Alginate Ag for Composite Hollow Fiber Membrane: Formation and Ethylene/Ethane Gas Mixture Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of Silver Alginate
2.3. Fabrication of Flat-Sheet Composite Membranes with the Selective Layer from Alginate Silver
2.4. Fabrication of Hollow Fiber PSF Supports
2.5. Fabrication of Hollow Fiber Composite Membranes with the Selective Layer from Alginate Silver
2.6. Characterization of the Morphology of Composite Membranes with the Selective Layer from Alginate Silver
2.7. Characterization of Gas Permeability of Composite Membranes with the Selective Layer from Alginate Silver
2.8. Characterization of Water Permeability of Composite Membranes with the Selective Layer from Alginate Silver
3. Results
3.1. Preparation of Silver Alginate Membranes
3.2. Development of Methods of Creation of Hollow Fiber Composite Membranes with a Selective Layer of Silver Alginate
3.3. Filtration Properties of Composite Membranes with Silver Alginate Selective Layer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernardo, P.; Drioli, E. Membrane engineering for a sustainable production of ethylene. Fuel Process. Technol. 2021, 212, 106624. [Google Scholar] [CrossRef]
- Alshammari, A.; Kalevaru, V.N.; Bagabas, A.; Martin, A. Production of ethylene and its commercial importance in the global market. In Petrochemical Catalyst Materials, Processes, and Emerging Technologies; IGI Global: Hershey PA, USA, 2016; pp. 82–115. [Google Scholar]
- Wu, Y.; Nian, P.; Liu, Z.; Zhang, J.; Zhang, H.; Wang, N.; Li, Y. Separation of acetylene, ethylene and ethane over single layered graphdiyne membranes: Performance and insights from quantum mechanical views. J. Environ. Chem. Eng. 2022, 10, 107733. [Google Scholar] [CrossRef]
- Soave, G.S.; Gamba, S.; Pellegrini, L.A.; Bonomi, S. Feed-splitting technique in cryogenic distillation. Ind. Eng. Chem. Res. 2006, 45, 5761–5765. [Google Scholar] [CrossRef]
- Noonikara-Poyil, A.; Cui, H.; Yakovenko, A.A.; Stephens, P.W.; Lin, R.B.; Wang, B.; Dias, H.R. A Molecular Compound for Highly Selective Purification of Ethylene. AngewandteChemie 2021, 133, 27390–27394. [Google Scholar]
- Wang, X.; Wu, Y.; Zhou, X.; Xiao, J.; Xia, Q.; Wang, H.; Li, Z. Novel C-PDA adsorbents with high uptake and preferential adsorption of ethane over ethylene. Chem. Eng. Sci. 2016, 155, 338–347. [Google Scholar] [CrossRef]
- Wang, K.; Ren, Y.; Luo, J.; Zhuang, Y.; Feng, S.; Wan, Y. Highly Stable Silver-Loaded Membrane Prepared by Interfacial Polymerization for Olefin Separation. Ind. Eng. Chem. Res. 2022, 61, 11922–11933. [Google Scholar] [CrossRef]
- Ren, Y.; Liang, X.; Dou, H.; Ye, C.; Guo, Z.; Wang, J.; Jiang, Z. Membrane-based olefin/paraffin separations. Adv. Sci. 2020, 7, 2001398. [Google Scholar] [CrossRef]
- Caballero, J.A.; Grossmann, I.E.; Keyvani, M.; Lenz, E.S. Design of Hybrid Distillation−Vapor Membrane Separation Systems. Ind. Eng. Chem. Res. 2009, 48, 9151–9162. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.Y.; Xiao, A.; Rodrigue, D. Polymer-based membranes for propylene/propane separation. Sep. Purif. Rev. 2022, 51, 130–142. [Google Scholar] [CrossRef]
- Almaie, S.; Dorraji, M.S.S.; Daneshvar, H. Preparation and Characterization of Inorganic Hollow Fibers. In Hollow Fibers Nanofibers in Membrane Science; Jenny Stanford Publishing: New York, NY, USA, 2022; pp. 109–142. [Google Scholar]
- Muhs, M.A.; Weiss, F.T. Determination of equilibrium constants of silver-olefin complexes using gas chromatography. J. Am. Chem. Soc. 1962, 84, 4697–4705. [Google Scholar] [CrossRef]
- Cvetanović, R.J.; Duncan, F.J.; Falconer, W.E.; Irwin, R.S. Secondary Deuterium Isotope Effects on the Stability of the Silver Ion-Olefin Complexes. J. Am. Chem. Soc. 1965, 87, 1827–1832. [Google Scholar] [CrossRef]
- Anwar, F.; Khaleel, M.; Wang, K.; Karanikolos, G.N. Selectivity Tuning of Adsorbents for Ethane/Ethylene Separation: A Review. Ind. Eng. Chem. Res. 2022, 61, 12269–12293. [Google Scholar] [CrossRef]
- Xiong, Y.; Tian, T.; L’Hermitte, A.; Méndez, A.S.; Danaci, D.; Platero-Prats, A.E.; Petit, C. Using silver exchange to achieve high uptake and selectivity for propylene/propane separation in zeolite Y. Chem. Eng. J. 2022, 446, 137104. [Google Scholar] [CrossRef]
- De Luca, G.; Saha, D.; Chakraborty, S. Why Ag (I) grafted porous carbon matrix prefers alkene over alkane? An inside view from ab-initio study. Microporous Mesoporous Mater. 2022, 316, 110940. [Google Scholar] [CrossRef]
- Wang, Y.S.; Zhang, X.J.; Ba, Y.Q.; Li, T.Y.; Hao, G.P.; Lu, A.H. Recent Advances in Carbon-Based Adsorbents for Adsorptive Separation of Light Hydrocarbons. Research 2022, 2022, 9780864. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, N.S.; Kwon, D.I.; Lee, S.K.; Numan, M.; Jung, T.; Jo, C. Post-Synthesis Functionalization Enables Fine-Tuning the Molecular-Sieving Properties of Zeolites for Light Olefin/Paraffin Separations. Adv. Mater. 2021, 33, 2105398. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, L.; Li, L.; Chen, J.; Li, X.; Wang, J.; Wang, Y. Construction of silver functionalized porous aromatic framework for selective separation of ethylene over ethane. Chem. Phys. Lett. 2022, 786, 139198. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, G.; Jin, W. Recent advances in facilitated transport membranes for olefin/paraffin separation. Discov. Chem. Eng. 2021, 1, 1. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, Y.; Song, S.; Guo, Z.; Zhang, Z.; Zheng, C.; Guiver, M.D. Confined facilitated transport within covalent organic frameworks for propylene/propane membrane separation. Chem. Eng. J. 2022, 439, 135657. [Google Scholar] [CrossRef]
- Volkov, A.O.; Golubenko, D.V.; Yaroslavtsev, A.B. Development of solid polymer composite membranes based on sulfonated fluorocopolymer for olefin/paraffin separation with high permeability and selectivity. Sep. Purif. Technol. 2021, 254, 117562. [Google Scholar] [CrossRef]
- Kang, S.W.; Kim, J.H.; Char, K.; Won, J.; Kang, Y.S. Nanocomposite silver polymer electrolytes as facilitated olefin transport membranes. J. Membr. Sci. 2006, 285, 102–107. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, S.M.; Won, J.; Kang, Y.S. Dependence of facilitated olefin transport on the thickness of silver polymer electrolyte membranes. J. Membr. Sci. 2004, 236, 209–212. [Google Scholar] [CrossRef]
- Hamciuc, C.; Vlad-Bubulac, T.; Bercea, M.; Suflet, D.M.; Doroftei, F.; Rîmbu, C.M.; Enache, A.A.; Kalvachev, Y.; Todorova, T.; Butnaru, M.; et al. Electrospun Copoly (ether imide) Nanofibers Doped with Silver-Loaded Zeolite as Materials for Biomedical Applications. ACS Appl. Polym. Mater. 2022, 4, 6080–6091. [Google Scholar] [CrossRef]
- Kim, S.; Kang, S.W. PEBAX-2533/Ag Salt/Al (NO3)3 Composite Using AgCF3SO3 for Facilitated Olefin Transport Membrane. Membr. J. 2021, 31, 61–66. [Google Scholar] [CrossRef]
- Kim, M.; Cho, Y.; Kang, S.W. Interactions of Ag Particles Stabilized by 7,7,8,8-Tetracyanoquinodimethane with Olefin Molecules in Poly (ether-block-amide). Molecules 2022, 27, 4122. [Google Scholar] [CrossRef] [PubMed]
- Davenport, M.N.; Bentley, C.L.; Brennecke, J.F.; Freeman, B.D. Ethylene and ethane transport properties of hydrogen-stable Ag+-based facilitated transport membranes. J. Membr. Sci. 2022, 647, 120300. [Google Scholar] [CrossRef]
- Toroghi, M.; Raisi, A.; Aroujalian, A. Preparation and characterization of polyethersulfone/silver nanocomposite ultrafiltration membrane for antibacterial applications. Polym. Adv. Technol. 2014, 25, 711–722. [Google Scholar] [CrossRef]
- Maheswari, P.; Prasannadevi, D.; Mohan, D. Preparation and performance of silver nanoparticle incorporated polyetherethersulfonenanofiltration membranes. High Perform. Polym. 2013, 25, 174–187. [Google Scholar] [CrossRef]
- Kulkarni, A.S.; Sajjan, A.M.; Ashwini, M.; Banapurmath, N.R.; Ayachit, N.H.; Shirnalli, G.G. Novel fabrication of PSSAMA_Na capped silver nanoparticle embedded sodium alginate membranes for pervaporative dehydration of bioethanol. RSC Adv. 2020, 10, 22645–22655. [Google Scholar] [CrossRef]
- Xu, W.; Zhuang, H.; Xu, Z.; Huang, M.; Gao, S.; Li, Q.; Zhang, G. Design and construction of Ag@ MOFs immobilized PVDF ultrafiltration membranes with anti-bacterial and antifouling properties. Adv. Polym. Technol. 2020, 2020, 5456707. [Google Scholar] [CrossRef]
- Ponnaiyan, P.; Nammalvar, G. Enhanced performance of PSF/PVP polymer membrane by silver incorporation. Polym. Bull. 2020, 77, 197–212. [Google Scholar] [CrossRef]
- Liao, C.; Yu, P.; Zhao, J.; Wang, L.; Luo, Y. Preparation and characterization of NaY/PVDF hybrid ultrafiltration membranes containing silver ions as antibacterial materials. Desalination 2011, 272, 59–65. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, S.; Wang, Z.; Wu, J.; Wang, J.; Wang, S. In situ immobilization of silver nanoparticles for improving permeability, antifouling and anti-bacterial properties of ultrafiltration membrane. J. Membr. Sci. 2016, 499, 269–281. [Google Scholar] [CrossRef]
- Behboudi, A.; Jafarzadeh, Y.; Yegani, R. Enhancement of antifouling and antibacterial properties of PVC hollow fiber ultrafiltration membranes using pristine and modified silver nanoparticles. J. Environ. Chem. Eng. 2018, 6, 1764–1773. [Google Scholar] [CrossRef]
- Wu, X.; Li, X.; Xu, L.; He, W.; Zhou, Z.; Liu, W.; Ren, Z. Application of silver ionic liquid in the separation of olefin and alkane. J. Chem. Technol. Biotechnol. 2022, 97, 1207–1214. [Google Scholar] [CrossRef]
- Mun, S.H.; Kang, S.W.; Cho, J.S.; Koh, S.K.; Kang, Y.S. Enhanced olefin carrier activity of clean surface silver nanoparticles for facilitated transport membranes. J. Membr. Sci. 2009, 332, 1–5. [Google Scholar] [CrossRef]
- Yang, K.; Ban, Y.; Yang, W. Layered MOF membranes modified with ionic liquid/AgBF4 composite for olefin/paraffin separation. J. Membr. Sci. 2021, 639, 119771. [Google Scholar] [CrossRef]
- Fazil, N.; Saqib, S.; Mukhtar, A.; Younas, M.; Rezakazemi, M. Module Design and Membrane Materials. Membrane Contactor Technology: Water Treatment, Food Processing, Gas Separation, and Carbon Capture; John Wiley & Sons: Hoboken, NJ, USA, 2022; pp. 99–142. [Google Scholar]
- Mansourizadeh, A.; Rezaei, I.; Lau, W.J.; Seah, M.Q.; Ismail, A.F. A review on recent progress in environmental applications of membrane contactor technology. J. Environ. Chem. Eng. 2022, 10, 107631. [Google Scholar] [CrossRef]
- Bazhenov, S.D.; Bildyukevich, A.V.; Volkov, A.V. Gas-Liquid Hollow Fiber Membrane Contactors for Different Applications. Fibers 2018, 6, 76. [Google Scholar] [CrossRef] [Green Version]
- Ghasem, N.; Al-Marzouqi, M.; Ismail, Z. Gas–liquid membrane contactor for ethylene/ethane separation by aqueous silver nitrate solution. Sep. Purif. Technol. 2014, 127, 140–148. [Google Scholar] [CrossRef]
- Ortiz, A.; Gorri, D.; Irabien, Á.; Ortiz, I. Separation of propylene/propane mixtures using Ag+–RTIL solutions. Evaluation and comparison of the performance of gas–liquid contactors. J. Membr. Sci. 2010, 360, 130–141. [Google Scholar] [CrossRef]
- Fallanza, M.; Ortiz, A.; Gorri, D.; Ortiz, I. Effect of liquid flow on the separation of propylene/propane mixtures with a gas/liquid membrane contactor using Ag+-RTIL solutions. Desalin. Water Treat. 2011, 27, 123–129. [Google Scholar] [CrossRef]
- Marjani, A.; Shirazian, S.; Ranjbar, M.; Ahmadi, M. Mathematical modeling of gas separation in flat-sheet membrane contactors. Orient. J. Chem. 2012, 28, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Lau, H.S.; Lau, S.K.; Soh, L.S.; Hong, S.U.; Gok, X.Y.; Yi, S.; Yong, W.F. State-of-the-Art Organic-and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. Membranes 2022, 12, 539. [Google Scholar] [CrossRef]
- Nymeijer, D.C.; Visser, T.; Assen, R.; Wessling, M. Composite hollow fiber gas–liquid membrane contactors for olefin/paraffin separation. Sep. Purif. Technol. 2004, 37, 209–220. [Google Scholar] [CrossRef]
- Nymeijer, K.; Visser, T.; Assen, R.; Wessling, M. Super selective membranes in gas–liquid membrane contactors for olefin/paraffin separation. J. Membr. Sci. 2004, 232, 107–114. [Google Scholar] [CrossRef]
- Khotimsky, V.S.; Tchirkova, M.V.; Litvinova, E.G.; Rebrov, A.I.; Bondarenko, G.N. Poly[1 -(trimethylgermyl)-1-propyne] and poly[1-(trimethylsilyl)-1-propyne] with various geometries: Their synthesis and properties. J. Polym. Sci. A. 2003, 41, 2133–2155. [Google Scholar] [CrossRef]
- Liu, C.; Karns, N.K. Stable Accelerated Transport Membrane for Olefin/Paraffin Separation. Patent Japan JP6788036B2, 16 April 2019. [Google Scholar]
- Bhat, S.D.; Aminabhavi, T.M. Pervaporation separation using sodium alginate and its modified membranes—A review. Sep. Purif. Rev. 2007, 36, 203–229. [Google Scholar] [CrossRef]
- Xu, D.; Hein, S.; Wang, K. Chitosan membrane in separation applications. Mater. Sci. Technol. 2008, 24, 1076–1087. [Google Scholar] [CrossRef]
- Anokhina, T.; Dmitrieva, E.; Volkov, A. Recovery of Model Pharmaceutical Compounds from Water and Organic Solutions with Alginate-Based Composite Membranes. Membranes 2022, 12, 235. [Google Scholar] [CrossRef]
- Tarusha, L.; Paoletti, S.; Travan, A.; Marsich, E. Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds. J. Mater. Sci. Mater. Med. 2018, 29, 22. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, J.; Lee, J.Y.; Kang, D.S.; Anil, S.; Kim, S.K.; Shim, M.S.; Kim, D.G. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int. J. Biol. Macromol. 2017, 98, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.P.; Zhang, B.; Zhang, J.; Luo, W.L.; Guo, Y.; Chen, S.J.; Long, Y.Z. Ag/alginate nanofiber membrane for flexible electronic skin. Nanotechnology 2017, 28, 445502. [Google Scholar] [CrossRef] [PubMed]
- Mohammed Fayaz, A.; Balaji, K.; Girilal, M.; Kalaichelvan, P.T.; Venkatesan, R. Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J. Agric. Food Chem. 2009, 57, 6246–6252. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Ma, X.; Shi, H.; Ma, T.; Tian, C.; Chen, Y.; Sun, X. Green synthesis of an alginate-coated silver nanoparticle shows high antifungal activity by enhancing its cell membrane penetrating ability. ACS Appl. Bio. Mater. 2019, 2, 4087–4096. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Zhong, L.; Wu, G. Preparation of high-stable silver nanoparticle dispersion by using sodium alginate as a stabilizer under gamma radiation. Radiat. Phys. Chem. 2022, 78, 251–255. [Google Scholar] [CrossRef]
- Sharma, S.; Sanpui, P.; Chattopadhyay, A.; Ghosh, S.S. Fabrication of antibacterial silver nanoparticle—Sodium alginate–chitosan composite films. Rsc Adv. 2012, 2, 5837–5843. [Google Scholar] [CrossRef]
- Zhao, X.; Xia, Y.; Li, Q.; Ma, X.; Quan, F.; Geng, C.; Han, Z. Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp. 2014, 444, 180–188. [Google Scholar] [CrossRef]
- Shao, Y.; Wu, C.; Wu, T.; Yuan, C.; Chen, S.; Ding, T.; Hu, Y. Green synthesis of sodium alginate-silver nanoparticles and their antibacterial activity. Int. J. Biol. Macromol. 2018, 111, 1281–1292. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, K.; Miao, J.; Yang, Z.; Li, Z.; Zhao, L.; Hu, Y. High-strength and anti-bacterial BSA/carboxymethyl chitosan/silver nanoparticles/calcium alginate composite hydrogel membrane for efficient dye/salt separation. Int. J. Biol. Macromol. 2022, 220, 267–279. [Google Scholar] [CrossRef]
- Mokhena, T.C.; Luyt, A.S. Development of multifunctional nano/ultrafiltration membrane based on a chitosan thin film on alginate electrospunnanofibres. J. Clean. Prod. 2017, 156, 470–479. [Google Scholar] [CrossRef]
- Dong, Y.Q.; Zhang, L.; Shen, J.N.; Song, M.Y.; Chen, H.L. Preparation of poly (vinyl alcohol)-sodium alginate hollow-fiber composite membranes and pervaporation dehydration characterization of aqueous alcohol mixtures. Desalination 2006, 193, 202–210. [Google Scholar] [CrossRef]
- Li, Y.; Jia, H.; Cheng, Q.; Pan, F.; Jiang, Z. Sodium alginate–gelatin polyelectrolyte complex membranes with both high water vapor permeance and high permselectivity. J. Membr. Sci. 2022, 375, 304–312. [Google Scholar] [CrossRef]
- Wu, K.; Xu, Z.L.; Wei, Y.M. Sodium alginate-polyvinyl alcohol/polysulfone (SA-PVA/PSF) hollow fiber composite pervaporation membrane for dehydration of ethanol-water solution. J. Shanghai Univ. 2008, 12, 163–170. [Google Scholar] [CrossRef]
- Myers, A.L.; Monson, P.A. Physical adsorption of gases: The case for absolute adsorption as the basis for thermodynamic analysis. Adsorption 2014, 20, 591–622. [Google Scholar] [CrossRef]
- Dewey, F.P. The Gay-Lussac Method of Silver Determination. Ind. Eng. Chem. 1913, 5, 209–214. [Google Scholar] [CrossRef]
- Matveev, D.N.; Vasilevsky, V.P.; Borisov, I.L.; Volkov, V.V.; Volkov, A.V. Effects of Dry-Jet Wet Spinning Parameters on Properties of Polysulfone Hollow Fiber Membranes. Russ. J. Appl. Chem. 2020, 93, 554–563. [Google Scholar]
- Matveev, D.N.; Kutuzov, K.A.; Vasilevsky, V.P. Effect of Draw Ratio on the Morphology of Polysulfone Hollow Fiber Membranes. Membr. Membr. Technol. 2020, 2, 351–356. [Google Scholar] [CrossRef]
- Borisov, I.L.; Grushevenko, E.A.; Volkov, A.V. Effect of Crosslinking Agent Length on the Transport Properties of Polydecylmethylsiloxane-Based Membranes. Membr. Membr. Technol. 2020, 2, 318–324. [Google Scholar] [CrossRef]
- Grushevenko, E.A.; Borisov, I.L.; Knyazeva, A.A.; Volkov, V.V.; Volkov, A.V. Polyalkylmethylsiloxanes composite membranes for hydrocarbon/methane separation: Eight component mixed-gas permeation properties. Sep. Purif. Technol. 2020, 241, 116696. [Google Scholar] [CrossRef]
- Pinnau, I.; He, Z. Pure- and mixed-gas permeation properties of polydimethylsiloxane for hydrocarbon/methane and hydrocarbon/hydrogen separation. J. Membr. Sci. 2004, 244, 227–233. [Google Scholar] [CrossRef]
- Anokhina, T.S.; Bazhenov, S.D.; Borisov, I.L.; Vasilevsky, V.P.; Vinokurov, V.A.; Volkov, A.V. Nanocellulose as modifier for hollow fiber ultrafiltration PSF membranes. Key Eng. Mater. 2019, 816, 238–243. [Google Scholar] [CrossRef]
- Latif, U.; Al-Rubeaan, K.; Saeb, A.T.M. A Review on Antimicrobial Chitosan-Silver Nanocomposites: A Roadmap Toward Pathogen Targeted Synthesis. Int. J. Polym. Mater. Polym. Biomater. 2022, 64, 448–458. [Google Scholar] [CrossRef]
- Gromov, D.G.; Savitsky, A.I.; Dubkov, S.V.; Gerasimenko, A.Y.; Kitsyuk, E.P.; Shaman, Y.P.; Sekacheva, M.I. An amplification device for raman light scattering. 2019. [Google Scholar]
- Aziz, S.B.; Karim, W.O.; Ghareeb, H.O. The deficiency of chitosan: AgNO3 polymer electrolyte incorporated with titanium dioxide filler for device fabrication and membrane separation technology. J. Mater. Res. Technol. 2022, 9, 4692–4705. [Google Scholar] [CrossRef]
- Pozun, Z.D.; Tran, K.; Shi, A.; Smith, R.H.; Henkelman, G. Why silver nanoparticles are effective for olefin/paraffin separations. J. Phys. Chem. C 2011, 115, 1811–1818. [Google Scholar] [CrossRef]
- Campos, A.C.C.; dos Reis, R.A.; Ortiz, A.; Gorri, D.; Ortiz, I. A perspective of solutions for membrane instabilities in olefin/paraffin separations: A review. Ind. Eng. Chem. Res. 2018, 57, 10071–10085. [Google Scholar] [CrossRef] [Green Version]
- Grushevenko, E.; Balynin, A.; Ashimov, R.; Sokolov, S.; Legkov, S.; Bondarenko, G.; Borisov, I.; Sadeghi, M.; Bazhenov, S.; Volkov, A. Hydrophobic Ag-Containing Polyoctylmethylsiloxane-Based Membranes for Ethylene/Ethane Separation in Gas-Liquid Membrane Contactor. Polymers. 2022, 14, 1625. [Google Scholar] [CrossRef]
Pressure above Membrane, kPa | 140 | 180 | 200 |
---|---|---|---|
Pethane, GPU | 3.2 | 2.4 | 1.2 |
Pethylene, GPU | 192.7 | 168.7 | 132.5 |
αmix | 60 | 70 | 110 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmitrieva, E.; Grushevenko, E.; Razlataya, D.; Golubev, G.; Rokhmanka, T.; Anokhina, T.; Bazhenov, S. Alginate Ag for Composite Hollow Fiber Membrane: Formation and Ethylene/Ethane Gas Mixture Separation. Membranes 2022, 12, 1090. https://doi.org/10.3390/membranes12111090
Dmitrieva E, Grushevenko E, Razlataya D, Golubev G, Rokhmanka T, Anokhina T, Bazhenov S. Alginate Ag for Composite Hollow Fiber Membrane: Formation and Ethylene/Ethane Gas Mixture Separation. Membranes. 2022; 12(11):1090. https://doi.org/10.3390/membranes12111090
Chicago/Turabian StyleDmitrieva, Evgenia, Evgenia Grushevenko, Daria Razlataya, George Golubev, Tatiana Rokhmanka, Tatyana Anokhina, and Stepan Bazhenov. 2022. "Alginate Ag for Composite Hollow Fiber Membrane: Formation and Ethylene/Ethane Gas Mixture Separation" Membranes 12, no. 11: 1090. https://doi.org/10.3390/membranes12111090
APA StyleDmitrieva, E., Grushevenko, E., Razlataya, D., Golubev, G., Rokhmanka, T., Anokhina, T., & Bazhenov, S. (2022). Alginate Ag for Composite Hollow Fiber Membrane: Formation and Ethylene/Ethane Gas Mixture Separation. Membranes, 12(11), 1090. https://doi.org/10.3390/membranes12111090