Magnesium-Doped Sr2(Fe,Mo)O6−δ Double Perovskites with Excellent Redox Stability as Stable Electrode Materials for Symmetrical Solid Oxide Fuel Cells
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Crystal Structure and the Redox Stability
3.2. Thermal Expansion Properties and Oxygen Nonstoichiometry
3.3. The Transport Properties
3.4. Chemical Stability and Compatibility of Electrode Materials with Electrolytes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Myung, J.-H.; Neagu, D.; Miller, D.N.; Irvine, J. Switching on electrocatalytic activity in solid oxide cells. Nature 2016, 537, 528–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irvine, J.T.S.; Neagu, D.; Verbraeken, M.C.; Chatzichristodoulou, C.; Graves, C.R.; Mogensen, M.B. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 2016, 1, 15014. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Vohs, J.M.; Gorte, R.J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 2000, 404, 265–267. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Dass, R.I.; Xing, Z.-L.; Goodenough, J.B.; Goldman, A.S.; Roy, A.H.; Ahuja, R.; Schinski, W.; Brookhart, M. Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells. Science 2006, 312, 254–257. [Google Scholar] [CrossRef]
- Graves, C.R.; Ebbesen, S.D.; Jensen, S.H.; Simonsen, S.B.; Mogensen, M.B. Eliminating degradation in solid oxide electrochemical cells by reversible operation. Nat. Mater. 2015, 14, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Irvine, J. A redox-stable efficient anode for solid-oxide fuel cells. Nat. Mater. 2003, 2, 320–323. [Google Scholar] [CrossRef]
- Laguna-Bercero, M.A. Recent advances in high temperature electrolysis using solid oxide fuel cells: A review. J. Power Sources 2012, 203, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Hughes, G.A.; Railsback, J.G.; Yakal-Kremski, K.J.; Butts, D.M.; Barnett, S.A. Degradation of (La0.8Sr0.2)0.98MnO3−δ–Zr0.84Y0.16O2−γ composite electrodes during reversing current operation. Faraday Discuss. 2015, 182, 365–377. [Google Scholar] [CrossRef]
- Badding, M.; Brown, J.; Ketcham, T.; Julien, D.S. Solid Oxide Fuel Cells with Symmetric Composite Electrodes. U.S. Patent 20010044043, 15 May 2001. Available online: https://patents.justia.com/patent/20010044043#description (accessed on 1 January 2020).
- Bastidas, D.M.; Tao, S.; Irvine, J.T.S. A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes. J. Mater. Chem. 2006, 16, 1603–1605. [Google Scholar] [CrossRef]
- Ruiz-Morales, J.C.; Canales-Vázquez, J.; Peña-Martínez, J.; Marrero-López, D.; Núñez, P. On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3−δ as both anode and cathode material with improved microstructure in solid oxide fuel cells. Electrochim. Acta 2006, 52, 278–284. [Google Scholar] [CrossRef]
- Cable, T.L.; Setlock, J.A.; Farmer, S.C.; Eckel, A.J. Regenerative Performance of the NASA Symmetrical Solid Oxide Fuel Cell Design. Int. J. Appl. Ceram. Technol. 2011, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Wang, W.; Liu, M.; Tade, M.; Shao, Z. Progress and Prospects in Symmetrical Solid Oxide Fuel Cells with Two Identical Electrodes. Adv. Energy Mater. 2015, 5, 1500188. [Google Scholar] [CrossRef]
- Sengodan, S.; Choi, S.; Jun, A.; Shin, T.H.; Ju, Y.-W.; Jeong, H.Y.; Shin, J.; Irvine, J.; Kim, G. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 2015, 14, 205–209. [Google Scholar] [CrossRef]
- Zamudio-García, J.; Caizán-Juanarena, L.; Porras-Vázquez, J.M.; Losilla, E.R.; Marrero-López, D. A review on recent advances and trends in symmetrical electrodes for solid oxide cells. J. Power Sources 2022, 520, 230852. [Google Scholar] [CrossRef]
- Zhu, K.; Luo, B.; Liu, Z.; Wen, X. Recent advances and prospects of symmetrical solid oxide fuel cells. Ceram. Int. 2022, 48, 8972–8986. [Google Scholar] [CrossRef]
- Ding, H.; Fang, S.; Yang, Y.; Yang, Y.; Wu, W.; Tao, Z. High-performing and stable electricity generation by ceramic fuel cells operating in dry methane over 1000 hours. J. Power Sources 2018, 401, 322–328. [Google Scholar] [CrossRef]
- Ding, H.; Tao, Z.; Liu, S.; Zhang, J. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells. Sci. Rep. 2015, 5, 18129. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wan, Y.; Hua, Z.; Tang, K.; Xia, C. Tungsten-Doped PrBaFe2O5+δ Double Perovskite as a High-Performance Electrode Material for Symmetrical Solid Oxide Fuel Cells. ACS Appl. Energy Mater. 2021, 4, 8401–8409. [Google Scholar] [CrossRef]
- Xiao, G.; Liu, Q.; Zhao, F.; Zhang, L.; Xia, C.; Chen, F. Sr2Fe1.5Mo0.5O6 as Cathodes for Intermediate -Temperature Solid Oxide Fuel Cells with La0.8Sr0.2Ga0.87Mg0.13O3 Electrolyte. J. Electrochem. Soc. 2011, 158, B455. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-H.; Dass, R.I.; Denyszyn, J.C.; Goodenough, J.B. Synthesis and Characterization of Sr2MgMoO6−δ: An Anode Material for the Solid Oxide Fuel Cell. J. Electrochem. Soc. 2006, 153, A1266. [Google Scholar] [CrossRef]
- Marrero-López, D.; Peña-Martínez, J.; Ruiz-Morales, J.C.; Gabás, M.; Núñez, P.; Aranda, M.A.G.; Ramos-Barrado, J.R. Redox behaviour, chemical compatibility and electrochemical performance of Sr2MgMoO6−δ as SOFC anode. Solid State Ion. 2010, 180, 1672–1682. [Google Scholar] [CrossRef]
- Skutina, L.; Filonova, E.; Medvedev, D.; Maignan, A. Undoped Sr2MMoO6 Double Perovskite Molybdates (M = Ni, Mg, Fe) as Promising Anode Materials for Solid Oxide Fuel Cells. Materials 2021, 14, 1715. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Świerczek, K. Physicochemical properties of rock salt-type ordered Sr2MMoO6 (M = Mg, Mn, Fe, Co, Ni) double perovskites. J. Eur. Ceram. Soc. 2014, 34, 4273–4284. [Google Scholar] [CrossRef]
- Zheng, K.; Świerczek, K. A- and B-site doping effect on physicochemical properties of Sr2−xBaxMMoO6 (M == Mg, Mn, Fe) double perovskites—Candidate anode materials for SOFCs. Funct. Mater. Lett. 2016, 9, 1641002. [Google Scholar] [CrossRef]
- Zheng, K.; Świerczek, K.; Zając, W.; Klimkowicz, A. Rock salt ordered-type double perovskite anode materials for solid oxide fuel cells. Solid State Ion. 2014, 257, 9–16. [Google Scholar] [CrossRef]
- Zheng, K.; Świerczek, K.; Bratek, J.; Klimkowicz, A. Cation-ordered perovskite-type anode and cathode materials for solid oxide fuel cells. Solid State Ion. 2014, 262, 354–358. [Google Scholar] [CrossRef]
- Zheng, K.; Świerczek, K.; Polfus, J.M.; Sunding, M.F.; Pishahang, M.; Norby, T. Carbon Deposition and Sulfur Poisoning in SrFe0.75Mo0.25O3-δ and SrFe0.5Mn0.25Mo0.25O3-δ Electrode Materials for Symmetrical SOFCs. J. Electrochem. Soc. 2015, 162, F1078–F1087. [Google Scholar] [CrossRef]
- Liu, Q.; Dong, X.; Xiao, G.; Zhao, F.; Chen, F. A Novel Electrode Material for Symmetrical SOFCs. Adv. Mater. 2010, 22, 5478–5482. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, Y.; Wang, Y.; Li, Y. Sr2Fe2−xMoxO6−δ perovskite as an anode in a solid oxide fuel cell: Effect of the substitution ratio. Catal. Today 2016, 259, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Goodenough, J.B.; Huang, Y.-H. Alternative anode materials for solid oxide fuel cells. J. Power Sources 2007, 173, 1. [Google Scholar] [CrossRef]
- Zheng, K.; Świerczek, K. Evaluation of W-containing Sr1 −xBaxFe0.75W0.25O3–δ (x = 0, 0.5, 1) anode materials for solid oxide fuel cells. Solid State Ion. 2016, 288, 124–129. [Google Scholar] [CrossRef]
- Wright, J.H.; Virkar, A.V.; Liu, Q.; Chen, F. Electrical characterization and water sensitivity of Sr2Fe1.5Mo0.5O6−δ as a possible solid oxide fuel cell electrode. J. Power Sources 2013, 237, 13–18. [Google Scholar] [CrossRef]
- Fang, T.-T.; Ko, T.-F. Factors Affecting the Preparation of Sr2Fe2−xMoxO6. J. Am. Ceram. Soc. 2003, 86, 1453–1455. [Google Scholar] [CrossRef]
- He, F.; Hou, M.; Zhu, F.; Liu, D.; Zhang, H.; Yu, F.; Zhou, Y.; Ding, Y.; Liu, M.; Chen, Y. Building Efficient and Durable Hetero-Interfaces on a Perovskite-Based Electrode for Electrochemical CO2 Reduction. Adv. Energy Mater. 2022, 2202175. [Google Scholar] [CrossRef]
- Zheng, K. Ti-doped Sr2Fe1.4-xTixMo0.6O6-δ Double Perovskites with Improved Stability as Anode Materials for Solid Oxide Fuel Cells. Mater. Res. Bull. 2020, 128, 110877. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0025540820305882 (accessed on 1 January 2021). [CrossRef]
- He, B.; Wang, Z.; Zhao, L.; Pan, X.; Wu, X.; Xia, C. Ti-doped molybdenum-based perovskites as anodes for solid oxide fuel cells. J. Power Sources 2013, 241, 627–633. [Google Scholar] [CrossRef]
- Du, Z.; Zhao, H.; Li, S.; Zhang, Y.; Chang, X.; Xia, Q.; Chen, N.; Gu, L.; Świerczek, K.; Li, Y.; et al. Exceptionally High Performance Anode Material Based on Lattice Structure Decorated Double Perovskite Sr2FeMo2/3Mg1/3O6−δ for Solid Oxide Fuel Cells. Adv. Energy Mater. 2018, 8, 1800062. [Google Scholar] [CrossRef]
- Zapata-Ramírez, V.; Mather, G.C.; Azcondo, M.T.; Amador, U.; Perez-Coll, D. Electrical and electrochemical properties of the Sr(Fe,Co,Mo)O3−δ system as air electrode for reversible solid oxide cells. J. Power Sources 2019, 437, 226895. [Google Scholar] [CrossRef]
- Xie, Z.; Zhao, H.; Du, Z.; Chen, T.; Chen, N.; Liu, X.; Skinner, S.J. Effects of Co Doping on the Electrochemical Performance of Double Perovskite Oxide Sr2MgMoO6−δ as an Anode Material for Solid Oxide Fuel Cells. J. Phys. Chem. C 2012, 116, 9734–9743. [Google Scholar] [CrossRef]
- Cao, Y.; Zhu, Z.; Zhao, Y.; Zhao, W.; Wei, Z.; Liu, T. Development of tungsten stabilized SrFe0.8W0.2O3-δmaterial as novel symmetrical electrode for solid oxide fuel cells. J. Power Sources 2020, 455, 227951. [Google Scholar] [CrossRef]
- Larson, A.C.; Von Dreele, R.B. General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748 (2004). Available online: https://11bm.xray.aps.anl.gov/documents/GSASManual.pdf (accessed on 1 January 2021).
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Niemczyk, A.; Świerczek, K.; Stępień, A.; Naumovich, Y.; Dąbrowa, J.; Zajusz, M.; Zheng, K.; Dabrowski, B. Co-free triple perovskite La1.5Ba1.5Cu3O7±δ as a promising air electrode material for solid oxide fuel cells. J. Power Sources 2022, 532, 231371. [Google Scholar] [CrossRef]
- Stroud, D. Generalized effective-medium approach to the conductivity of an inhomogeneous material. Phys. Rev. B 1975, 12, 3368–3373. [Google Scholar] [CrossRef]
- Zheng, K. Enhanced oxygen mobility by doping Yb in BaGd1-xYbxMn2O5+δ double perovskite-structured oxygen storage materials. Solid State Ion. 2019, 335, 103–112. [Google Scholar] [CrossRef]
- Zheng, K.; Świerczek, K. Possibility of determination of transport coefficients D and k from relaxation experiments for sphere-shaped powder samples. Solid State Ion. 2018, 323, 157–165. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: New York, NY, USA, 1975. [Google Scholar]
- Marrero-Lόpez, D.; Peña-Martínez, J.; Ruiz-Morales, J.C.; Perez-Coll, D.; Aranda, M.A.G.; Núñez, P. Synthesis, phase stability and electrical conductivity of Sr2MgMoO6−δ anode. Mater. Res. Bull. 2008, 43, 2441–2450. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Y.; Xia, C.; Bouwmeester, H.J.M. Sr2Fe1.4Mn0.1Mo0.5O6−δ perovskite cathode for highly efficient CO2 electrolysis. J. Mater. Chem. 2019, 7, 22939–22949. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, C.; Zheng, K.; Świerczek, K. Characterization of novel GdBa0.5Sr0.5Co2−xFexO5+δ perovskites for application in IT-SOFC cells. Int. J. Hydrog. Energy 2013, 38, 1027–1038. [Google Scholar] [CrossRef]
- Cai, H.; Zhang, L.; Xu, J.; Huang, J.; Wei, X.; Wang, L.; Song, Z.; Long, W. Cobalt–free La0.5Sr0.5Fe0.9Mo0.1O3–δ electrode for symmetrical SOFC running on H2 and CO fuels. Electrochim. Acta 2019, 320, 134642. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, S.; Gao, Y.; Yu, X.; Jiang, H.; Wei, B.; Lü, Z. In situ growth of copper-iron bimetallic nanoparticles in A-site deficient Sr2Fe1.5Mo0.5O6-δ as an active anode material for solid oxide fuel cells. J. Alloy. Compd. 2022, 926, 166852. [Google Scholar] [CrossRef]
- Niu, B.; Jin, F.; Yang, X.; Feng, T.; He, T. Resisting coking and sulfur poisoning of double perovskite Sr2TiFe0.5Mo0.5O6–δ anode material for solid oxide fuel cells. Int. J. Hydrog. Energy 2018, 43, 3280–3290. [Google Scholar] [CrossRef]
- Xie, Z.; Zhao, H.; Chen, T.; Zhou, X.; Du, Z. Synthesis and electrical properties of Al-doped Sr2MgMoO6-δ as an anode material for solid oxide fuel cells. Int. J. Hydrog. Energy 2011, 36, 7257–7264. [Google Scholar] [CrossRef]
Composition | Sr2Fe1.2Mg0.2Mo0.6O6−δ | Sr2Fe0.9Mg0.4Mo0.7O6−δ | ||
---|---|---|---|---|
T [°C] | as-Synthesized | Reduced at 1000 °C | as-Synthesized | Reduced at 1000 °C |
space group | Fm-3m | Fm-3m | Fm-3m | Fm-3m |
a [Å] | 7.8604(1) | 7.8836(1) | 7.8709(1) | 7.8854(1) |
V [Å3] | 485.67(1) | 489.97(1) | 487.61(1) | 490.30(1) |
density [g/cm3] | 5.48 | 5.43 | 5.43 | 5.40 |
Rp (%) | 2.13 | 1.43 | 2.62 | 1.77 |
Rwp (%) | 2.84 | 2.02 | 3.89 | 2.74 |
HT-XRD (30–250 °C) | HT-XRD (350–900 °C) | Dilatometer (30–900 °C in Air) | Dilatometer (400–900 °C, Oxidation in Air) | Dilatometer (550–900 °C, Reduction in 5% H2/Ar) | |
---|---|---|---|---|---|
Sr2Fe1.2Mg0.2Mo0.6O6−δ | 12.9 | 14.6 | 15.6 | 16.7 | 14.6 |
Sr2Fe0.9Mg0.4Mo0.7O6−δ | 15.1 | 13.5 | 14.7 | 15.7 | 14.2 |
Sr2Fe1.2Mg0.2Mo0.6O6−δ | 600 °C in air | 700 °C in air | 800 °C in air | 900 °C in air | |
Oxygen content | 5.86 | 5.85 | 5.83 | 5.82 | |
600 °C in argon | 700 °C in argon | 800 °C in argon | 900 °C in argon | ||
Oxygen content | 5.49 | 5.39 | 5.31 | 5.17 | |
Sr2Fe0.9Mg0.4Mo0.7O6−δ | 600 °C in air | 700 °C in air | 800 °C in air | 900 °C in air | |
Oxygen content | 5.87 | 5.86 | 5.85 | 5.83 | |
600 °C in argon | 700 °C in argon | 800 °C in argon | 900 °C in argon | ||
Oxygen content | 5.57 | 5.48 | 5.39 | 5.28 |
Compound | Crystal Structure | Electrical Conductivity [S·cm−1] | TEC [×10−6 K−1] | Redox Stability | References |
---|---|---|---|---|---|
Sr2Fe1.2Mg0.2Mo0.6O6−δ | Fm-3m | 56.23–42.66 in air 600–800 °C; 7.88–10.26 in 5% H2/Ar 600–800 °C | 12.9–14.6 in air; 14.6–16.7 in 5% H2/Ar | redox stable | This work |
Sr2Fe0.9Mg0.4Mo0.7O6−δ | Fm-3m | 7.90–7.48 in air 600–800 °C; 0.29–0.34 in 5% H2/Ar 600–800 °C | 13.5–15.7 in air; 14.2–15.1 in 5% H2/Ar | redox stable | This work |
Sr2Fe1.5Mo0.3Cu0.2O6−δ | Fm-3m | 0.06–0.36 in 5% H2/Ar at 600–850 °C | - | decomposed in H2 | [35] |
Sr2Fe1.5Mo0.5O6−δ | Fm-3m | 2.89–5.55 in 5% H2/Ar at 600–850 °C | - | Redox stable | [35] |
Pm-3m | 13 in air at 400–600 °C 50 in 5% H2/Ar at 850 °C | 13.5–18.3 in air | Redox stable | [28] | |
SrFe0.5Mn0.25Mo0.25O3−δ | Pm-3m | 3 in air at 850 °C 10 in 5% H2/Ar at 850 °C | 12.9–14.5 in air | Redox stable | [28] |
Sr2MgMoO6−δ | I-1 | 0.8 @800 °C in 5% H2/Ar; 0.003 in air @800 °C | - | stable up to 1200 °C in 5% H2/Ar | [49] |
La0.5Sr0.5Fe0.9Mo0.1O3− δ | Pm-3m | 2.7–6.7 in H2, 600–800 °C | 13.4 in air; 15.1 in 5% H2/Ar | stable up to 750 °C in H2 | [52] |
Sr1.9Fe1.5Mo0.3Cu0.2O6−δ | - | 54.8 in air 630 °C | 19.39 in air | decomposed in H2 | [53] |
Sr2FeMo2/3Mg1/3O6−δ | Fm-3m | 4–5 in air 600–800 °C; 9–13 in H2 600–800 °C | 16.9 in air | Redox stable | [38] |
Sr2Fe1.3Ti0.1Mo0.6O6−δ | Fm-3m | 220–160 in 5% H2/Ar at 500–800 °C | 13.5 in air to 550 °C | Stable in H2 | [36] |
Sr2TiFe0.5Mo0.5O6−δ | Pm-3m | 22.3 in H2 at 800 °C | 11.2 in H2 | stable in H2 and syngas fuels | [54] |
Sr2Mg0.95Al0.05MoO6−δ | - | 5.4 in 5% H2/Ar at 800 °C | - | Redox stable | [55] |
Sr2TiNi0.5Mo0.5O6−δ | - | 17.5 in H2 at 800 °C | 12.8 in air | stable in humidified H2 | [37] |
Sr2−xBaxFeMoO6−δ | I4/m (x = 0); Fm-3m (others) | 100–1000 in 5% H2/Ar | 13.8 in air (for x = 0) | Stable in 5% H2/Ar | [24,25] |
Sr2−xBaxMnMoO6−δ | P21/n (x = 0); Fm-3m (others) | 0.24–1.41 in 5% H2/Ar | 11.5–14.8 in air (for x = 0) | Stable in 5% H2/Ar | [24,25] |
Sr2−xBaxMgMoO6−δ | I4/m (x = 0); Fm-3m (others) | 0.14–1.38 in 5% H2/Ar | 13.8–18.2 in air (for x = 0) | Redox stable | [24,25] |
Sr2Mg0.3Co0.7MoO6−δ | I-1 | 9–7 in 5% H2/Ar at 600–800 °C | 13.9 in air | - | [40] |
SrFe0.45Co0.45Mo0.1O3−δ | Pm-3m | 298 in air at 300 °C | 14.8–30.8 in air | Stable in air | [39] |
Composition | Sr2Fe1.2Mg0.2Mo0.6O6−δ | Ce0.8Gd0.2O1.9 | Sr2Fe0.9Mg0.4Mo0.7O6−δ | Ce0.8Gd0.2O1.9 |
---|---|---|---|---|
space group | Fm-3m | Fm-3m | Fm-3m | Fm-3m |
a [Å] | 7.8567(1) | 5.4249(1) | 7.8657(1) | 5.4256(1) |
V [Å3] | 484.98(1) | 159.66(1) | 486.64(1) | 159.71(1) |
Rp (%) | 1.82 | 2.16 | ||
Rwp (%) | 2.55 | 3.29 |
Composition | Sr2Fe1.2Mg0.2Mo0.6O6−δ | Ce0.8Gd0.2O1.9 | Sr2Fe0.9Mg0.4Mo0.7O6−δ | Ce0.8Gd0.2O1.9 |
---|---|---|---|---|
space group | Fm-3m | Fm-3m | Fm-3m | Fm-3m |
a [Å] | 7.8811(1) | 5.4285(1) | 7.8801(1) | 5.4289(1) |
V [Å3] | 489.52(1) | 159.97(1) | 489.32(1) | 160.00(1) |
Rp (%) | 2.05 | 1.99 | ||
Rwp (%) | 2.87 | 2.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, K.; Lach, J.; Zhao, H.; Huang, X.; Qi, K. Magnesium-Doped Sr2(Fe,Mo)O6−δ Double Perovskites with Excellent Redox Stability as Stable Electrode Materials for Symmetrical Solid Oxide Fuel Cells. Membranes 2022, 12, 1006. https://doi.org/10.3390/membranes12101006
Zheng K, Lach J, Zhao H, Huang X, Qi K. Magnesium-Doped Sr2(Fe,Mo)O6−δ Double Perovskites with Excellent Redox Stability as Stable Electrode Materials for Symmetrical Solid Oxide Fuel Cells. Membranes. 2022; 12(10):1006. https://doi.org/10.3390/membranes12101006
Chicago/Turabian StyleZheng, Kun, Jakub Lach, Hailei Zhao, Xiubing Huang, and Kezhen Qi. 2022. "Magnesium-Doped Sr2(Fe,Mo)O6−δ Double Perovskites with Excellent Redox Stability as Stable Electrode Materials for Symmetrical Solid Oxide Fuel Cells" Membranes 12, no. 10: 1006. https://doi.org/10.3390/membranes12101006
APA StyleZheng, K., Lach, J., Zhao, H., Huang, X., & Qi, K. (2022). Magnesium-Doped Sr2(Fe,Mo)O6−δ Double Perovskites with Excellent Redox Stability as Stable Electrode Materials for Symmetrical Solid Oxide Fuel Cells. Membranes, 12(10), 1006. https://doi.org/10.3390/membranes12101006