Evaluation of Ceramics Adsorption Filter as a Pretreatment for Seawater Reverse-Osmosis Desalination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.3. Water Quality Analysis
2.4. Membrane Autopsy Analysis Methodology
2.4.1. Extracellular Polysaccharide Substances (EPS)
2.4.2. Dissolved Organics
2.4.3. Cell Viability
2.4.4. Field Emission Scanning Electron Microscopy (FESEM)
2.4.5. Other Measurements
2.5. CAF Autopsy Analysis Methodology
3. Results and Discussion
3.1. RO Membrane Performance
3.2. Water Quality of the RO Feed
3.3. Membrane Autopsy Results
3.3.1. Characterization of Dissolved Organic Matter (DOM) on Fouled RO Membranes
3.3.2. Microbial Analysis of the Foulants
3.3.3. Inorganic Fouling and FTIR Results
3.3.4. Morphology Characterization
3.4. CAF Autopsy Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, Y.J.; Goh, K.; Kurihara, M.; Wang, R. Seawater desalination by reverse osmosis: Current development and future challenges in membrane fabrication—A review. J. Membr. Sci. 2021, 629, 119292. [Google Scholar] [CrossRef]
- Lin, S.; Zhao, H.; Zhu, L.; He, T.; Chen, S.; Gao, C.; Zhang, L. Seawater desalination technology and engineering in China: A review. Desalination 2021, 498, 114728. [Google Scholar] [CrossRef]
- Brover, S.; Lester, Y.; Brenner, A.; Sahar-Hadar, E. Optimization of ultrafiltration as pre-treatment for seawater RO desalination. Desalination 2022, 524, 115478. [Google Scholar] [CrossRef]
- Prihasto, N.; Liu, Q.-F.; Kim, S.-H. Pre-treatment strategies for seawater desalination by reverse osmosis system. Desalination 2009, 249, 308–316. [Google Scholar] [CrossRef]
- Takabatake, H.; Taniguchi, M.; Kurihara, M. Advanced Technologies for Stabilization and High Performance of Seawater RO Membrane Desalination Plants. Membranes 2021, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- Badruzzaman, M.; Voutchkov, N.; Weinrich, L.; Jacangelo, J.G. Selection of pretreatment technologies for seawater reverse osmosis plants: A review. Desalination 2019, 449, 78–91. [Google Scholar] [CrossRef]
- Voutchkov, N. Considerations for selection of seawater filtration pretreatment system. Desalination 2010, 261, 354–364. [Google Scholar] [CrossRef]
- Liu, J.; Yue, M.; Zhao, L.; He, J.; Wu, X.; Wang, L. Semi batch dual-pass nanofiltration as scaling-controlled pretreatment for seawater purification and concentration with high recovery rate. Desalination 2021, 506, 115015. [Google Scholar] [CrossRef]
- Akhondi, E.; Wu, B.; Sun, S.; Marxer, B.; Lim, W.; Gu, J.; Liu, L.; Burkhardt, M.; McDougald, D.; Pronk, W.; et al. Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: Linking biofouling layer morphology with flux stabilization. Water Res. 2015, 70, 158–173. [Google Scholar] [CrossRef]
- Wu, B.; Christen, T.; Tan, H.S.; Hochstrasser, F.; Suwarno, S.R.; Liu, X.; Chong, T.H.; Burkhardt, M.; Pronk, W.; Fane, A.G. Improved performance of gravity-driven membrane filtration for seawater pretreatment: Implications of membrane module configuration. Water Res. 2017, 114, 59–68. [Google Scholar] [CrossRef]
- Wu, B.; Hochstrasser, F.; Akhondi, E.; Ambauen, N.; Tschirren, L.; Burkhardt, M.; Fane, A.G.; Pronk, W. Optimization of gravity-driven membrane (GDM) filtration process for seawater pretreatment. Water Res. 2016, 93, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Suwarno, S.R.; Tan, H.S.; Kim, L.H.; Hochstrasser, F.; Chong, T.H.; Burkhardt, M.; Pronk, W.; Fane, A.G. Gravity-driven microfiltration pretreatment for reverse osmosis (RO) seawater desalination: Microbial community characterization and RO performance. Desalination 2017, 418, 1–8. [Google Scholar] [CrossRef]
- Simon, F.X.; Rudé, E.; Llorens, J.; Baig, S. Study on the removal of biodegradable NOM from seawater using biofiltration. Desalination 2013, 316, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Monnot, M.; Laborie, S.; Cabassud, C. Granular activated carbon filtration plus ultrafiltration as a pretreatment to seawater desalination lines: Impact on water quality and UF fouling. Desalination 2016, 383, 1–11. [Google Scholar] [CrossRef]
- Cui, Z.; Xing, W.; Fan, Y.; Xu, N. Pilot study on the ceramic membrane pre-treatment for seawater desalination with reverse osmosis in Tianjin Bohai Bay. Desalination 2011, 279, 190–194. [Google Scholar] [CrossRef]
- Xu, J.; Chang, C.-Y.; Gao, C. Performance of a ceramic ultrafiltration membrane system in pretreatment to seawater desalination. Sep. Purif. Technol. 2010, 75, 165–173. [Google Scholar] [CrossRef]
- Tabatabai, S.A.A.; Schippers, J.C.; Kennedy, M.D. Effect of coagulation on fouling potential and removal of algal organic matter in ultrafiltration pretreatment to seawater reverse osmosis. Water Res. 2014, 59, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Alshahri, A.H.; Dehwah, A.H.A.; Leiknes, T.; Missimer, T.M. Organic carbon movement through two SWRO facilities from source water to pretreatment to product with relevance to membrane biofouling. Desalination 2017, 407, 52–60. [Google Scholar] [CrossRef]
- Loganathan, K.; Saththasivam, J.; Sarp, S. Removal of microalgae from seawater using chitosan-alum/ferric chloride dual coagulations. Desalination 2018, 433, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.-C.; Nam, J.-W.; Kang, K.-H. Dynamic membrane filtration using powdered iron oxide for SWRO pre-treatment during red tide event. J. Membr. Sci. 2017, 524, 604–611. [Google Scholar] [CrossRef]
- Islam, M.A.; Morton, D.W.; Johnson, B.B.; Pramanik, B.K.; Mainali, B.; Angove, M.J. Metal ion and contaminant sorption onto aluminium oxide-based materials: A review and future research. J. Environ. Chem. Eng. 2018, 6, 6853–6869. [Google Scholar] [CrossRef]
- Benoit, P.; Hering, J.G.; Stumm, W. Comparative study of the adsorption of organic ligands on aluminum oxide by titration calorimetry. Appl. Geochem. 1993, 8, 127–139. [Google Scholar] [CrossRef]
- Nakano, K.; Wang, J.; Sim, L.N.; Chong, T.H.; Kinoshita, Y.; Sekiguchi, K. Combination of Ultrafiltration and Ceramics Adsorption Filter for Pretreatment in Seawater Reverse Osmosis Desalination Process. Hitachi Met. Tech. Rev. 2021, 37, 44–53. [Google Scholar]
- Huber, S.A.; Balz, A.; Abert, M.; Pronk, W. Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography—Organic carbon detection—Organic nitrogen detection (LC-OCD-OND). Water Res. 2011, 45, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Stedmon, C.A.; Bro, R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr. Methods 2008, 6, 572–579. [Google Scholar] [CrossRef]
- Cao, S.; Sun, F.; Lu, D.; Zhou, Y. Characterization of the refractory dissolved organic matters (rDOM) in sludge alkaline fermentation liquid driven denitrification: Effect of HRT on their fate and transformation. Water Res. 2019, 159, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Abel, C.D.T.; Sharma, S.K.; Buçpapaj, E.; Kennedy, M.D. Impact of hydraulic loading rate and media type on removal of bulk organic matter and nitrogen from primary effluent in a laboratory-scale soil aquifer treatment system. Water Sci. Technol. 2013, 68, 217–226. [Google Scholar] [CrossRef]
- Yamashita, Y.; Cory, R.M.; Nishioka, J.; Kuma, K.; Tanoue, E.; Jaffé, R. Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2010, 57, 1478–1485. [Google Scholar] [CrossRef] [Green Version]
- Suwarno, S.R.; Chen, X.; Chong, T.H.; McDougald, D.; Cohen, Y.; Rice, S.A.; Fane, A.G. Biofouling in reverse osmosis processes: The roles of flux, crossflow velocity and concentration polarization in biofilm development. J. Membr. Sci. 2014, 467, 116–125. [Google Scholar] [CrossRef]
- Herzberg, M.; Elimelech, M. Biofouling of reverse osmosis membranes: Role of biofilm-enhanced osmotic pressure. J. Membr. Sci. 2007, 295, 11–20. [Google Scholar] [CrossRef]
1st Evaluation | 2nd Evaluation | |||
---|---|---|---|---|
Parameters | UF-CAF-RO | UF-RO | UF-CAF-RO | UF-RO |
TOC (ppb) | 1321 ± 182 | 1362 ± 309 | 1421 ± 139 | 1405 ± 128 |
BP (ppb) | N.M. | N.M. | 78 ± 4 | 48 ± 24 |
HA (ppb) | N.M. | N.M. | 475 ± 17 | 420 ± 34 |
BB (ppb) | N.M. | N.M. | 188 ± 7 | 175 ± 9 |
LMW (ppb) | N.M. | N.M. | 388 ± 106 | 294 ± 119 |
Na (ppm) | 8527 ± 249 | 8423 ± 226 | 9757 ± 1523 | 10,129 ± 1638 |
Mg (ppm) | 1281 ± 36 | 1269 ± 18 | 2599 ± 182 | 2451 ± 368 |
Ca (ppm) | 330 ± 8 | 327 ± 4 | 556 ± 35 | 526 ± 73 |
B (ppm) | N.M. | N.M. | 3.6 ± 0.16 | 3.7 ± 0.06 |
C1-Marine HA (µgQSE/L) | N.M. | N.M. | 7.44 ± 1.47 | 6.61 ± 1.00 |
C2-Proteins (µgQSE/L) | N.M. | N.M. | 4.75 ± 0.52 | 4.14 ± 0.83 |
C3-Terrestrial HA (µgQSE/L) | N.M. | N.M. | 3.40 ± 0.77 | 3.33 ± 0.39 |
Total bacteria amount (count/µL) | N.M. | N.M. | 4.2 ± 3.7 | 12.8 ± 8.3 |
1st Evaluation | 2nd Evaluation | |||||
---|---|---|---|---|---|---|
Parameters | UF-CAF-RO | UF-RO | Compared with UF-RO | UF-CAF-RO | UF-RO | Compared with UF-RO |
DOC (µg/cm2) | 2.463 | 2.247 | 9.6% higher | 2.450 | 1.878 | 30.5% higher |
BP (µg/cm2) | N.M. | N.M. | N.M. | 0.295 | 0.200 | 47.5% higher |
HA (µg/cm2) | N.M. | N.M. | N.M. | 0.098 | 0.084 | 16.7% higher |
BB (µg/cm2) | N.M. | N.M. | N.M. | 0.103 | 0.051 | 102.0% higher |
LMW (µg/cm2) | N.M. | N.M. | N.M. | 1.055 | 0.461 | 128.9% higher |
C1-Marine HA (µgQSE/cm2) | N.M. | N.M. | N.M. | 0.007 | 0.006 | 16.7% higher |
C2-Proteins (µgQSE/cm2) | N.M. | N.M. | N.M. | 0.050 | 0.035 | 42.9% higher |
C3-Terrestrial HA (µgQSE/cm2) | N.M. | N.M. | N.M. | 0.003 | 0.002 | 50.0% higher |
Parameters | UF-CAF-RO | UF-RO |
---|---|---|
Na (µg/cm2) | 1326.11 | 1321.11 |
Mg (µg/cm2) | 34.16 | 34.01 |
Ca (µg/cm2) | 9.19 | 40.84 |
B (µg/cm2) | 0.90 | 0.87 |
Al (µg/cm2) | 0.06 | 0.00 |
Si (µg/cm2) | 0.25 | 0.11 |
Parameters | CAF Adsorption Amount |
---|---|
DOC (µg/g CAF) | 4.7 |
Na (µg/g CAF) | 3411 |
Mg (µg/g CAF) | 597 |
Ca (µg/g CAF) | 143 |
B (µg/g CAF) | 3.9 |
C1-Marine HA (µg QSE/g CAF) | 0.0069 |
C2- Proteins (µg QSE/g CAF) | 0.026 |
C3-Terrestrial (µg QSE/g CAF) | 0.0020 |
Live cell (Count/g CAF) | 0.32 × 106 |
Dead cell (Count/g CAF) | 3.16 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Sim, L.N.; Ho, J.S.; Nakano, K.; Kinoshita, Y.; Sekiguchi, K.; Chong, T.H. Evaluation of Ceramics Adsorption Filter as a Pretreatment for Seawater Reverse-Osmosis Desalination. Membranes 2022, 12, 1209. https://doi.org/10.3390/membranes12121209
Wang J, Sim LN, Ho JS, Nakano K, Kinoshita Y, Sekiguchi K, Chong TH. Evaluation of Ceramics Adsorption Filter as a Pretreatment for Seawater Reverse-Osmosis Desalination. Membranes. 2022; 12(12):1209. https://doi.org/10.3390/membranes12121209
Chicago/Turabian StyleWang, Jingwei, Lee Nuang Sim, Jia Shin Ho, Keiko Nakano, Yusuke Kinoshita, Kenichiro Sekiguchi, and Tzyy Haur Chong. 2022. "Evaluation of Ceramics Adsorption Filter as a Pretreatment for Seawater Reverse-Osmosis Desalination" Membranes 12, no. 12: 1209. https://doi.org/10.3390/membranes12121209
APA StyleWang, J., Sim, L. N., Ho, J. S., Nakano, K., Kinoshita, Y., Sekiguchi, K., & Chong, T. H. (2022). Evaluation of Ceramics Adsorption Filter as a Pretreatment for Seawater Reverse-Osmosis Desalination. Membranes, 12(12), 1209. https://doi.org/10.3390/membranes12121209