Modelling of Proton Exchange Membrane Fuel Cells with Sinusoidal Approach
Abstract
:1. Introduction
- A Sinusoidal FC model was developed to identify the fuel cell behavior for a profile of the operating current of a fuel cell for steady-state and dynamic responses.
- Experimental data from a commercial Nexa fuel Cell Power module were used to train and estimate model parameters that best fit the different profiles for testing.
- The results were compared using analytical and numerical techniques under the same data acquisition parameters to ensure a fair comparison between the models.
2. Sinusoidal Model
Algorithm 1:Unconstrained nonlinear optimization procedure |
Input: Measured dataset
1: Use the mathematical model defined by Equation (2)2:Calculate the residual vector’s entries 3:Determine the Jacobian matrix 4:Use a Non-linear Least Squares algorithm to estimate the optimal parameters, as described in Equation (5) Output: The vector parameter |
- x: electric current I,
- : voltage .
3. Experimental Results
3.1. Training Model Used in the Fuel Cell System
3.2. Validating Model in the Fuel Cell System
3.3. Comparison of the Sinusoidal Model with the Parameter Identification by Means of the Evolution Strategy, Diffusive Global Model, and Gaussian Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ES | Evolution strategy |
FC | Fuel cell |
LS | linear least squares |
MAE | Mean absolute error |
PEMFC | Proton exchange membrane fuel cell |
RE | Relative error |
RMSE | Root mean square error |
SD | Standard deviation |
References
- Li, Y.; Ma, Z.; Zheng, M.; Li, D.; Lu, Z.; Xu, B. Performance analysis and optimization of a high-temperature PEMFC vehicle based on particle swarm optimization algorithm. Membranes 2021, 11, 691. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.D.; Zhu, X.J.; Cao, G.Y. Modeling a PEMFC by a support vector machine. J. Power Sources 2006, 160, 293–298. [Google Scholar] [CrossRef]
- San Martín, I.; Ursúa, A.; Sanchis, P. Modelling of PEM fuel cell performance: Steady-state and dynamic experimental validation. Energies 2014, 7, 670–700. [Google Scholar] [CrossRef] [Green Version]
- Menesy, A.S.; Sultan, H.M.; Selim, A.; Ashmawy, M.G.; Kamel, S. Developing and applying chaotic harris hawks optimization technique for extracting parameters of several proton exchange membrane fuel cell stacks. IEEE Access 2019, 8, 1146–1159. [Google Scholar] [CrossRef]
- Lee, P.H.; Han, S.S.; Hwang, S.S. Three-dimensional transport modeling for proton exchange membrane (PEM) fuel cell with micro parallel flow field. Sensors 2008, 8, 1475–1487. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Z.; Song, H.; Yang, X.; Jiang, P.; Chen, R.; Harandi, H.B.; Zhang, H.; Pan, M. Microstructure Reconstruction and Multiphysics Dynamic Distribution Simulation of the Catalyst Layer in PEMFC. Membranes 2022, 12, 1001. [Google Scholar] [CrossRef]
- Jawalkar, S.; Nataraj, S.; Raghu, A.; Aminabhavi, T. Molecular dynamics simulations on the blends of poly (vinyl pyrrolidone) and poly (bisphenol-A-ether sulfone). J. Appl. Polym. Sci. 2008, 108, 3572–3576. [Google Scholar] [CrossRef]
- Dickinson, E.J.; Smith, G. Modelling the proton-conductive membrane in practical polymer electrolyte membrane fuel cell (PEMFC) simulation: A review. Membranes 2020, 10, 310. [Google Scholar] [CrossRef]
- Wang, W.; Qu, Z.; Wang, X.; Zhang, J. A molecular model of PEMFC catalyst layer: Simulation on reactant transport and thermal conduction. Membranes 2021, 11, 148. [Google Scholar] [CrossRef]
- González-Castaño, C.; Lorente-Leyva, L.L.; Alpala, J.; Revelo-Fuelagán, J.; Peluffo-Ordóñez, D.H.; Restrepo, C. Dynamic modeling of a proton-exchange membrane fuel cell using a gaussian approach. Membranes 2021, 11, 953. [Google Scholar] [CrossRef]
- Ali, M.; El-Hameed, M.; Farahat, M. Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer. Renew. Energy 2017, 111, 455–462. [Google Scholar] [CrossRef]
- Mo, Z.J.; Zhu, X.J.; Wei, L.Y.; Cao, G.Y. Parameter optimization for a PEMFC model with a hybrid genetic algorithm. Int. J. Energy Res. 2006, 30, 585–597. [Google Scholar] [CrossRef]
- Menesy, A.S.; Sultan, H.M.; Korashy, A.; Banakhr, F.A.; Ashmawy, M.G.; Kamel, S. Effective parameter extraction of different polymer electrolyte membrane fuel cell stack models using a modified artificial ecosystem optimization algorithm. IEEE Access 2020, 8, 31892–31909. [Google Scholar] [CrossRef]
- Fathy, A.; Abd Elaziz, M.; Alharbi, A.G. A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell. Renew. Energy 2020, 146, 1833–1845. [Google Scholar] [CrossRef]
- Agwa, A.M.; El-Fergany, A.A.; Sarhan, G.M. Steady-state modeling of fuel cells based on atom search optimizer. Energies 2019, 12, 1884. [Google Scholar] [CrossRef] [Green Version]
- Louzazni, M.; Al-Dahidi, S.; Mussetta, M. Fuel Cell Characteristic Curve Approximation Using the Bézier Curve Technique. Sustainability 2020, 12, 8127. [Google Scholar] [CrossRef]
- Restrepo, C.; Konjedic, T.; Garces, A.; Calvente, J.; Giral, R. Identification of a proton-exchange membrane fuel cell’s model parameters by means of an evolution strategy. IEEE Trans. Ind. Inform. 2014, 11, 548–559. [Google Scholar] [CrossRef]
- Restrepo, C.; Garcia, G.; Calvente, J.; Giral, R.; Martínez-Salamero, L. Static and dynamic current–voltage modeling of a proton exchange membrane fuel cell using an input–output diffusive approach. IEEE Trans. Ind. Electron. 2015, 63, 1003–1015. [Google Scholar] [CrossRef]
- Grossman, M. Parametric curve fitting. Comput. J. 1971, 14, 169–172. [Google Scholar] [CrossRef]
- Fletcher, R. Practical Methods of Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Pourbagher, R.; Derakhshandeh, S.Y. Application of high-order Levenberg–Marquardt method for solving the power flow problem in the ill-conditioned systems. IET Gener. Transm. Distrib. 2016, 10, 3017–3022. [Google Scholar] [CrossRef]
- Yuan, Y.-X. A review of trust region algorithms for optimization. In Proceedings of the 4th International Congress on Industrial & Applied Mathematics (ICIAM 99), Edinburgh, UK, 5–9 July 1999; pp. 271–282. [Google Scholar]
- Bonhoff, K. The NEXA {sup T} M 1200 Watt Compact Power Supply. In Proceedings of the Fuel Cell World, Lucerne, Switzerland, 1–5 July 2002. [Google Scholar]
- Kim, H.-I.; Cho, C.Y.; Nam, J.H.; Shin, D.; Chung, T.-Y. A simple dynamic model for polymer electrolyte membrane fuel cell (PEMFC) power modules: Parameter estimation and model prediction. Int. J. Hydrog. Energy 2010, 35, 3656–3663. [Google Scholar] [CrossRef]
- Ramos Paja, C.A.; Romero Nevado, A.; Giral Castillon, R.; Martinez-Salamero, L.; Sanchez Saenz, C.I. Switching and linear power stages evaluation for PEM fuel cell emulation. Int. J. Circuit Theory Appl. 2011, 39, 475–499. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Castaño, C.; Aalaila, Y.; Restrepo, C.; Revelo-Fuelagán, J.; Peluffo-Ordóñez, D. Modelling of Proton Exchange Membrane Fuel Cells with Sinusoidal Approach. Membranes 2022, 12, 1056. https://doi.org/10.3390/membranes12111056
González-Castaño C, Aalaila Y, Restrepo C, Revelo-Fuelagán J, Peluffo-Ordóñez D. Modelling of Proton Exchange Membrane Fuel Cells with Sinusoidal Approach. Membranes. 2022; 12(11):1056. https://doi.org/10.3390/membranes12111056
Chicago/Turabian StyleGonzález-Castaño, Catalina, Yahya Aalaila, Carlos Restrepo, Javier Revelo-Fuelagán, and Diego Hernán Peluffo-Ordóñez. 2022. "Modelling of Proton Exchange Membrane Fuel Cells with Sinusoidal Approach" Membranes 12, no. 11: 1056. https://doi.org/10.3390/membranes12111056
APA StyleGonzález-Castaño, C., Aalaila, Y., Restrepo, C., Revelo-Fuelagán, J., & Peluffo-Ordóñez, D. (2022). Modelling of Proton Exchange Membrane Fuel Cells with Sinusoidal Approach. Membranes, 12(11), 1056. https://doi.org/10.3390/membranes12111056