, 274, 123–132. [Google Scholar] [CrossRef]
  344. El-Enany, N.; El-Sherbiny, D.; Belal, F. Voltammetric Determination of Cyproterone Acetate in Pharmaceutical Preparations. Int. J. Biomed. Sci. 2010, 6, 128. [Google Scholar]
  345. Alghamdi, A.H.; Belal, F.F.; Al-Omar, M.A. Square-wave adsorptive stripping voltammetric determination of danazol in capsules. J. Pharm. Biomed. Anal. 2006, 41, 989–993. [Google Scholar] [CrossRef]
  346. Al-Omar, M.; Al-Majed, A.; Sultan, M.; Gadkariem, E.A.; Belal, F. Voltammetric study of danazol and its determination in capsules and spiked biological fluids. J. Pharm. Biomed. Anal. 2005, 37, 199–204. [Google Scholar] [CrossRef]
  347. Wang, J.; Yuan, R.; Chai, Y.; Cao, S.; Guan, S.; Fu, P.; Min, L. A novel immunosensor based on gold nanoparticles and poly-(2,6-pyridinediamine)/multiwall carbon nanotubes composite for immunoassay of human chorionic gonadotrophin. Biochem. Eng. J. 2010, 51, 95–101. [Google Scholar] [CrossRef]
  348. Yang, H.; Yuan, R.; Chai, Y.; Su, H.; Zhuo, Y.; Jiang, W.; Song, Z. Electrochemical immunosensor for human chorionic gonadotropin based on horseradish peroxidase-functionalized Prussian blue-carbon nanotubes/gold nanocomposites as labels for signal amplification. Electrochim. Acta 2011, 56, 1973–1980. [Google Scholar] [CrossRef]
  349. Li, R.; Wu, D.; Li, H.; Xu, C.; Wang, H.; Zhao, Y.; Cai, Y.; Wei, Q.; Du, B. Label-free amperometric immunosensor for the detection of human serum chorionic gonadotropin based on nanoporous gold and graphene. Anal. Biochem. 2011, 414, 196–201. [Google Scholar] [CrossRef] [PubMed]
  350. Tao, M.; Li, X.; Wu, Z.; Wang, M.; Hua, M.; Yang, Y. The preparation of label-free electrochemical immunosensor based on the Pt-Au alloy nanotube array for detection of human chorionic gonadotrophin. Clin. Chim. Acta 2011, 412, 550–555. [Google Scholar] [CrossRef] [PubMed]
  351. Chai, R.; Yuan, R.; Chai, Y.; Ou, C.; Cao, S.; Li, X. Amperometric immunosensors based on layer-by-layer assembly of gold nanoparticles and methylene blue on thiourea modified glassy carbon electrode for determination of human chorionic gonadotrophin. Talanta 2008, 74, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
  352. Teixeira, S.; Burwell, G.; Castaing, A.; Gonzalez, D.; Conlan, R.S.; Guy, O.J. Epitaxial graphene immunosensor for human chorionic gonadotropin. Sens. Actuators Chem. 2014, 190, 723–729. [Google Scholar] [CrossRef] [Green Version]
  353. Roushani, M.; Valipour, A. Using electrochemical oxidation of Rutin in modeling a novel and sensitive immunosensor based on Pt nanoparticle and graphene–ionic liquid–chitosan nanocomposite to detect human chorionic gonadotropin. Sens. Actuators Chem. 2016, 222, 1103–1111. [Google Scholar] [CrossRef]
  354. Yang, G.; Chang, Y.; Yang, H.; Tan, L.; Wu, Z.; Lu, X.; Yang, Y. The preparation of reagentless electrochemical immunosensor based on a nano-gold and chitosan hybrid film for human chorionic gonadotrophin. Anal. Chim. Acta 2009, 644, 72–77. [Google Scholar] [CrossRef]
  355. Liu, Y.; Guo, W.; Qin, X.; Meng, X.; Zhu, X.; Wang, J.; Pei, M.; Wang, L. Sensitive sandwich electrochemical immunosensor for human chorionic gonadotropin using nanoporous Pd as a label. RSC Adv. 2014, 4, 21891–21898. [Google Scholar] [CrossRef]
  356. Chen, J.; Yan, F.; Tan, F.; Ju, H. Gold nanoparticles doped three-dimensional sol-gel matrix for amperometric human chorionic gonadotrophin immunosensor. Electroanalysis 2006, 18, 1696–1702. [Google Scholar] [CrossRef]
  357. Roushani, M.; Valipour, A.; Valipour, M. Layer-by-layer assembly of gold nanoparticles and cysteamine on gold electrode for immunosensing of human chorionic gonadotropin at picogram levels. Mater. Sci. Eng. 2016, 61, 344–350. [Google Scholar] [CrossRef]
  358. Guo, W.; Liu, Y.; Meng, X.; Pei, M.; Wang, J.; Wang, L. A novel signal amplification strategy of an electrochemical immunosensor for human chorionic gonadotropin, based on nanocomposites of multi-walled carbon nanotubes-ionic liquid and nanoporous Pd. RSC Adv. 2014, 4, 57773–57780. [Google Scholar] [CrossRef]
  359. Wu, D.; Zhang, Y.; Shi, L.; Cai, Y.; Ma, H.; Du, B.; Wei, Q. Electrochemical Immunosensor for Ultrasensitive Detection of Human Chorionic Gonadotropin Based on Pd@SBA-15. Electroanalysis 2013, 25, 427–432. [Google Scholar] [CrossRef]
  360. Wei, Q.; Li, R.; Du, B.; Wu, D.; Han, Y.; Cai, Y.; Zhao, Y.; Xin, X.; Li, H.; Yang, M. Multifunctional mesoporous silica nanoparticles as sensitive labels for immunoassay of human chorionic gonadotropin. Sens. Actuators Chem. 2011, 153, 256–260. [Google Scholar] [CrossRef]
  361. Tan, F.; Yan, F.; Ju, H. Sensitive reagentless electrochemical immunosensor based on an ormosil sol-gel membrane for human chorionic gonadotrophin. Biosens. Bioelectron. 2007, 22, 2945–2951. [Google Scholar] [CrossRef] [PubMed]
  362. Yang, L.; Zhao, H.; Fan, S.; Deng, S.; Lv, Q.; Lin, J.; Li, C.P. Label-free electrochemical immunosensor based on gold-silicon carbide nanocomposites for sensitive detection of human chorionic gonadotrophin. Biosens. Bioelectron. 2014, 57, 199–206. [Google Scholar] [CrossRef] [PubMed]
  363. Cao, L.; Fang, C.; Zeng, R.; Zhao, X.; Jiang, Y.; Chen, Z. Paper-based microfluidic devices for electrochemical immunofiltration analysis of human chorionic gonadotropin. Biosens. Bioelectron. 2017, 92, 87–94. [Google Scholar] [CrossRef] [PubMed]
  364. Kerman, K.; Nagatani, N.; Chikae, M.; Yuhi, T.; Takamura, Y.; Tamiya, E. Label-free electrochemical immunoassay for the detection of human chorionic gonadotropin hormone. Anal. Chem. 2006, 78, 5612–5616. [Google Scholar] [CrossRef] [PubMed]
  365. Zhao, D.; Yu, Y.; Xu, C. A sensitive electrochemical immunosensor for the detection of human chorionic gonadotropin based on a hierarchical nanoporous AuAg alloy. RSC Adv. 2015, 6, 87–93. [Google Scholar] [CrossRef]
  366. Chen, J.; Yan, F.; Dai, Z.; Ju, H. Reagentless amperometric immunosensor for human chorionic gonadotrophin based on direct electrochemistry of horseradish peroxidase. Biosens. Bioelectron. 2005, 21, 330–336. [Google Scholar] [CrossRef]
  367. Li, N.; Yuan, R.; Chai, Y.; Chen, S.; An, H. Sensitive immunoassay of human chorionic gonadotrophin based on multi-walled carbon nanotube-chitosan matrix. Bioprocess Biosyst. Eng. 2008, 31, 551–558. [Google Scholar] [CrossRef]
  368. Idegami, K.; Chikae, M.; Kerman, K.; Nagatani, N.; Yuhi, T.; Endo, T.; Tamiya, E. Gold Nanoparticle-Based Redox Signal Enhancement for Sensitive Detection of Human Chorionic Gonadotropin Hormone. Electroanalysis 2008, 20, 14–21. [Google Scholar] [CrossRef]
  369. Roushani, M.; Valipour, A. Voltammetric immunosensor for human chorionic gonadotropin using a glassy carbon electrode modified with silver nanoparticles and a nanocomposite composed of graphene, chitosan and ionic liquid, and using riboflavin as a redox probe. Microchim. Acta 2016, 183, 845–853. [Google Scholar] [CrossRef]
  370. Yang, H.; Yuan, R.; Chai, Y.; Zhuo, Y.; Su, H. Electrochemical immunoassay for human chorionic gonadotrophin based on Pt hollow nanospheres and silver/titanium dioxide nanocomposite matrix. J. Chem. Technol. Biotechnol. 2010, 85, 577–582. [Google Scholar] [CrossRef]
  371. Rizwan, M.; Hazmi, M.; Lim, S.A.; Ahmed, M.U. A highly sensitive electrochemical detection of human chorionic gonadotropin on a carbon nano-onions/gold nanoparticles/polyethylene glycol nanocomposite modified glassy carbon electrode. J. Electroanal. Chem. 2019, 833, 462–470. [Google Scholar] [CrossRef]
  372. Valipour, A.; Roushani, M. Immunoassay for human chorionic gonadotropin based on glassy carbon electrode modified with an epitaxial nanocomposite. Anal. Bioanal. Chem. Res. 2017, 4, 79–90. [Google Scholar] [CrossRef]
  373. Wang, J.; Yuan, R.; Chai, Y.; Yin, B.; Xu, Y.; Guan, S. An amperometric immunosensor based on layer-by-layer assembly of l-cysteine and nanosized prussian blue on gold electrode for determination of human chorionic gonadotropin. Electroanalysis 2009, 21, 707–714. [Google Scholar] [CrossRef]
  374. Zhang, Q.; Qing, Y.; Huang, X.; Li, C.; Xue, J. Synthesis of single-walled carbon nanotubes–chitosan nanocomposites for the development of an electrochemical biosensor for serum leptin detection. Mater. Lett. 2018, 211, 348–351. [Google Scholar] [CrossRef]
  375. Cai, J.; Gou, X.; Sun, B.; Li, W.; Li, D.; Liu, J.; Hu, F.; Li, Y. Porous graphene-black phosphorus nanocomposite modified electrode for detection of leptin. Biosens. Bioelectron. 2019, 137, 88–95. [Google Scholar] [CrossRef]
  376. Dong, F.; Luo, R.; Chen, H.; Zhang, W.; Ding, S. Amperometric Immunosensor Based on Carbon Nanotubes/Chitosan Film Modified Electrodes for Detection of Human Leptin. Int. J. Electrochem. Sci 2014, 9, 6924–6935. [Google Scholar]
  377. Chen, W.; Lei, Y.; Li, C.M. Regenerable leptin immunosensor based on protein G immobilized au-pyrrole propylic acid-polypyrrole nanocomposite. Electroanalysis 2010, 22, 1078–1083. [Google Scholar] [CrossRef]
  378. Liu, X.; Tseng, C.L.; Lin, L.Y.; Lee, C.A.; Li, J.; Feng, L.; Song, L.; Li, X.; He, J.H.; Sakthivel, R.; et al. Template-free synthesis of mesoporous Ce3NbO7/CeO2 hollow nanospheres for label-free electrochemical immunosensing of leptin. Sens. Actuators Chem. 2021, 341, 130005. [Google Scholar] [CrossRef]
  379. Uludağ, İ.; Sezgintürk, M.K. A direct and simple immobilization route for immunosensors by CNBr activation for covalent attachment of anti-leptin: Obesity diagnosis point of view. 3 Biotech 2022, 12, 3096. [Google Scholar] [CrossRef] [PubMed]
  380. Ojeda, I.; Moreno-Guzmán, M.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. A disposable electrochemical immunosensor for the determination of leptin in serum and breast milk. Analyst 2013, 138, 4284–4291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  381. Ghoneim, M.M.; Baumann, W.; Hammam, E.; Tawfik, A. Voltammetric behavior and assay of the contraceptive drug levonorgestrel in bulk, tablets, and human serum at a mercury electrode. Talanta 2004, 64, 857–864. [Google Scholar] [CrossRef] [PubMed]
  382. de Souza, A.M.B.; Fogliato, D.K.; Petroni, J.M.; Ferreira, V.S.; Lucca, B.G. Voltammetric study and electroanalytical determination of contraceptive levonorgestrel using silver solid amalgam electrode fabricated with nanoparticles. Int. J. Environ. Anal. Chem. 2019, 99, 397–408. [Google Scholar] [CrossRef]
  383. Goyal, R.N.; Bachheti, N.; Tyagi, A.; Pandey, A.K. Differential pulse voltammetric determination of methylprednisolone in pharmaceuticals and human biological fluids. Anal. Chim. Acta 2007, 605, 34–40. [Google Scholar] [CrossRef]
  384. Goyal, R.N.; Chatterjee, S.; Rana, A.R.S. A single-wall carbon nanotubes modified edge plane pyrolytic graphite sensor for determination of methylprednisolone in biological fluids. Talanta 2009, 80, 586–592. [Google Scholar] [CrossRef]
  385. Goyal, R.N.; Oyama, M.; Umar, A.A.; Tyagi, A.; Bachheti, N. Determination of methylprednisolone acetate in biological fluids at gold nanoparticles modified ITO electrode. J. Pharm. Biomed. Anal. 2007, 44, 1147–1153. [Google Scholar] [CrossRef]
  386. Goyal, R.N.; Gupta, V.K.; Bachheti, N. Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone-An anabolic steroid used in doping. Anal. Chim. Acta 2007, 597, 82–89. [Google Scholar] [CrossRef]
  387. Goyal, R.N.; Chatterjee, S.; Bishnoi, S. Effect of substrate and embedded metallic impurities of fullerene in the determination of nandrolone. Anal. Chim. Acta 2009, 643, 95–99. [Google Scholar] [CrossRef]
  388. Goyal, R.N.; Oyama, M.; Tyagi, A.; Singh, S.P. Voltammetric determination of anabolic steroid nandrolone at gold nanoparticles modified ITO electrode in biological fluids. Talanta 2007, 72, 140–144. [Google Scholar] [CrossRef]
  389. Asai, K.; Ivandini, T.A.; Einaga, Y. Continuous and selective measurement of oxytocin and vasopressin using boron-doped diamond electrodes. Sci. Rep. 2016, 6, 32429. [Google Scholar] [CrossRef] [PubMed]
  390. Wu, K.; Fei, J.; Hu, S. Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Anal. Biochem. 2003, 318, 100–106. [Google Scholar] [CrossRef]
  391. Jin, G.P.; Lin, X.Q.; Gong, J.M. Novel choline and acetylcholine modified glassy carbon electrodes for simultaneous determination of dopamine, serotonin and ascorbic acid. J. Electroanal. Chem. 2004, 569, 135–142. [Google Scholar] [CrossRef]
  392. Oni, J.; Nyokong, T. Simultaneous Voltammetric Determination of Dopamine and Serotonin on Carbon Paste Electrodes Modified with Iron(Ii) Phthalocyanine Complexes. Anal. Chim. Acta 2001, 434, 9–21. [Google Scholar] [CrossRef]
  393. Wang, F.; Wu, Y.; Lu, K.; Ye, B. A simple but highly sensitive and selective calixarene-based voltammetric sensor for serotonin. Electrochim. Acta 2013, 87, 756–762. [Google Scholar] [CrossRef]
  394. Wang, Z.-H.; Liang, Q.-L.; Wang, Y.-M.; Luo, G.-A. Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. J. Electroanal. Chem. 2003, 540, 129–134. [Google Scholar] [CrossRef]
  395. Goyal, R.N.; Gupta, V.K.; Oyama, M.; Bachheti, N. Gold nanoparticles modified indium tin oxide electrode for the simultaneous determination of dopamine and serotonin: Application in pharmaceutical formulations and biological fluids. Talanta 2007, 72, 976–983. [Google Scholar] [CrossRef]
  396. Gupta, P.; Goyal, R.N. Polymelamine modified edge plane pyrolytic graphite sensor for the electrochemical assay of serotonin. Talanta 2014, 120, 17–22. [Google Scholar] [CrossRef]
  397. Li, J.; Lin, X. Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode. Sens. Actuators Chem. 2007, 124, 486–493. [Google Scholar] [CrossRef]
  398. Kim, S.K.; Kim, D.; Jeon, S. Electrochemical determination of serotonin on glassy carbon electrode modified with various graphene nanomaterials. Sens. Actuators Chem. 2012, 174, 285–291. [Google Scholar] [CrossRef]
  399. Özcan, A.; Ilkbaş, S. Poly(pyrrole-3-carboxylic acid)-modified pencil graphite electrode for the determination of serotonin in biological samples by adsorptive stripping voltammetry. Sens. Actuators Chem. 2015, 215, 518–524. [Google Scholar] [CrossRef]
  400. Cesarino, I.; Galesco, H.V.; Machado, S.A.S. Determination of serotonin on platinum electrode modified with carbon nanotubes/polypyrrole/silver nanoparticles nanohybrid. Mater. Sci. Eng. 2014, 40, 49–54. [Google Scholar] [CrossRef] [PubMed]
  401. Selvaraju, T.; Ramaraj, R. Simultaneous determination of ascorbic acid, dopamine and serotonin at poly(phenosafranine) modified electrode. Electrochem. Commun. 2003, 5, 667–672. [Google Scholar] [CrossRef]
  402. Sarada, B.V.; Rao, T.N.; Tryk, D.A.; Fujishima, A. Electrochemical oxidation of histamine and serotonin at highly boron- doped diamond electrodes. Anal. Chem. 2000, 72, 1632–1638. [Google Scholar] [CrossRef] [PubMed]
  403. Wei, X.; Wang, F.; Yin, Y.; Liu, Q.; Zou, L.; Ye, B. Selective detection of neurotransmitter serotonin by a gold nanoparticle-modified glassy carbon electrode. Analyst 2010, 135, 2286–2290. [Google Scholar] [CrossRef]
  404. Li, Y.; Huang, X.; Chen, Y.; Wang, L.; Lin, X. Simultaneous determination of dopamine and serotonin by use of covalent modification of 5-hydroxytryptophan on glassy carbon electrode. Microchim. Acta 2009, 164, 107–112. [Google Scholar] [CrossRef]
  405. Sun, Y.; Fei, J.; Hou, J.; Zhang, Q.; Liu, Y.; Hu, B. Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchim. Acta 2009, 165, 373–379. [Google Scholar] [CrossRef]
  406. Vedhi, C.; Eswar, R.; Prabu, H.G.; Manisankar, P. Determination of Triamcinolone Acetonide Steroid on Glassy Carbon Electrode by Stripping Voltammetric Methods; 2008; Volume 3. Int. J. Electrochem. Sci. 2008, 3, 509–518. [Google Scholar]
  407. Goyal, R.N.; Gupta, V.K.; Chatterjee, S. A sensitive voltammetric sensor for determination of synthetic corticosteroid triamcinolone, abused for doping. Biosens. Bioelectron. 2009, 24, 3562–3568. [Google Scholar] [CrossRef]
  408. Prasad, B.B.; Madhuri, R.; Tiwari, M.P.; Sharma, P.S. Layer-by-layer assembled molecularly imprinted polymer modified silver electrode for enantioselective detection of d- and l-thyroxine. Anal. Chim. Acta 2010, 681, 16–26. [Google Scholar] [CrossRef]
  409. He, Q.; Dang, X.; Hu, C.; Hu, S. The effect of cetyltrimethyl ammonium bromide on the electrochemical determination of thyroxine. Colloids Surfaces Biointerf. 2004, 35, 93–98. [Google Scholar] [CrossRef] [PubMed]
  410. Wang, F.; Fei, J.; Hu, S. The influence of cetyltrimethyl ammonium bromide on electrochemical properties of thyroxine reduction at carbon nanotubes modified electrode. Colloids Surfaces Biointerf. 2004, 39, 95–101. [Google Scholar] [CrossRef] [PubMed]
  411. Hu Chengguo; He Qiong; Li Qing; Hu Shengshui Enhanced Reduction and Determination of Trace Thyroxine at Carbon Paste Electrode in the Presence of Trace Cetyltrimethylammonium Bromide. Anal. Sci. 2004, 20, 1049–1054. [CrossRef] [PubMed] [Green Version]
  412. Wu, K.; Ji, X.; Fei, J.; Hu, S. The fabrication of a carbon nanotube film on a glassy carbon electrode and its application to determining thyroxine. Nanotechnology 2004, 15, 287–291. [Google Scholar] [CrossRef]
  413. Muñoz, J.; Riba-Moliner, M.; Brennan, L.J.; Gun’ko, Y.K.; Céspedes, F.; González-Campo, A.; Baeza, M. Amperometric thyroxine sensor using a nanocomposite based on graphene modified with gold nanoparticles carrying a thiolated β-cyclodextrin. Microchim. Acta 2016, 183, 1579–1589. [Google Scholar] [CrossRef]
  414. Goyal, R.N.; Kaur, D.; Agrawal, B.; Yadav, S.K. Electrochemical investigations of mometasone furoate, a topical corticosteroid, in micellar medium. J. Electroanal. Chem. 2013, 695, 17–23. [Google Scholar] [CrossRef]
  415. Baymak, M.S.; Celik, H.; Bakırhan, N.K.; Uslu, B.; Ozkan, S.A. Polarographic Investigation of Dienogest. J. Electrochem. Soc. 2018, 165, G128–G132. [Google Scholar] [CrossRef]
  416. Bakirhan, N.K.; Celik, M.S.B.; Celik, H.; Uslu, B.; Ozkan, S.A. Electrochemical Approach on Mechanism of an Oral Progestin in Aqueous Media and its Fully Validated Detection via a Carbon-Metal Based Composite Sensor. Electroanalysis 2018, 30, 2273–2283. [Google Scholar] [CrossRef]
  417. Smajdor, J.; Piech, R.; Paczosa-Bator, B. Voltammetric Determination of Drospirenone on Mercury Film Electrode. J. Electrochem. Soc. 2017, 164, H311–H315. [Google Scholar] [CrossRef]
  418. Habib, I.H.; Rizk, M.S.; Tony, R.M. Square-wave voltammetric determination of drospirenone and ethinylestradiol in pharmaceutical dosage form using square wave technique Eur opean J ournal of Chem istry. Eur. J. Chem. 2019, 10, 305–316. [Google Scholar] [CrossRef] [Green Version]
  419. Álvarez-Lueje, A.; Brain-Isasi, S.; Núñez-Vergara, L.J.; Squella, J.A. Voltammetric reduction of finasteride at mercury electrode and its determination in tablets. Talanta 2008, 75, 691–696. [Google Scholar] [CrossRef] [PubMed]
  420. El-Shahawi, M.S.; Bashammakh, A.S.; Al-Sibaai, A.A.; Bahaidarah, E.A. Analysis of spironolactone residues in industrial wastewater and in drug formulations by cathodic stripping voltammetry. J. Pharm. Anal. 2013, 3, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  421. Ibrahim, H.; Temerk, Y. Surface decoration of functionalized carbon black nanoparticles with nanosized gold particles for electrochemical sensing of diuretic spironolactone in patient plasma. Microchem. J. 2022, 178, 107425. [Google Scholar] [CrossRef]
  422. Al-Ghamdi, A.H.; Al-Ghamdi, A.F.; Al-Omar, M.A. Electrochemical Studies and Square-Wave Adsorptive Stripping Voltammetry of Spironolactone Drug. Anal. Lett. 2008, 41, 90–103. [Google Scholar] [CrossRef]
  423. Smajdor, J.; Piech, R.; Pięk, M.; Paczosa-Bator, B. Sensitive Voltammetric Determination of Ethinyl Estradiol on Carbon Black Modified Electrode. J. Electrochem. Soc. 2017, 164, H885–H889. [Google Scholar] [CrossRef]
  424. Martinez, N.A.; Pereira, S.V.; Bertolino, F.A.; Schneider, R.J.; Messina, G.A.; Raba, J. Electrochemical detection of a powerful estrogenic endocrine disruptor: Ethinylestradiol in water samples through bioseparation procedure. Anal. Chim. Acta 2012, 723, 27–32. [Google Scholar] [CrossRef]
  425. Cincotto, F.H.; Martínez-García, G.; Yáñez-Sedeño, P.; Canevari, T.C.; Machado, S.A.S.; Pingarrón, J.M. Electrochemical immunosensor for ethinylestradiol using diazonium salt grafting onto silver nanoparticles-silica-graphene oxide hybrids. Talanta 2016, 147, 328–334. [Google Scholar] [CrossRef] [Green Version]
  426. Ghoneim, E.M.; El-Desoky, H.S.; Ghoneim, M.M. Adsorptive cathodic stripping voltammetric assay of the estrogen drug ethinylestradiol in pharmaceutical formulation and human plasma at a mercury electrode. J. Pharm. Biomed. Anal. 2006, 40, 255–261. [Google Scholar] [CrossRef]
  427. Li, C. Voltammetric determination of ethinylestradiol at a carbon paste electrode in the presence of cetyl pyridine bromine. Bioelectrochemistry 2007, 70, 263–268. [Google Scholar] [CrossRef]
  428. Pavinatto, A.; Mercante, L.A.; Leandro, C.S.; Mattoso, L.H.C.; Correa, D.S. Layer-by-Layer assembled films of chitosan and multi-walled carbon nanotubes for the electrochemical detection of 17a-ethinylestradiol. J. Electroanal. Chem. 2015, 755, 215–220. [Google Scholar] [CrossRef]
  429. Coelho, M.K.L.; da Silva, D.N.; Pereira, A.C. Development of electrochemical sensor based on carbonaceal and metal phthalocyanines materials for determination of ethinyl estradiol. Chemosensors 2019, 7, 32. [Google Scholar] [CrossRef] [Green Version]
  430. Nunes, C.N.; Pauluk, L.E.; Felsner, M.L.; Egéa Dos Anjos, V.; Quináia, S.P. Rapid Screening Method for Detecting Ethinyl Estradiol in Natural Water Employing Voltammetry. J. Anal. Methods Chem. 2016, 2016, 3217080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  431. Perez, C.; Simões, F.R.; Codognoto, L. Voltammetric determination of 17 α-ethinylestradiol hormone in supply dam using BDD electrode. J Solid State Electrochem. 2016, 20, 2471–2478. [Google Scholar] [CrossRef]
  432. Prado, T.M.; Cincotto, F.H.; Moraes, F.C.; Machado, S.A.S. Electrochemical Sensor-Based Ruthenium Nanoparticles on Reduced Graphene Oxide for the Simultaneous Determination of Ethinylestradiol and Amoxicillin. Electroanalysis 2017, 29, 1278–1285. [Google Scholar] [CrossRef]
  433. Smajdor, J.; Piech, R.; Paczosa-Bator, B. A Novel Method of High Sensitive Determination of Prednisolone on Renewable Mercury Film Silver Based Electrode. Electroanalysis 2016, 28, 394–400. [Google Scholar] [CrossRef]
  434. Gonçalves, J.M.; Guimarães, R.R.; Brandão, B.B.N.S.; Saravia, L.P.H.; Rossini, P.O.; Nunes, C.V.; Bernardes, J.S.; Berttoti, M.; Angnes, L.; Araki, K. Nanostructured Alpha-NiCe Mixed Hydroxide for Highly Sensitive Amperometric Prednisone Sensors. Electrochim. Acta 2017, 247, 30–40. [Google Scholar] [CrossRef]
  435. Goyal, R.N.; Bishnoi, S. Simultaneous voltammetric determination of prednisone and prednisolone in human body fluids. Talanta 2009, 79, 768–774. [Google Scholar] [CrossRef]
  436. Goyal, R.N.; Oyama, M.; Bachheti, N.; Singh, S.P. Fullerene C60modified gold electrode and nanogold modified indium tin oxide electrode for prednisolone determination. Bioelectrochemistry 2009, 74, 272–277. [Google Scholar] [CrossRef]
  437. Zayed, S.I.M. Cathodic adsorptive stripping voltammetric determination of prednisolone in Pharmaceutical preparation and human urine. Acta Chim. Slov. 2011, 58, 75–80. [Google Scholar] [CrossRef]
  438. Sahoo, S.; Satpati, A.K. Electrochemical characteristics of prednisone and its interaction with dsDNA over functionalized CNSs modified electrode. Biosens. Bioelectron. 2022, 10, 100119. [Google Scholar] [CrossRef]
  439. Goyal, R.N.; Singh, S.P.; Chatterjee, S.; Bishnoi, S. Electrochemical investigations of prednisone using fullerene-C60-modified edge plane pyrolytic graphite electrode. Indian J. Chem. 2010, 49, 26–33. [Google Scholar]
  440. Munyentwali, A.; Zhu, L. Electrochemical Determination of Prednisolone at Ordered Mesoporous Carbon Modified Electrode: Application to Doping Monitoring. J. Electrochem. Soc. 2015, 162, H278–H282. [Google Scholar] [CrossRef]
  441. Rezaei, B.; Mirahmadi-Zare, S.Z. Nanoscale manipulation of prednisolone as electroactive configuration using molecularly imprinted-multiwalled carbon nanotube paste electrode. Electroanalysis 2011, 23, 2724–2734. [Google Scholar] [CrossRef]
  442. Ni, Y.; Li, S.; Kokot, S. Simultaneous determination of three synthetic glucocorticoids by differential pulse stripping voltammetry with the aid of chemometrics. Anal. Lett. 2008, 41, 2058–2076. [Google Scholar] [CrossRef]
  443. Smajdor, J.; Paczosa-Bator, B.; Baś, B.; Piech, R. High Sensitive Voltammetric Determination of Betamethasone on an Amalgam Film Electrode. J. Electrochem. Soc. 2018, 165, H646–H651. [Google Scholar] [CrossRef]
  444. Goyal, R.N.; Bishnoi, S. Effect of single walled carbon nanotube–cetyltrimethyl ammonium bromide nanocomposite film modified pyrolytic graphite on the determination of betamethasone in human urine. Colloids Surfaces Biointerf. 2010, 77, 200–205. [Google Scholar] [CrossRef]
  445. Goyal, R.N.; Bishnoi, S.; Rana, A.R.S. A Sensitive Voltammetric Sensor for Detecting Betamethasone in Biological Fluids. Comb. Chem. High Throughput Screen. 2010, 13, 610–618. [Google Scholar] [CrossRef]
  446. Belgaied, J.E. Differential-pulse polarography (DPP) determination of betamethasone valerate in dosage form. Anal. Bioanal. Chem. 2003, 376, 706–709. [Google Scholar] [CrossRef]
  447. Smajdor, J.; Piech, R.; Rumin, M.; Paczosa-Bator, B.; Smajdor, Z. High Sensitive Voltammetric Levothyroxine Sodium Determination on Renewable Mercury Film Silver Based Electrode. J. Electrochem. Soc. 2016, 163, H605–H609. [Google Scholar] [CrossRef]
  448. David, M.; Şerban, A.; Enache, T.A.; Florescu, M. Electrochemical quantification of levothyroxine at disposable screen-printed electrodes. J. Electroanal. Chem. 2022, 911, 116240. [Google Scholar] [CrossRef]
  449. Chitravathi, S.; Kumara Swamy, B.E.; Chandra, U.; Mamatha, G.P.; Sherigara, B.S. Electrocatalytic oxidation of sodium levothyroxine with phenyl hydrazine as a mediator at carbon paste electrode: A cyclic voltammetric study. J. Electroanal. Chem. 2010, 645, 10–15. [Google Scholar] [CrossRef]
  450. Chitravathi, S.; Niranjana, E.; Chandra, U. Electrochemical Studies of Sodium Levothyroxine at Surfactant Modified Carbon Paste Electrode. Int. J. Electrochem. Sci. 2009, 4, 223–237. [Google Scholar]
  451. Lotfi, S.; Veisi, H. Synthesis and characterization of novel nanocomposite (MWCNTs/CC-SH/Au) and its use as a modifier for construction of a sensitive sensor for determination of low concentration of levothyroxine in real samples. Chem. Phys. Lett. 2019, 716, 177–185. [Google Scholar] [CrossRef]
  452. Goyal, R.N.; Gupta, V.K.; Chatterjee, S. Fullerene-C60-modified edge plane pyrolytic graphite electrode for the determination of dexamethasone in pharmaceutical formulations and human biological fluids. Biosens. Bioelectron. 2009, 24, 1649–1654. [Google Scholar] [CrossRef] [PubMed]
  453. Oliveira, T.M.B.F.; Ribeiro, F.W.P.; Do Nascimento, J.M.; Soares, J.E.S.; Freire, V.N.; Becker, H.; De Lima-Neto, P.; Correia, A.N. Direct Electrochemical Analysis of Dexamethasone Endocrine Disruptor in Raw Natural Waters. J. Braz. Chem. Soc. 2012, 23, 110–119. [Google Scholar] [CrossRef] [Green Version]
  454. Alimohammadi, S.; Kiani, M.A.; Imani, M.; Rafii-Tabar, H.; Sasanpour, P. A proposed implantable voltammetric carbon fiber–based microsensor for corticosteroid monitoring by cochlear implants. Microchim. Acta 2021, 188, 357. [Google Scholar] [CrossRef]
  455. Fatahi, A.; Malakooti, R.; Shahlaei, M. Electrocatalytic oxidation and determination of dexamethasone at an Fe3O4/PANI-CuII microsphere modified carbon ionic liquid electrode. RSC Adv. 2017, 7, 11322–11330. [Google Scholar] [CrossRef] [Green Version]
  456. Jeyaseelan, C.; Joshi, A.P. Trace determination of dexamethasone sodium phosphate in pharmaceutical formulations by differential pulse polarography. Anal. Bioanal. Chem. 2002, 373, 772–776. [Google Scholar] [CrossRef]
  457. Demir, E.; Inam, O.; Inam, R.; Aboul-Enein, H.Y. Voltammetric Determination of Ophthalmic Drug Dexamethasone Using Poly-glycine Multi Walled Carbon Nanotubes Modified Paste Electrode. Curr. Anal. Chem. 2018, 14, 1320. [Google Scholar] [CrossRef]
  458. Mehennaoui, S.; Poorahong, S.; Jimenez, G.C.; Siaj, M. Selection of high affinity aptamer-ligand for dexamethasone and its electrochemical biosensor. Sci. Rep. 2019, 9, 9. [Google Scholar] [CrossRef]
  459. Alimohammadi, S.; Kiani, M.A.; Imani, M.; Rafii-Tabar, H.; Sasanpour, P. Electrochemical Determination of Dexamethasone by Graphene Modified Electrode: Experimental and Theoretical Investigations. Sci. Rep. 2019, 9, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  460. Goyal, R.N.; Chatterjee, S.; Rana, A.R.S. Effect of cetyltrimethyl ammonium bromide on electrochemical determination of dexamethasone. Electroanalysis 2010, 22, 2330–2338. [Google Scholar] [CrossRef]
  461. Rezaei, B.; Zare, S.Z.M.; Ensafi, A.A. Square wave voltammetric determination of dexamethasone on a multiwalled carbon nanotube modified pencil electrode. J. Braz. Chem. Soc. 2011, 22, 897–904. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Smajdor, J.; Paczosa-Bator, B.; Piech, R. Advances on Hormones and Steroids Determination: A Review of Voltammetric Methods since 2000. Membranes 2022, 12, 1225.

AMA Style

Smajdor J, Paczosa-Bator B, Piech R. Advances on Hormones and Steroids Determination: A Review of Voltammetric Methods since 2000. Membranes. 2022; 12(12):1225.

Chicago/Turabian Style

Smajdor, Joanna, Beata Paczosa-Bator, and Robert Piech. 2022. "Advances on Hormones and Steroids Determination: A Review of Voltammetric Methods since 2000" Membranes 12, no. 12: 1225.

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics