Preparation and Characterization of Regenerated Cellulose Membrane Blended with ZrO2 Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Membrane
2.3. Membrane Characterization
2.4. Performance of Regenerated Cellulose Membranes
2.5. Characterization of Porosity and Average Pore Size
3. Results and Discussion
3.1. The Influence of ZrO2 Content on the Physical Properties of the Membrane
3.2. The Influence of ZrO2 Content on the Antifouling Performance of Membrane
3.3. Characterization of Regenerated Cellulose Membrane
3.3.1. SEM Observations
3.3.2. ATR-FTIR Analysis
3.3.3. XRD of Regenerated Cellulose Membrane
3.3.4. TGA Analysis
3.4. Acid and Alkali Resistance of Regenerated Cellulose Membrane
3.5. Anti-Fouling of Regenerated Cellulose Membrane
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexandratos, S.D.; Barak, N.; Bauer, D.; Davidson, F.T.; Gibney, B.R.; Hubbard, S.S.; Taft, H.L.; Westerhof, P. Sustaining Water Resources: Environmental and Economic Impact. ACS Sustain. Chem. Eng. 2019, 7, 2879–2888. [Google Scholar] [CrossRef] [Green Version]
- Cheryan, M. Ultrafiltration and Microfiltration Handbook; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Pendergast, M.M.; Hoek, E.M. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971. [Google Scholar] [CrossRef] [Green Version]
- Okoro, H.K.; Ndlwana, L.; Ikhile, M.I.; Barnard, T.G.; Ngila, J.C. Hyperbranched polyethylenimine-modified polyethersulfone (HPEI/PES) and nAg@HPEI/PES membranes with enhanced ultrafiltration, antibacterial, and antifouling properties. Heliyon 2021, 7, e07961. [Google Scholar] [CrossRef]
- Ndlwana, L.; Motsa, M.M.; Mamba, B.B. A New Method for a Polyethersulfone-Based Dopamine-Graphene (xGnP-DA/PES) Nanocomposite Membrane in Low/Ultra-Low Pressure Reverse Osmosis (L/ULPRO) Desalination. Membranes 2020, 10, 439. [Google Scholar] [CrossRef]
- Omidvar, M.; Hejri, Z.; Moarefian, A. The effect of Merpol surfactant on the morphology and performance of PES/PVP membranes: Antibiotic separation. Int. J. Ind. Chem. 2019, 10, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Cheshomi, N.; Pakizeh, M.; Namvar-Mahboub, M. Preparation and characterization of TiO2/Pebax/(PSf-PES) thin film nanocomposite membrane for humic acid removal from water. Polym. Adv. Technol. 2018, 29, 1303–1312. [Google Scholar] [CrossRef]
- Shaari, N.Z.K.; Basri, M.F.; Yazid, R.R.M.; Sulaiman, N.A.; Ramlee, S. Thin Film Composite Membrane from PSF/Chitosan/PEG: Effect of PVA Concentration on the Removal of Mercury and Antifouling Properties. Int. J. Recent Technol. Eng. IJRTE 2019, 8, 6924–6928. [Google Scholar]
- Fangshu, Q.; Akun, C.; Yang, Y.; Sakil, M.; Peiyang, S.; Jingxin, Y.; Zijun, H.; Qiaoyun, L.; Lijing, Z.; Zhipeng, T.; et al. Hierarchically superhydrophilic poly(vinylidene fluoride) membrane with self-cleaning fabricated by surface mineralization for stable separation of oily wastewater. J. Membr. Sci. 2021, 640, 119864. [Google Scholar]
- Sivasankaran, A.; Rajesh, P.; YoungHo, A. Antibacterial and Adsorption Properties of Sulfonated GO-PVDF Nanocomposite Ultrafiltration Membranes for Environmental Applications. J. Environ. Eng. 2021, 147, 04021042. [Google Scholar]
- Xinyan, G.; Tao, L.; Fuchun, J.; Xue, Z. Impacts on characteristics and effluent safety of PVDF ultrafiltration membranes aged by different chemical cleaning types. J. Membr. Sci. 2021, 640, 119770, (prepublish). [Google Scholar]
- Weng, R.; Huang, X.; Liao, D.; Xu, S.; Peng, L.; Liu, X. A novel cellulose/chitosan composite nanofiltration membrane prepared with piperazine and trimesoyl chloride by interfacial polymerization. RSC Adv. 2020, 10, 1309–1318. [Google Scholar] [CrossRef] [Green Version]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Polym. Sci. 2005, 44, 3358–3393. [Google Scholar]
- Feng, N.L.; Malingam, S.D.; Jenal, R.; Mustafa, Z.; Subramonian, S. A review of the tensile and fatigue responses of cellulosic fibre-reinforced polymer composites. Mech. Adv. Mater. Struct. 2018, 27, 645–660. [Google Scholar] [CrossRef]
- Guo, H.; Peng, Y.; Liu, Y.; Wang, Z.; Hu, J.; Liu, J.; Ding, Q.; Gu, J. Development and investigation of novel antifouling cellulose acetate ultrafiltration membrane based on dopamine modification. Int. J. Biol. Macromol. 2020, 160, 652–659. [Google Scholar] [CrossRef]
- Yang, S.; Wang, T.; Tang, R.; Yan, Q.; Tian, W.; Zhang, L. Enhanced permeability, mechanical and antibacterial properties of cellulose acetate ultrafiltration membranes incorporated with lignocellulose nanofibrils. Int. J. Biol. Macromol. 2020, 151, 159–167. [Google Scholar] [CrossRef]
- Zhang, J.; Kitayama, H.; Gotoh, Y.; Potthast, A.; Rosenau, T. Non-woven fabrics of fine regenerated cellulose fibers prepared from ionic-liquid solution via wet type solution blow spinning. Carbohydr. Polym. 2019, 226, 115258. [Google Scholar] [CrossRef]
- Moriam, K.; Sawada, D.; Nieminen, K.; Hummel, M.; Ma, Y.; Rissanen, M.; Sixta, H. Towards regenerated cellulose fibers with high toughness. Cellulose 2021, 28, 9547–9566. [Google Scholar] [CrossRef]
- Kanagaraj, P.; Mohamed, I.M.A.; Huang, W.; Liu, C. Membrane fouling mitigation for enhanced water flux and high separation of humic acid and copper ion using hydrophilic polyurethane modified cellulose acetate ultrafiltration membranes. React. Funct. Polym. 2020, 150, 9547–9566. [Google Scholar] [CrossRef]
- Weng, R.; Tian, F.; Huang, X.; Ni, L.; Xi, B. Preparation of cellulose nanofiltration membranes and their removal of typical pollutants from drinking water. Water Suppl. 2021, 21, 4355–4368. [Google Scholar] [CrossRef]
- Jurchevsky, E.B.; Pervov, A.G. Potentialities of Membrane Water Treatment for Removing Organic Pollutants from Natural Water. Therm. Eng. 2020, 67, 484–491. [Google Scholar] [CrossRef]
- Hou, S.; Xing, J.; Dong, X.; Zheng, J.; Li, S. Integrated antimicrobial and antifouling ultrafiltration membrane by surface grafting PEO and N-chloramine functional groups. J. Colloid Interface Sci. 2017, 500, 333–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Zhang, B.; Liu, Z.; Deng, B.; Yu, M.; Li, L.; Jiang, H.; Li, J. Preparation of the antifouling microfiltration membranes from poly(N,N-dimethylacrylamide) grafted poly(vinylidene fluoride) (PVDF) powder. J. Mater. Chem. 2011, 21, 11908–11915. [Google Scholar] [CrossRef]
- Yin, J.; Zhou, J. Novel polyethersulfone hybrid ultrafiltration membrane prepared with SiO2-g-(PDMAEMA- co -PDMAPS) and its antifouling performances in oil-in-water emulsion application. Desalination 2015, 365, 46–56. [Google Scholar] [CrossRef]
- Shi, F.; Ma, Y.; Ma, J.; Wang, P.; Sun, W. Preparation and characterization of PVDF/TiO2 hybrid membranes with different dosage of nano-TiO2. J. Membr. Sci. 2012, 389, 522–531. [Google Scholar] [CrossRef]
- Bindes, M.M.M.; Terra, N.M.; Patience, G.S.; Boffito, D.C.; Cardoso, V.L.; Reis, M.H.M. Asymmetric Al2O3 and PES/Al2O3 hollow fiber membranes for green tea extract clarification. J. Food Eng. 2020, 277, 109889. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, Y.; Guan, K.; Peng, C.; Wu, J. Preparation of ZrO2 fiber modified Al2O3 membrane supports with enhanced strength and permeability. J. Eur. Ceram. Soc. 2019, 39, 1712–1716. [Google Scholar] [CrossRef]
- Maximous, N.; Nakhla, G.; Wan, W.; Wong, K. Performance of a novel ZrO2/PES membrane for wastewater filtration. J. Membr. Sci. 2010, 352, 222–230. [Google Scholar] [CrossRef]
- Arthanareeswaran, G.; Thanikaivelan, P. Fabrication of cellulose acetate–zirconia hybrid membranes for ultrafiltration applications: Performance, structure and fouling analysis. Sep. Purif. Technol. 2010, 74, 230–235. [Google Scholar] [CrossRef]
- Pang, R.; Li, X.; Li, J.; Lu, Z.; Sun, X.; Wang, L. Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles. Desalination 2014, 332, 60–66. [Google Scholar] [CrossRef]
- Shen, X.; Xie, T.; Wang, J.; Liu, P.; Wang, F. An anti-fouling poly(vinylidene fluoride) hybrid membrane blended with functionalized ZrO2 nanoparticles for efficient oil/water separation. RSC Adv. 2017, 7, 5262–5271. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Yang, C.; Chen, X.; Qiu, M.; Fan, Y. Effective and efficient fabrication of high-flux tight ZrO2 ultrafiltration membranes using a nanocrystalline precursor. J. Membr. Sci. 2021, 634, 119378. [Google Scholar] [CrossRef]
- Nguyen, H.V.D.; De Vries, R.; Stoyanov, S.D. Natural Deep Eutectics as a “Green” Cellulose Cosolvent. ACS Sustain. Chem. Eng. 2020, 8, 14166–14178. [Google Scholar] [CrossRef]
- Protz, R.; Lehmann, A.; Ganster, J.; Fink, H.P. Solubility and spinnability of cellulose-lignin blends in aqueous NMMO. Carbohydr. Polym. 2021, 251, 117027. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.N.; Ruan, H.M.; Wu, L.G.; Gao, C.J. Preparation and characterization of PES–SiO2 organic–inorganic composite ultrafiltration membrane for raw water pretreatment. Chem. Eng. J. 2011, 168, 1272–1278. [Google Scholar] [CrossRef]
- Rezaee, R.; Nasseri, S.; Mahvi, A.H.; Nabizadeh, R.; Mousavi, S.A.; Rashidi, A.; Jafari, A.; Nazmara, S. Fabrication and characterization of a polysulfone-graphene oxide nanocomposite membrane for arsenate rejection from water(Article). J. Environ. Health Sci. Eng. 2015, 13, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Jin, Z.; Chen, X.; Fan, J.; Qiu, M.; Fu, K.; Fan, Y. Modified wet chemical method synthesis of nano-ZrO2 and its application in preparing membranes. Ceram. Int. 2021, 47, 13432–13439. [Google Scholar] [CrossRef]
- Li, J.F.; Xu, Z.L.; Hu, Y.; Yu, L.Y.; Min, L.J.A.S.S. Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl. Surf. Sci. 2009, 255, 4725–4732. [Google Scholar] [CrossRef]
- Yuan, H.; Wu, J.; Wang, D.; Huang, L.; Chen, L.; Lin, S. Ultra-high-strength composite films prepared from NMMO solutions of bamboo-derived dissolving pulp and chitosan. Ind. Crops Prod. 2021, 170, 113747. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, H.-Z.; Xu, Z.-F.; Sun, S.-W.; Liu, Y.-H. Study on characterization of core-shell nano-Al2O3/PS composite particles and toughening polystyrene prepared by SLS. J. Mater. Eng. 2007, 3, 24–27. [Google Scholar] [CrossRef]
- Razmjou, A.; Mansouri, J.; Chen, V. The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J. Membr. Sci. 2011, 378, 73–84. [Google Scholar] [CrossRef]
- Mosayebi, A.; Esfahani, H.; Hoor, M. Influence of zeta potential of ZrO2 and Al2O3 nanoparticles on removal of metal ions by hybrid electrospun polyamide 6 membrane: Kinetics of adsorption and fouling mechanisms. Can. J. Chem. Eng. 2021, 99, S654–S667. [Google Scholar] [CrossRef]
- Fink, H.-P.; Weigel, P.; Purz, H.J. Structure formation of regenerated cellulose materials from NMMO-solutions. Prog. Polym. Sci. 2001, 26, 1473–1524. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, Y.; Chen, Q.; Yu, Z.; Wang, C.; Jin, S.; Ding, Y.; Wu, G. Dissolution of cellulose with ionic liquids and its application: A mini-review. Green Chem. 2006, 8, 325–327. [Google Scholar] [CrossRef]
- Li, S.; Liu, S.; Huang, F.; Lin, S.; Zhang, H.; Cao, S.; Chen, L.; He, Z.; Lutes, R.; Yang, J.; et al. Preparation and Characterization of Cellulose-Based Nanofiltration Membranes by Interfacial Polymerization with Piperazine and Trimesoyl Chloride. ACS Sustain. Chem. Eng. 2018, 6, 13168–13176. [Google Scholar] [CrossRef]
- Weng, R.; Chen, L.; Lin, S.; Zhang, H.; Wu, H.; Liu, K.; Cao, S.; Huang, L. Preparation and Characterization of Antibacterial Cellulose/Chitosan Nanofiltration Membranes. Polymers 2017, 9, 116. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Fan, M.; Chen, L.; Zhuang, J. Lignocellulosic fibre mediated rubber composites: An overview. Compos. Part B Eng. 2015, 76, 180–191. [Google Scholar] [CrossRef]
- Lin, S.; Chen, L.; Huang, L.; Cao, S.; Luo, X.; Liu, K.; Huang, Z. Preparation and characterization of chitosan/cellulose blend films using ZnCl2·3H2O as a solvent. BioResources 2013, 7, 5488–5499. [Google Scholar] [CrossRef]
BSA Rejection Rate | The Content of ZrO2 Particles/wt% | |||||
---|---|---|---|---|---|---|
Operation Time/min | 0 | 0.5 | 1.0 | 1.5 | 2.0 | |
0 15 30 45 60 75 90 105 120 135 150 165 180 | 0.756 0.578 0.539 0.530 0.526 0.513 0.510 0.505 0.491 0.483 0.472 0.466 0.453 | 0.816 0.673 0.613 0.589 0.573 0.543 0.536 0.541 0.534 0.533 0.531 0.519 0.507 | 0.913 0.791 0.771 0.763 0.753 0.759 0.751 0.743 0.741 0.737 0.739 0.732 0.725 | 0.936 0.761 0.749 0.739 0.724 0.726 0.725 0.723 0.699 0.687 0.675 0.653 0.641 | 0.961 0.850 0.795 0.776 0.751 0.762 0.759 0.741 0.735 0.736 0.723 0.700 0.673 |
Membrane | Water Flux (L/ ) | Porosity (%) |
Average Pore Diameter (nm) | Contact Angle (°) | BSA Rejection Rate (%) |
---|---|---|---|---|---|
BCM | 286.1 ± 2.7 | 77.3 ± 2.6 | 36.5 ± 1.4 | 41.9 ± 2.2 | 71.6 ± 2.9 |
1 wt.%-ZrO2/BCM | 321.5 ± 4.1 | 79.8 ± 3.1 | 39.3 ± 1.5 | 33.6 ± 3.7 | 91.2 ± 4.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Tian, F.; Chen, G.; Wang, F.; Weng, R.; Xi, B. Preparation and Characterization of Regenerated Cellulose Membrane Blended with ZrO2 Nanoparticles. Membranes 2022, 12, 42. https://doi.org/10.3390/membranes12010042
Huang X, Tian F, Chen G, Wang F, Weng R, Xi B. Preparation and Characterization of Regenerated Cellulose Membrane Blended with ZrO2 Nanoparticles. Membranes. 2022; 12(1):42. https://doi.org/10.3390/membranes12010042
Chicago/Turabian StyleHuang, Xin, Feng Tian, Guohong Chen, Fanan Wang, Rengui Weng, and Beidou Xi. 2022. "Preparation and Characterization of Regenerated Cellulose Membrane Blended with ZrO2 Nanoparticles" Membranes 12, no. 1: 42. https://doi.org/10.3390/membranes12010042
APA StyleHuang, X., Tian, F., Chen, G., Wang, F., Weng, R., & Xi, B. (2022). Preparation and Characterization of Regenerated Cellulose Membrane Blended with ZrO2 Nanoparticles. Membranes, 12(1), 42. https://doi.org/10.3390/membranes12010042