Quality Parameters of PE–Pomace Based Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Process of Producing Membranes
2.2. Quality Parameters
2.2.1. Tensile Test
2.2.2. Water Vapor Transport
2.2.3. Determination of the Contact Angle
2.2.4. Determination of Shrinkage
2.2.5. Measurement of Pomace after Oil Extraction Particles’ Size and Their Percentage Share in the Membrane’s Surface
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Tauferova, A.; Pospiech, M.; Javurkova, Z.; Tremlova, B.; Dordevic, D.; Jancikova, S.; Tesikova, K.; Zdarsky, M.; Vitez, T.; Vitezova, M. Plant Byproducts as Part of Edible Coatings: A Case Study with Parsley, Grape and Blueberry Pomace. Polymers 2021, 13, 2578. [Google Scholar] [CrossRef] [PubMed]
- Morinaga, H.; Haibara, S.; Ashizawa, S. Reinforcement of bio-based network polymer with wine pomace. Polym. Compos. 2021, 42, 2973–2981. [Google Scholar] [CrossRef]
- Borys, B. Produkty uboczne biopaliw w żywieniu owiec—Makuch rzepakowy i słonecznikowy. Wiadomości Zootech. 2014, 4, 18–35. [Google Scholar]
- Marcos, C.N.; de Evan, T.; Molina-Alcaide, E.; Carro, M.D. Nutritive value of tomato pomace for ruminants and its influence on in vitro methane production. Annimals 2019, 9, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molinuevo-Salces, B.; Riaño, B.; Hijosa-Valsero, M.; González-García, I.; Paniagua-García, A.I.; Hernández, D.; Garita-Cambronero, J.; Díez-Antolínez, R.; García-González, M.C. Valorization of apple pomaces for biofuel production: A biorefinery approach. Biomass Bioenergy 2020, 142, 105785. [Google Scholar] [CrossRef]
- Krasowska, M.; Kowalczyk-Sadowy, M. Evaluation of the possibility of using apple pomace for fertilizing purposes. J. Res. Appl. Agric. Eng. 2018, 63, 89–93. [Google Scholar]
- Fatullayeva, S.; Tagiyev, D.; Zeynalov, N.; Mammadova, S.; Aliyeva, E. Recent advances of chitosan-based polymers in biomedical applications and environmental protection. J. Polym. Res. 2022, 29, 259. [Google Scholar] [CrossRef]
- Santos, T.C.; Höring, B.; Reise, K.; Marques, A.P.; Silva, S.S.; Oliveira, J.M.; Mano, J.; Castro, A.G.; Reis, R.L.; van Griensven, M. In vivo performance of chitosan/soy-based membranes as wound-dressing devices for acute skin wounds. Tissue Eng. Part A 2013, 19, 860–869. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.R.V.; Alves, V.D.; Coelhoso, I.M. Polysaccharide-based membranes in food packaging applications. Membranes 2016, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Saldaña, M.D.A. Use of potato by-products and gallic acid for development of bioactive film packaging by subcritical water technology. J. Supercrit. Fluids 2019, 143, 97–106. [Google Scholar] [CrossRef]
- Polman, E.M.N.; Gruter, G.-J.M.; Parsons, J.R.; Tietema, A. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Sci. Total Environ. 2021, 753, 141953. [Google Scholar] [CrossRef]
- García-Hernández, A.B.; Morales-Sánchez, E.; Berdeja-Martínez, B.M.; Escamilla-García, M.; Salgado-Cruz, M.P.; Rentería-Ortega, M.; Farrera-Rebollo, R.R.; Vega-Cuellar, M.A.; Calderón-Domínguez, G. PVA-based electrospun biomembranes with hydrolyzed collagen and ethanolic extract of hypericum perforatum for potential use aswound dressing: Fabrication and characterization. Polymers 2022, 14, 1981. [Google Scholar] [CrossRef]
- Santhosh, R.; Nath, D.; Sarkar, P. Novel food packaging materials including plant- based byproducts: A review. Trends Food Sci. Technol. 2021, 118, 471–489. [Google Scholar] [CrossRef]
- Fiorentini, F.; Suarato, G.; Grisoli, P.; Zych, A.; Bertorelli, R.; Athanassiou, A. Plant-based biocomposite films as potential antibacterial patches for skin wound healing. Eur. Polym. J. 2021, 150, 110414. [Google Scholar] [CrossRef]
- Zhang, N.; Li, X.; Ye, J.; Yang, Y.; Huang, Y.; Zhang, X.; Xiao, M. Effect of gellan gum and xanthan gum synergistic interactions and plasticizers on physical properties of plant-based enteric polymer films. Polymers 2020, 12, 121. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Sun, B.; Wang, Z.; Ni, Y. Mechanical and water vapor barrier properties of bagasse hemicellulose-based films. BioResources 2016, 11, 4226–4236. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, M.S.; Niazi, M.B.K.; Jahan, Z.; Ahmad, T.; Hussain, A. Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr. Polym. 2018, 184, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Talja, R.A.; Helén, H.; Roos, Y.H.; Jouppila, K. Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydr. Polym. 2007, 67, 288–295. [Google Scholar] [CrossRef]
- Šimkovic, I.; Kelnar, I.; Mendichi, R.; Bertok, T.; Filip, J. Composite films prepared from agricultural by-products. Carbohydr. Polym. 2017, 156, 77–85. [Google Scholar] [CrossRef]
- Deng, Q.; Zhao, Y. Physicochemical, nutritional, and antimicrobial properties of wine grape (cv. merlot) pomace extract-based films. J. Food Sci. 2011, 76, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, S.; Forough, M.; Amjadi, S.; Kouzegaran, V.J.; Almasi, H.; Garavand, F.; Zargar, M. Plant protein-based nanocomposite films: A review on the used nanomaterials, characteristics, and food packaging applications. Crit. Rev. Food Sci. Nutr. 2022, 6, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Tozluoğlu, A.; Poyraz, B.; Candan, Z. Examining the efficiency of mechanic/enzymatic pretreatments in micro/nanofibrillated cellulose production. Maderas Cienc. Tecnol. 2018, 20, 67–84. [Google Scholar] [CrossRef] [Green Version]
- Tozluoğlu, A.; Poyraz, B.; Candan, Z.; Yavuz, M.; Arslan, R. Biofilms from micro/nanocellulose of NaBH4- modified kraft pulp. Bull. Mater. Sci. 2017, 40, 699–710. [Google Scholar] [CrossRef] [Green Version]
- Tozluoğlu, A.; Poyraz, B.; Mcdonald, A.G.; Candan, Z. Developing nanocellulose-based biofilms from kraft and NaBH4-modified kraft pulp. Cellul. Chem. Technol. 2018, 52, 223–237. [Google Scholar]
- Poyraz, B.; Tozluoğlu, A.; Candan, Z.; Demir, A. Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites. J. Polym. Eng. 2017, 37, 921–931. [Google Scholar] [CrossRef]
- Otoni, C.G.; Avena-Bustillos, R.J.; Azeredo, H.M.C.; Lorevice, M.V.; Moura, M.R.; Mattoso, L.H.C.; McHugh, T.H. Recent advances on edible films based on fruits and vegetables—A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1151–1169. [Google Scholar] [CrossRef] [Green Version]
- Toma, C.-C.; Olah, N.-K.; Vlase, L.; Mogoşan, C.; Movan, A. Comparative studies on polyphenolic composition, antioxidant and diuretic effects of Nigella sativa L. (black cumin) and Nigella damascena L. (Lady-in-a-Mist) seeds. Molecules 2015, 20, 9560–9574. [Google Scholar] [CrossRef] [Green Version]
- Merino, D.; Bertolacci, L.; Paul, U.C.; Simonutti, R.; Athanassiou, A. avocado peels and seeds: Processing strategies for the development of highly antioxidant bioplastic films. ACS Appl. Mater. Interfaces 2021, 13, 38688–38699. [Google Scholar] [CrossRef]
- Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt, A. Improving properties of thermoplastic starch films by incorporating active extracts and cellulose fibres isolated from rice or coffee husk. Shelf Life 2019, 22, 100383. [Google Scholar] [CrossRef]
- Chaudhary, V.; Ahmad, F. A review on plant fiber reinforced thermoset polymers for structural and frictional composites. Polym. Test. 2020, 91, 106792. [Google Scholar] [CrossRef]
- Edhirej, A.; Sapuan, S.M.; Jawaid, M.; Zahari, N.I. Preparation and characterization of cassava bagasse reinforced thermoplastic cassava starch. Fibers Polym. 2017, 18, 162–171. [Google Scholar] [CrossRef]
- Bayart, M.; Gauvin, F.; Foruzanmehr, M.R.; Elkoun, S.; Robert, M. Mechanical and moisture absorption characterization of PLA composites reinforced with nano-coated flax fibers. Fibers Polym. 2017, 18, 1288–1295. [Google Scholar] [CrossRef]
- Escamilla-García, M.; Reyes-Basurto, A.; García-Almendárez, B.E.; Hernández-Hernández, E.; Calderón-Domínguez, G.; Rossi-Márquez, G.; Regalado-González, C. Modified starch-chitosan edible films: Physicochemical and mechanical characterization. Coatings 2017, 7, 224. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Katba Bader, Y.M.; Luciua, L.A.; Yang, J. Improved stress relaxation resistance of composites films by soy protein polimer. Compos. Commun. 2021, 24, 100644. [Google Scholar] [CrossRef]
- Merino, D.; Alvarez, V.A. Green microcomposites from renewable resources: Effect of seaweed (Undaria pinnatifida) as filler on corn starch–chitosan film properties. J. Polym. Environ. 2020, 28, 500–516. [Google Scholar] [CrossRef]
Parameter | PE-B (SD) * | PE-F (SD) * | PE-C (SD) * | PE (SD) * |
---|---|---|---|---|
Breaking load [N] | 16.03 a (3.88) | 43.50 b (3.30) | 46.10 b (6.07) | 121.20 c (23.95) |
Thickness [mm] | 0.31 a (0.01) | 0.42 b (0.01) | 0.42 b (0.02) | 0.31 a (0.02) |
Young’s modulus [GPa] | 12.63 a (0.95) | 10.3 a (0.86) | 18.27 b (1.17) | 0.32 c (0.04) |
Parameter | Sum of Squares (SS) | Significance Level (p) | Percentage of Contribution (Pc) | Error * |
---|---|---|---|---|
Breaking load [N] | 45,752.8 | 0.000000 | 92.2 | 7.8 |
Elongation [mm] | 835,625.6 | 0.00 | 96.6 | 3.4 |
Thickness [mm] | 0.076486 | 0.000000 | 84.1 | 15.9 |
Tensile strength [MPa] | 737.9601 | 0.00 | 94.6 | 5.4 |
Young’s modulus | 505.461 | 0.000000 | 98.3 | 1.7 |
WVP [g/m2 · 24 h] | 61,517.8 | 0.022900 | 72.4 | 27.6 |
Contact angle [°] (5 s) | 7291.9 | 0.00 | 91.2 | 8.8 |
Contact angle [°] (20 s) | 8297.8 | 0.00 | 92.1 | 7.9 |
Contact angle [°] (40 s) | 8531.2 | 0.00 | 92.6 | 7.4 |
Contact angle [°] (60 s) | 8616.0 | 0.00 | 93.3 | 6.7 |
Shrinkage 300 s [%] Shrinkage 1800 s [%] | 20.72165 | 0.000052 0.000135 | 74.5 71.2 | 25.5 |
74.8326 | 28.8 |
Parameter | PE-B (SD) * | PE-F (SD) * | PE-C (SD) * | PE (SD) * |
---|---|---|---|---|
WVP [g/m2 · 24 h] | 256.80 b | 105.99 ab | 110.06 ab | 55.03 a |
Shrinkage 300 s [%] | 0.47 a (0.32) | 1.00 a (0.29) | 1.33 a (1.12) | 3.18 b (0.56) |
Shrinkage 1800 s [%] | 3.08 a (1.37) | 3.08 a (1.37) | 2.31 a (1.02) | 7.23 b (1.66) |
Parameter | Time [s] | PE-B (SD) * | PE-F (SD) * | PE-C (SD) * | PE (SD) * |
---|---|---|---|---|---|
Contact angle [°] for water | 5 | 35.3 a (5.3) | 60.9 b (4.2) | 69.7 c (4.5) | 69.3 c (4.5) |
20 | 32.5 a (4.3) | 60.7 b (4,4) | 69.3 c (4.2) | 68.5 c (4.7) | |
40 | 31.7 a (4.2) | 60.0 b (4.1) | 69.2 c (4.2) | 68.1 c (4.8) | |
60 | 31.2 a (4.1) | 59.1 b (3.8) | 69.1 c (4.2) | 67.7 c (4.9) |
Parameter | PE-B (SD) * | PE-F (SD) * | PE-C (SD) * |
---|---|---|---|
Particle size range [µm] | 0.148 × 0.227 (0.091) | 0.152 × 0.226 (0.112) | 0.160 × 0.270 (0.163) |
Plant particles in 10 mm2 [%] | 59.52 (2.54) | 52.16 (6.87) | 58.30 (3.09) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betlej, I.; Salerno-Kochan, R.; Borysiuk, P.; Boruszewski, P.; Monder, S.; Krajewski, K.; Andres, B.; Krochmal-Marczak, B.; Pisulewska, E.; Danecki, L.; et al. Quality Parameters of PE–Pomace Based Membranes. Membranes 2022, 12, 1086. https://doi.org/10.3390/membranes12111086
Betlej I, Salerno-Kochan R, Borysiuk P, Boruszewski P, Monder S, Krajewski K, Andres B, Krochmal-Marczak B, Pisulewska E, Danecki L, et al. Quality Parameters of PE–Pomace Based Membranes. Membranes. 2022; 12(11):1086. https://doi.org/10.3390/membranes12111086
Chicago/Turabian StyleBetlej, Izabela, Renata Salerno-Kochan, Piotr Borysiuk, Piotr Boruszewski, Sławomir Monder, Krzysztof Krajewski, Bogusław Andres, Barbara Krochmal-Marczak, Elżbieta Pisulewska, Leszek Danecki, and et al. 2022. "Quality Parameters of PE–Pomace Based Membranes" Membranes 12, no. 11: 1086. https://doi.org/10.3390/membranes12111086
APA StyleBetlej, I., Salerno-Kochan, R., Borysiuk, P., Boruszewski, P., Monder, S., Krajewski, K., Andres, B., Krochmal-Marczak, B., Pisulewska, E., Danecki, L., & Pochwała, S. (2022). Quality Parameters of PE–Pomace Based Membranes. Membranes, 12(11), 1086. https://doi.org/10.3390/membranes12111086