The Relevance of GIRK Channels in Heart Function
Abstract
1. Introduction
2. Structure and Signaling
2.1. GIRK1
2.2. GIRK2
2.3. GIRK3
2.4. GIRK4
3. GIRK Pharmacology
4. GIRK in the Heart
Modification | Species | Effect in Cardiac Physiology | Reference |
---|---|---|---|
GIRK1 gene ablation GIRK4 gene ablation | Mouse | Loss of parasympathetic regulation Loss of heart rate dynamics | [55] |
GIRK4 gene disruption | Mouse | IKACh effect in heart rate | [15] |
GIRK4 knockout mice | Mouse | Atrial fibrillation | [88] |
↑ GIRK4 mRNA in sinoatrial myocytes | Dog | Heart failure | [89] |
GIRK blockade | Dog | Suppression of atrial arrythmias | [90] |
GIRK genetic variations | Human | Βγ-signaling pathway variations Heart-rate variations | [94] |
GIRK4 mutation | Human | Familiar LQTS | [20] |
IKACh constitutive activation | Human | Chronic atrial fibrillation | [95,96] |
IKACh gradient current | Human | Paroxysmal atrial fibrillation | [97] |
GIRK4 overexpression | Human | Protective against adenosine-induced atrial fibrillation | [98] |
GIRK4 silencing | Human | Arrhythmia-control mechanism | [99] |
GIRK4 gain-of-function | Human | Familial SND | [101] |
GIRK overfunction | Human | Atrial fibrillation and SND | [102] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burg, S.; Attali, B. Targeting of Potassium Channels in Cardiac Arrhythmias. Trends Pharmacol. Sci. 2021, 42, 491–506. [Google Scholar] [CrossRef] [PubMed]
- Tamargo, J.; Caballero, R.; Gómez, R.; Valenzuela, C.; Delpón, E. Pharmacology of Cardiac Potassium Channels. Cardiovasc. Res. 2004, 62, 9–33. [Google Scholar] [CrossRef] [PubMed]
- Snyders, D.J. Structure and Function of Cardiac Potassium Channels. Cardiovasc. Res. 1999, 42, 377–390. [Google Scholar] [CrossRef]
- Nichols, C.G.; Makhina, E.N.; Pearson, W.L.; Sha, Q.; Lopatin, A.N. Inward Rectification and Implications for Cardiac Excitability. Circ. Res. 1996, 78, 1–7. [Google Scholar] [CrossRef]
- Lüscher, C.; Slesinger, P.A. Emerging Concepts for G Protein-Gated Inwardly Rectifying Potassium (GIRK) Channels in Health and Disease. Nat. Rev. Neurosci. 2010, 11, 301. [Google Scholar] [CrossRef]
- Glaaser, I.W.; Slesinger, P.A. Structural Insights into GIRK Channel Function. Int. Rev. Neurobiol. 2015, 123, 117–160. [Google Scholar] [CrossRef]
- Pierce, K.L.; Premont, R.T.; Lefkowitz, R.J. Seven-Transmembrane Receptors. Nat. Rev. Mol. Cell Biol. 2002, 3, 639–650. [Google Scholar] [CrossRef]
- Hibino, H.; Inanobe, A.; Furutani, K.; Murakami, S.; Findlay, I.; Kurachi, Y. Inwardly Rectifying Potassium Channels: Their Structure, Function, and Physiological Roles. Physiol. Rev. 2010, 90, 291–366. [Google Scholar] [CrossRef]
- Kano, H.; Toyama, Y.; Imai, S.; Iwahashi, Y.; Mase, Y.; Yokogawa, M.; Osawa, M.; Shimada, I. Structural Mechanism Underlying G Protein Family-Specific Regulation of G Protein-Gated Inwardly Rectifying Potassium Channel. Nat. Commun. 2019, 10, 2008. [Google Scholar] [CrossRef]
- Dascal, N.; Kahanovitch, U. The Roles of Gβγ and Gα in Gating and Regulation of GIRK Channels. Int. Rev. Neurobiol. 2015, 123, 27–85. [Google Scholar] [CrossRef]
- Logothetis, D.E.; Kurachi, Y.; Galper, J.; Neer, E.J.; Clapham, D.E. The Βγ Subunits of GTP-Binding Proteins Activate the Muscarinic K+ Channel in Heart. Nature 1987, 325, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Wickman, K.D.; Iñiguez-Lluhi, J.A.; Davenport, P.A.; Taussig, R.; Krapivinsky, G.B.; Linder, M.E.; Gilman, A.G.; Clapham, D.E. Recombinant G-Protein Beta Gamma-Subunits Activate the Muscarinic-Gated Atrial Potassium Channel. Nature 1994, 368, 255–257. [Google Scholar] [CrossRef] [PubMed]
- DiFrancesco, D. Pacemaker Mechanisms in Cardiac Tissue. Annu. Rev. Physiol. 1993, 55, 455–472. [Google Scholar] [CrossRef] [PubMed]
- Gordan, R.; Gwathmey, J.K.; Xie, L.-H. Autonomic and Endocrine Control of Cardiovascular Function. World J. Cardiol. 2015, 7, 204. [Google Scholar] [CrossRef] [PubMed]
- Wickman, K.; Nemec, J.; Gendler, S.J.; Clapham, D.E. Abnormal Heart Rate Regulation in GIRK4 Knockout Mice. Neuron 1998, 20, 103–114. [Google Scholar] [CrossRef]
- Luján, R.; Marron Fernandez de Velasco, E.; Aguado, C.; Wickman, K. New Insights into the Therapeutic Potential of Girk Channels. Trends Neurosci. 2014, 37, 20–29. [Google Scholar] [CrossRef]
- Rai, D.; Akagi, T.; Shimohata, A.; Ishii, T.; Gangi, M.; Maruyama, T.; Wada-Kiyama, Y.; Ogiwara, I.; Kaneda, M. Involvement of the C-Terminal Domain in Cell Surface Localization and G-Protein Coupling of MGluR6. J. Neurochem. 2021, 158, 837–848. [Google Scholar] [CrossRef]
- Jeremic, D.; Sanchez-Rodriguez, I.; Jimenez-Diaz, L.; Navarro-Lopez, J.D. Therapeutic Potential of Targeting G Protein-Gated Inwardly Rectifying Potassium (GIRK) Channels in the Central Nervous System. Pharmacol. Ther. 2021, 223, 107808. [Google Scholar] [CrossRef]
- Jabbari, J.; Olesen, M.S.; Holst, A.G.; Nielsen, J.B.; Haunso, S.; Svendsen, J.H. Common Polymorphisms in KNCJ5 Are Associated with Early-Onset Lone Atrial Fibrillation in Caucasians. Cardiology 2011, 118, 116–120. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Liang, B.; Liu, J.; Li, J.; Grunnet, M.; Olesen, S.-P.; Rasmussen, H.B.; Ellinor, P.T.; Gao, L.; et al. Identification of a Kir3.4 Mutation in Congenital Long QT Syndrome. Am. J. Hum. Genet. 2010, 86, 872–880. [Google Scholar] [CrossRef]
- Loewi, O. Über Humorale Übertragbarkeit Der Herznervenwirkung. Pflüger’s Arch. Gesamte Physiol. Menschen Tiere 1921, 189, 239–242. [Google Scholar] [CrossRef]
- Borges, R.; García, A.G. One Hundred Years from Otto Loewi Experiment, a Dream That Revolutionized Our View of Neurotransmission. Pflügers Arch. Eur. J. Physiol. 2021, 473, 977–981. [Google Scholar] [CrossRef]
- Touhara, K.K.; Mackinnon, R. Molecular Basis of Signaling Specificity between GIRK Channels and GPCRs. eLife 2018, e42908. [Google Scholar] [CrossRef]
- Digby, G.J.; Sethi, P.R.; Lambert, N.A. Differential Dissociation of G Protein Heterotrimers. J. Physiol. 2008, 586, 3325–3335. [Google Scholar] [CrossRef]
- Wickman, K.; Pu, W.T.; Clapham, D.E. Structural Characterization of the Mouse Girk Genes. Gene 2002, 284, 241–250. [Google Scholar] [CrossRef]
- Wellner-Kienitz, M.C.; Bender, K.; Pott, L. Overexpression of Beta 1 and Beta 2 Adrenergic Receptors in Rat Atrial Myocytes. Differential Coupling to G Protein-Gated Inward Rectifier K(+) Channels via G(s) and G(i)/O. J. Biol. Chem. 2001, 276, 37347–37354. [Google Scholar] [CrossRef]
- Kuang, Q.; Purhonen, P.; Hebert, H. Structure of Potassium Channels. Cell Mol Life Sci. 2015, 72, 3677–3693. [Google Scholar] [CrossRef]
- Kofuji, P.; Davidson, N.; Lester, H.A. Evidence That Neuronal G-Protein-Gated Inwardly Rectifying K+ Channels Are Activated by G Beta Gamma Subunits and Function as Heteromultimers. Proc. Natl. Acad. Sci. USA 1995, 92, 6542–6546. [Google Scholar] [CrossRef]
- Stoffel, M.; Espinosa, R.; Powell, K.L.; Philipson, L.H.; Le Beau, M.M.; Bell, G.I. Human G-Protein-Coupled Inwardly Rectifying Potassium Channel (GIRK1) Gene (KCNJ3): Localization to Chromosome 2 and Identification of a Simple Tandem Repeat Polymorphism. Genomics 1994, 21, 254–256. [Google Scholar] [CrossRef]
- Kubo, Y.; Reuveny, E.; Slesinger, P.A.; Jan, Y.N.; Jan, L.Y. Primary Structure and Functional Expression of a Rat G-Protein-Coupled Muscarinic Potassium Channel. Nature 1993, 364, 802–806. [Google Scholar] [CrossRef]
- Mett, A.; Karbat, I.; Tsoory, M.; Fine, S.; Iwanir, S.; Reuveny, E. Reduced Activity of GIRK1-Containing Heterotetramers Is Sufficient to Affect Neuronal Functions, Including Synaptic Plasticity and Spatial Learning and Memory. J. Physiol. 2021, 599, 521–545. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.W.; Sui, J.L.; Vivaudou, M.; Logothetis, D.E. Control of Channel Activity through a Unique Amino Acid Residue of a g Protein-Gated Inwardly Rectifying K+ Channel Subunit. Proc. Natl. Acad. Sci. USA 1996, 93, 14193–14198. [Google Scholar] [CrossRef] [PubMed]
- Krapivinsky, G.; Gordon, E.A.; Wickman, K.; Velimirović, B.; Krapivinsky, L.; Clapham, D.E. The G-Protein-Gated Atrial K+ Channel IKACh Is a Heteromultimer of Two Inwardly Rectifying K(+)-Channel Proteins. Nature 1995, 374, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Bukiya, A.N.; Osborn, C.V.; Kuntamallappanavar, G.; Toth, P.T.; Baki, L.; Kowalsky, G.; Oh, M.J.; Dopico, A.M.; Levitan, I.; Rosenhouse-Dantsker, A. Cholesterol Increases the Open Probability of Cardiac KACh Currents. Biochim. Biophys. Acta 2015, 1848, 2406–2413. [Google Scholar] [CrossRef]
- Lippiello, P.; Hoxha, E.; Tempia, F.; Miniaci, M.C. GIRK1-Mediated Inwardly Rectifying Potassium Current Is a Candidate Mechanism Behind Purkinje Cell Excitability, Plasticity, and Neuromodulation. Cerebellum 2020, 19, 751–761. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Kong, S.; Zang, K.; Jiang, S.; Wan, L.; Chen, L.; Wang, G.; Jiang, M.; Wang, X.; et al. GIRK1-Mediated Inwardly Rectifying Potassium Current Suppresses the Epileptiform Burst Activities and the Potential Antiepileptic Effect of ML297. Biomed. Pharmacother. 2018, 101, 362–370. [Google Scholar] [CrossRef]
- Ponce, A.; Bueno, E.; Kentros, C.; Vega-Saenz de Miera, E.; Chow, A.; Hillman, D.; Chen, S.; Zhu, L.; Wu, M.; Wu, X.; et al. G-Protein-Gated Inward Rectifier K+ Channel Proteins (GIRK1) Are Present in the Soma and Dendrites as Well as in Nerve Terminals of Specific Neurons in the Brain. J. Neurosci. 1996, 16, 1990–2001. [Google Scholar] [CrossRef]
- Wagner, V.; Stadelmeyer, E.; Riederer, M.; Regitnig, P.; Gorischek, A.; DeVaney, T.; Schmidt, K.; Tritthart, H.A.; Hirschberg, K.; Bauernhofer, T.; et al. Cloning and Characterisation of GIRK1 Variants Resulting from Alternative RNA Editing of the KCNJ3 Gene Transcript in a Human Breast Cancer Cell Line. J. Cell. Biochem. 2010, 110, 598–608. [Google Scholar] [CrossRef]
- Kammerer, S.; Sokolowski, A.; Hackl, H.; Platzer, D.; Jahn, S.W.; El-Heliebi, A.; Schwarzenbacher, D.; Stiegelbauer, V.; Pichler, M.; Rezania, S.; et al. KCNJ3 Is a New Independent Prognostic Marker for Estrogen Receptor Positive Breast Cancer Patients. Oncotarget 2016, 7, 84705–84717. [Google Scholar] [CrossRef]
- Yamada, K.; Iwayama, Y.; Toyota, T.; Ohnishi, T.; Ohba, H.; Maekawa, M.; Yoshikawa, T. Association Study of the KCNJ3 Gene as a Susceptibility Candidate for Schizophrenia in the Chinese Population. Hum. Genet. 2012, 131, 443–451. [Google Scholar] [CrossRef]
- Jelacic, T.M.; Sims, S.M.; Clapham, D.E. Functional Expression and Characterization of G-Protein-Gated Inwardly Rectifying K+ Channels Containing GIRK3. J. Membr. Biol. 1999, 169, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.J.; Jan, Y.N.; Jan, L.Y. Heteromultimerization of G-Protein-Gated Inwardly Rectifying K+ Channel Proteins GIRK1 and GIRK2 and Their Altered Expression in Weaver Brain. J. Neurosci. 1996, 16, 7137–7150. [Google Scholar] [CrossRef] [PubMed]
- Lüscher, C.; Jan, L.Y.; Stoffel, M.; Malenka, R.C.; Nicoll, R.A. G Protein-Coupled Inwardly Rectifying K+ Channels (GIRKs) Mediate Postsynaptic but Not Presynaptic Transmitter Actions in Hippocampal Neurons. Neuron 1997, 19, 687–695. [Google Scholar] [CrossRef]
- Hee, J.C.; Qian, X.; Ehlers, M.; Yuh, N.J.; Jan, L.Y. Neuronal Activity Regulates Phosphorylation-Dependent Surface Delivery of G Protein-Activated Inwardly Rectifying Potassium Channels. Proc. Natl. Acad. Sci. USA 2009, 106, 629–634. [Google Scholar] [CrossRef]
- Inanobe, A.; Yoshimoto, Y.; Horio, Y.; Morishige, K.I.; Hibino, H.; Matsumoto, S.; Tokunaga, Y.; Maeda, T.; Hata, Y.; Takai, Y.; et al. Characterization of G-Protein-Gated K+ Channels Composed of Kir3.2 Subunits in Dopaminergic Neurons of the Substantia Nigra. J. Neurosci. 1999, 19, 1006–1017. [Google Scholar] [CrossRef]
- Arora, D.; Haluk, D.M.; Kourrich, S.; Pravetoni, M.; Fernández-Alacid, L.; Nicolau, J.C.; Luján, R.; Wickman, K. Altered Neurotransmission in the Mesolimbic Reward System of Girk−/− Mice. J. Neurochem. 2010, 114, 1487. [Google Scholar] [CrossRef]
- Whorton, M.R.; MacKinnon, R. X-Ray Structure of the Mammalian GIRK2-Βγ G-Protein Complex. Nature 2013, 498, 190–197. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ikeda, K.; Ichikawa, T.; Abe, S.; Togashi, S.; Kumanishi, T. Molecular Cloning of a Mouse G-Protein-Activated K+ Channel (MGIRK1) and Distinct Distributions of 3 GIRK (GIRK1, 2 and 3) MRNAs in Mouse Brain. Biochem. Biophys. Res. Commun. 1995, 208, 1166–1173. [Google Scholar] [CrossRef]
- Karschin, C.; Schreibmayer, W.; Dascal, N.; Lester, H.; Davidson, N.; Karschin, A. Distribution and Localization of a G Protein-Coupled Inwardly Rectifying K+ Channel in the Rat. FEBS Lett. 1994, 348, 139–144. [Google Scholar] [CrossRef]
- Chen, S.C.; Ehrhard, P.; Goldowitz, D.; Smeyne, R.J. Developmental Expression of the GIRK Family of Inward Rectifying Potassium Channels: Implications for Abnormalities in the Weaver Mutant Mouse. Brain Res. 1997, 778, 251–264. [Google Scholar] [CrossRef]
- Herman, M.A.; Sidhu, H.; Stouffer, D.G.; Kreifeldt, M.; Le, D.; Cates-Gatto, C.; Munoz, M.B.; Roberts, A.J.; Parsons, L.H.; Roberto, M.; et al. GIRK3 Gates Activation of the Mesolimbic Dopaminergic Pathway by Ethanol. Proc. Natl. Acad. Sci. USA. 2015, 112, 7091–7096. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A.D.; Carroll, M.E.; Loth, A.K.; Stoffel, M.; Wickman, K. Decreased Cocaine Self-Administration in Kir3 Potassium Channel Subunit Knockout Mice. Neuropsychopharmacology 2003, 285, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Inanobe, A.; Kurachi, Y. G Protein Regulation of Potassium Ion Channels. Pharmacol. Rev. 1998, 50, 723. [Google Scholar] [PubMed]
- Dobrzynski, H.; Marples, D.D.R.; Musa, H.; Yamanushi, T.T.; Henderson, Z.; Takagishi, Y.; Honjo, H.; Kodama, I.; Boyett, M.R. Distribution of the Muscarinic K+ Channel Proteins Kir3.1 and Kir3.4 in the Ventricle, Atrium, and Sinoatrial Node of Heart. J. Histochem. Cytochem. 2001, 49, 1221–1234. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Anderson, A.; Guzman, P.A.; Nakano, A.; Tolkacheva, E.G.; Wickman, K. Atrial GIRK Channels Mediate the Effects of Vagus Nerve Stimulation on Heart Rate Dynamics and Arrhythmogenesis. Front. Physiol. 2018, 9, 943. [Google Scholar] [CrossRef]
- Wickman, K.; Karschin, C.; Karschin, A.; Picciotto, M.R.; Clapham, D.E. Brain Localization and Behavioral Impact of the G-Protein-Gated K+ Channel Subunit GIRK4. J. Neurosci. 2000, 20, 5608. [Google Scholar] [CrossRef]
- Choi, M.; Scholl, U.I.; Yue, P.; Björklund, P.; Zhao, B.; Nelson-Williams, C.; Ji, W.; Cho, Y.; Patel, A.; Men, C.J.; et al. K+ Channel Mutations in Adrenal Aldosterone-Producing Adenomas and Hereditary Hypertension. Science 2011, 331, 768–772. [Google Scholar] [CrossRef]
- Scholl, U.I.; Nelson-Williams, C.; Yue, P.; Grekin, R.; Wyatt, R.J.; Dillon, M.J.; Couch, R.; Hammer, L.K.; Harley, F.L.; Farhi, A.; et al. Hypertension with or without Adrenal Hyperplasia Due to Different Inherited Mutations in the Potassium Channel KCNJ5. Proc. Natl. Acad. Sci. USA 2012, 109, 2533–2538. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ikeda, K.; Kojima, H.; Niki, H.; Yano, R.; Yoshioka, T.; Kumanishi, T. Ethanol Opens G-Protein-Activated Inwardly Rectifying K+ Channels. Nat. Neurosci. 1999, 212, 1091–1097. [Google Scholar] [CrossRef]
- Lewohl, J.M.; Wilson, W.R.; Mayfield, R.D.; Brozowski, S.J.; Morrisett, R.A.; Harris, R.A. G-Protein-Coupled Inwardly Rectifying Potassium Channels Are Targets of Alcohol Action. Nat. Neurosci. 1999, 2, 1084–1090. [Google Scholar] [CrossRef]
- Aryal, P.; Dvir, H.; Choe, S.; Slesinger, P.A. A Discrete Alcohol Pocket Involved in GIRK Channel Activation. Nat. Neurosci. 2009, 12, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Bodhinathan, K.; Slesinger, P.A. Molecular Mechanism Underlying Ethanol Activation of G-Protein-Gated Inwardly Rectifying Potassium Channels. Proc. Natl. Acad. Sci. USA 2013, 110, 18309–18314. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ung, P.M.U.; Zahoránszky-Kőhalmi, G.; Zakharov, A.V.; Martinez, N.J.; Simeonov, A.; Glaaser, I.W.; Rai, G.; Schlessinger, A.; Marugan, J.J.; et al. Identification of a G-Protein-Independent Activator of GIRK Channels. Cell Rep. 2020, 31, 107770. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, K.; Romaine, I.; Days, E.; Pascual, C.; Malik, A.; Yang, L.; Zou, B.; Du, Y.; Sliwoski, G.; Morrison, R.D.; et al. ML297 (VU0456810), the First Potent and Selective Activator of the GIRK Potassium Channel, Displays Antiepileptic Properties in Mice. ACS Chem. Neurosci. 2013, 4, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Tabata, T.; Haruki, S.; Nakayama, H.; Kano, M. GABAergic Activation of an Inwardly Rectifying K+ Current in Mouse Cerebellar Purkinje Cells. J. Physiol. 2005, 563, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Bodhinathan, K.; Slesinger, P.A. Alcohol Modulation of G-Protein-Gated Inwardly Rectifying Potassium Channels: From Binding to Therapeutics. Front. Physiol. 2014, 5, 76. [Google Scholar] [CrossRef]
- Mathiharan, Y.K.; Glaaser, I.W.; Zhao, Y.; Robertson, M.J.; Skiniotis, G.; Slesinger, P.A. Structural Insights into GIRK2 Channel Modulation by Cholesterol and PIP2. Cell Rep. 2021, 36, 109619. [Google Scholar] [CrossRef]
- Glaaser, I.W.; Slesinger, P.A. Dual Activation of Neuronal G Protein-Gated Inwardly Rectifying Potassium (GIRK) Channels by Cholesterol and Alcohol. Sci. Rep. 2017, 7, 4592. [Google Scholar] [CrossRef]
- Chen, I.S.; Tateyama, M.; Fukata, Y.; Uesugi, M.; Kubo, Y. Ivermectin Activates GIRK Channels in a PIP2-Dependent, Gβγ-Independent Manner and an Amino Acid Residue at the Slide Helix Governs the Activation. J. Physiol. 2017, 595, 5895–5912. [Google Scholar] [CrossRef]
- Logothetis, D.E.; Mahajan, R.; Adney, S.K.; Ha, J.; Kawano, T.; Meng, X.Y.; Cui, M. Unifying Mechanism of Controlling Kir3 Channel Activity by G Proteins and Phosphoinositides. Int. Rev. Neurobiol. 2015, 123, 1–26. [Google Scholar] [CrossRef]
- Niu, Y.; Tao, X.; Touhara, K.K.; Mackinnon, R. Cryo-Em Analysis of Pip2 Regulation in Mammalian Girk Channels. eLife 2020, 9, e60552. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Washiyama, K.; Ikeda, K. Inhibition of G Protein-Activated Inwardly Rectifying K+ Channels by Fluoxetine (Prozac). Br. J. Pharmacol. 2003, 138, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Washiyama, K.; Ikeda, K. Inhibition of G Protein-Activated Inwardly Rectifying K+ Channels by the Antidepressant Paroxetine. J. Pharmacol. Sci. 2006, 102, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Washiyama, K.; Ikeda, K. Inhibition of G-Protein-Activated Inwardly Rectifying K+ Channels by the Selective Norepinephrine Reuptake Inhibitors Atomoxetine and Reboxetine. Neuropsychopharmacology 2010, 35, 1560–1569. [Google Scholar] [CrossRef]
- Zhou, H.; Chisari, M.; Raehal, K.M.; Kaltenbronn, K.M.; Bohn, L.M.; Mennerick, S.J.; Blumer, K.J. GIRK Channel Modulation by Assembly with Allosterically Regulated RGS Proteins. Proc. Natl. Acad. Sci. USA 2012, 109, 19977–19982. [Google Scholar] [CrossRef]
- Doupnik, C.A. RGS Redundancy and Implications in GPCR-GIRK Signaling. Int. Rev. Neurobiol. 2015, 123, 87–116. [Google Scholar] [CrossRef]
- Cifelli, C.; Rose, R.A.; Zhang, H.; Voigtlaender-Bolz, J.; Bolz, S.S.; Backx, P.H.; Heximer, S.P. RGS4 Regulates Parasympathetic Signaling and Heart Rate Control in the Sinoatrial Node. Circ. Res. 2008, 103, 527–535. [Google Scholar] [CrossRef]
- Yang, J.; Huang, J.; Maity, B.; Gao, Z.; Lorca, R.A.; Gudmundsson, H.; Li, J.; Stewart, A.; Swaminathan, P.D.; Ibeawuchi, S.R.; et al. RGS6, a Modulator of Parasympathetic Activation in Heart. Circ. Res. 2010, 107, 1345–1349. [Google Scholar] [CrossRef]
- Posokhova, E.; Wydeven, N.; Allen, K.L.; Wickman, K.; Martemyanov, K.A. RGS6/Gβ5 Complex Accelerates IKACh Gating Kinetics in Atrial Myocytes and Modulates Parasympathetic Regulation of Heart Rate. Circ. Res. 2010, 107, 1350–1354. [Google Scholar] [CrossRef]
- Anderson, A.; Kulkarni, K.; Marron Fernandez De Velasco, E.; Carlblom, N.; Xia, Z.; Nakano, A.; Martemyanov, K.A.; Tolkacheva, E.G.; Wickman, K. Expression and Relevance of the G Protein-Gated K+ Channel in the Mouse Ventricle. Sci. Rep. 2018, 8, 1192. [Google Scholar] [CrossRef]
- DePaoli, A.M.; Bell, G.I.; Stoffel, M. G Protein-Activated Inwardly Rectifying Potassium Channel (GIRK1/KGA) MRNA in Adult Rat Heart and Brain by in Situ Hybridization Histochemistry. Mol. Cell Neurosci. 1994, 5, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Dobrzynski, H.; Janvier, N.C.; Leach, R.; Findlay, J.B.C.; Boyett, M.R. Effects of ACh and Adenosine Mediated by Kir3.1 and Kir3.4 on Ferret Ventricular Cells. Am. J. Physiol. Hear. Circ. Physiol. 2002, 283, H615–H630. [Google Scholar] [CrossRef]
- Liang, B.; Nissen, J.D.; Laursen, M.; Wang, X.; Skibsbye, L.; Hearing, M.C.; Andersen, M.N.; Rasmussen, H.B.; Wickman, K.; Grunnet, M.; et al. G-Protein-Coupled Inward Rectifier Potassium Current Contributes to Ventricular Repolarization. Cardiovasc. Res. 2014, 101, 175. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, N.; Grunnet, M.; Olesen, S.P. Cardiac Potassium Channel Subtypes: New Roles in Repolarization and Arrhythmia. Physiol. Rev. 2014, 94, 609–653. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Maehara, K.; Onuki, N.; Saito, T.; Maruyama, Y. Decreased Contractility of the Left Ventricle Is Induced by the Neurotransmitter Acetylcholine, but Not by Vagal Stimulation in Rats. Jpn. Heart J. 2003, 44, 257–270. [Google Scholar] [CrossRef]
- Hoover, D.B.; Ganote, C.E.; Ferguson, S.M.; Blakely, R.D.; Parsons, R.L. Localization of Cholinergic Innervation in Guinea Pig Heart by Immunohistochemistry for High-Affinity Choline Transporters. Cardiovasc. Res. 2004, 62, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, C.; Rinne, A.; Littwitz, C.; Mintert, E.; Bösche, L.I.; Kienitz, M.C.; Pott, L.; Bender, K. G Protein-Activated (GIRK) Current in Rat Ventricular Myocytes Is Masked by Constitutive Inward Rectifier Current (IK1). Cell. Physiol. Biochem. 2008, 21, 259–268. [Google Scholar] [CrossRef]
- Kovoor, P.; Wickman, K.; Maguire, C.T.; Pu, W.; Gehrmann, J.; Berul, C.I.; Clapham, D.E. Evaluation of the Role of IKAChin Atrial Fibrillation Using a Mouse Knockout Model. J. Am. Coll. Cardiol. 2001, 37, 2136–2143. [Google Scholar] [CrossRef]
- Long, V.P.; Bonilla, I.M.; Baine, S.; Glynn, P.; Kumar, S.; Schober, K.; Mowrey, K.; Weiss, R.; Lee, N.Y.; Mohler, P.J.; et al. Chronic Heart Failure Increases Negative Chronotropic Effects of Adenosine in Canine Sinoatrial Cells via A1R Stimulation and GIRK-Mediated IKado. Life Sci. 2020, 240, 117068. [Google Scholar] [CrossRef] [PubMed]
- Cha, T.J.; Ehrlich, J.R.; Chartier, D.; Qi, X.Y.; Xiao, L.; Nattel, S. Kir3-Based Inward Rectifier Potassium Current. Circulation 2006, 113, 1730–1737. [Google Scholar] [CrossRef]
- Ehrlich, J.R.; Cha, T.-J.; Zhang, L.; Chartier, D.; Villeneuve, L.; Hébert, T.E.; Nattel, S. Characterization of a Hyperpolarization-Activated Time-Dependent Potassium Current in Canine Cardiomyocytes from Pulmonary Vein Myocardial Sleeves and Left Atrium. J. Physiol. 2004, 557, 583–597. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Chen, S.A.; Chen, Y.C.; Yeh, H.I.; Chan, P.; Chang, M.S.; Lin, C.I. Effects of Rapid Atrial Pacing on the Arrhythmogenic Activity of Single Cardiomyocytes from Pulmonary Veins: Implication in Initiation of Atrial Fibrillation. Circulation 2001, 104, 2849–2854. [Google Scholar] [CrossRef] [PubMed]
- Pappone, C.; Rosanio, S.; Oreto, G.; Tocchi, M.; Gugliotta, F.; Vicedomini, G.; Salvati, A.; Dicandia, C.; Mazzone, P.; Santinelli, V.; et al. Circumferential Radiofrequency Ablation of Pulmonary Vein Ostia. Circulation 2000, 102, 2619–2628. [Google Scholar] [CrossRef] [PubMed]
- Nolte, I.M.; Munoz, M.L.; Tragante, V.; Amare, A.T.; Jansen, R.; Vaez, A.; Von Der Heyde, B.; Avery, C.L.; Bis, J.C.; Dierckx, B.; et al. Genetic Loci Associated with Heart Rate Variability and Their Effects on Cardiac Disease Risk. Nat. Commun. 2017, 8, 15805. [Google Scholar] [CrossRef]
- Voigt, N.; Friedrich, A.; Bock, M.; Wettwer, E.; Christ, T.; Knaut, M.; Strasser, R.H.; Ravens, U.; Dobrev, D. Differential Phosphorylation-Dependent Regulation of Constitutively Active and Muscarinic Receptor-Activated IK,ACh Channels in Patients with Chronic Atrial Fibrillation. Cardiovasc. Res. 2007, 74, 426–437. [Google Scholar] [CrossRef]
- Dobrev, D.; Friedrich, A.; Voigt, N.; Jost, N.; Wettwer, E.; Christ, T.; Knaut, M.; Ravens, U. The G Protein-Gated Potassium Current I(K,ACh) Is Constitutively Active in Patients with Chronic Atrial Fibrillation. Circulation 2005, 112, 3697–3706. [Google Scholar] [CrossRef]
- Voigt, N.; Trausch, A.; Knaut, M.; Matschke, K.; Varró, A.; Van Wagoner, D.R.; Nattel, S.; Ravens, U.; Dobrev, D. Left-to-Right Atrial Inward Rectifier Potassium Current Gradients in Patients with Paroxysmal Versus Chronic Atrial Fibrillation. Circ. Arrhythmia Electrophysiol. 2010, 3, 472–480. [Google Scholar] [CrossRef]
- Li, N.; Csepe, T.A.; Hansen, B.J.; Sul, L.V.; Kalyanasundaram, A.; Zakharkin, S.O.; Zhao, J.; Guha, A.; Van Wagoner, D.R.; Kilic, A.; et al. Adenosine-Induced Atrial Fibrillation. Circulation 2016, 134, 486–498. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.; Shang, F.; Hong, C.; Guo, W.; Wang, B.; Zheng, Q. Silencing GIRK4 Expression in Human Atrial Myocytes by Adenovirus-Delivered Small Hairpin RNA. Mol. Biol. Rep. 2009, 36, 1345–1352. [Google Scholar] [CrossRef]
- Holmegard, H.N.; Theilade, J.; Benn, M.; Duno, M.; Haunso, S.; Svendsen, J.H. Genetic Variation in the Inwardly Rectifying K+ Channel Subunits KCNJ3 (GIRK1) and KCNJ5 (GIRK4) in Patients with Sinus Node Dysfunction. Cardiology 2010, 115, 176–181. [Google Scholar] [CrossRef]
- Kuß, J.; Stallmeyer, B.; Goldstein, M.; Rinné, S.; Pees, C.; Zumhagen, S.; Seebohm, G.; Decher, N.; Pott, L.; Kienitz, M.C.; et al. Familial Sinus Node Disease Caused by a Gain of GIRK (G-Protein Activated Inwardly Rectifying K+ Channel) Channel Function. Circ. Genomic Precis. Med. 2019, 12, e002238. [Google Scholar] [CrossRef] [PubMed]
- Mighiu, A.S.; Heximer, S.P. Controlling Parasympathetic Regulation of Heart Rate: A Gatekeeper Role for RGS Proteins in the Sinoatrial Node. Front. Physiol. 2012, 3, 204. [Google Scholar] [CrossRef] [PubMed]
- Milnes, J.T.; Madge, D.J.; Ford, J.W. New Pharmacological Approaches to Atrial Fibrillation. Drug Discov. Today 2012, 17, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Hashimoto, N. A Multiple Ion Channel Blocker, NIP-142, for the Treatment of Atrial Fibrillation. Cardiovasc. Drug Rev. 2007, 25, 342–356. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, N.; Yamashita, T.; Tsuruzoe, N. Characterization of In Vivo and In Vitro Electrophysiological and Antiarrhythmic Effects of a Novel IKACh Blocker, NIP-151: A Comparison with an IKr-Blocker Dofetilide. J. Cardiovasc. Pharmacol. 2008, 51, 162–169. [Google Scholar] [CrossRef]
- Sobota, V.; Gatta, G.; van Hunnik, A.; van Tuijn, I.; Kuiper, M.; Milnes, J.; Jespersen, T.; Schotten, U.; Verheule, S. The Acetylcholine-Activated Potassium Current Inhibitor XAF-1407 Terminates Persistent Atrial Fibrillation in Goats. Front. Pharmacol. 2021, 11, 608410. [Google Scholar] [CrossRef]
- Yamamoto, W.; Hashimoto, N.; Matsuura, J.; Machida, T.; Ogino, Y.; Kobayashi, T.; Yamanaka, Y.; Ishiwata, N.; Yamashita, T.; Tanimoto, K.; et al. Effects of the Selective KACh Channel Blocker NTC-801 on Atrial Fibrillation in a Canine Model of Atrial Tachypacing. J. Cardiovasc. Pharmacol. 2014, 63, 421–427. [Google Scholar] [CrossRef]
Subunit | Species | Location in the Heart | Expression Determination | Reference |
---|---|---|---|---|
GIRK1 GIRK4 | Mouse | Atria Ventricles | mRNA expression | [80] |
GIRK1 | Rat | Atria | Protein expression | [54,81] |
GIRK1 GIRK4 | Guinea pig | Atria Ventricles | Protein expression | [54] |
GIRK4 | Rat | Right atrium (intercalated discs and sarcolemma) Left ventricle (intercalated discs) | [83] | |
GIRK1 GIRK4 | Ferret | Atria Ventricles | mRNA expression Protein expression | [81] |
GIRK1 | Dog | Atria Ventricles | mRNA expression | [82] |
GIRK4 | Human | Left ventricle (intercalated discs and t-tubules) | Protein expression | [83] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos-Ríos, A.; Rueda-Ruzafa, L.; Lamas, J.A. The Relevance of GIRK Channels in Heart Function. Membranes 2022, 12, 1119. https://doi.org/10.3390/membranes12111119
Campos-Ríos A, Rueda-Ruzafa L, Lamas JA. The Relevance of GIRK Channels in Heart Function. Membranes. 2022; 12(11):1119. https://doi.org/10.3390/membranes12111119
Chicago/Turabian StyleCampos-Ríos, Ana, Lola Rueda-Ruzafa, and José Antonio Lamas. 2022. "The Relevance of GIRK Channels in Heart Function" Membranes 12, no. 11: 1119. https://doi.org/10.3390/membranes12111119
APA StyleCampos-Ríos, A., Rueda-Ruzafa, L., & Lamas, J. A. (2022). The Relevance of GIRK Channels in Heart Function. Membranes, 12(11), 1119. https://doi.org/10.3390/membranes12111119