Sodium Chloroacetate Modified Polyethyleneimine/Trimesic Acid Nanofiltration Membrane to Improve Antifouling Performance
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Membrane Preparation and Modification
2.3. Characterization
2.4. Membrane Performance Evaluation
3. Results and discussion
3.1. Membrane Surface Morphology Analysis
3.2. Membrane Interface Characteristics
3.3. Membrane Desalination and Permeability Performance
3.4. Membrane Antifouling Test
3.5. Performance Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oatley-Radcliffe, D.L.; Walters, M.; Ainscough, T.J.; Williams, P.M.; Mohammad, A.W.; Hilal, N. Nanofiltration membranes and processes: A review of research trends over the past decade. J. Water Process. Eng. 2017, 19, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Shao, G.; Liu, Y.; Yong, J. Experimental study on near zero discharge of desulphurization wastewater treated with nanofiltration membrane. Membr. Sci. Technol. 2019, 39, 124–128. [Google Scholar]
- Zhang, H.; He, Q.; Luo, J.; Wan, Y.; Darling, S.B. Sharpening Nanofiltration: Strategies for Enhanced Membrane Selectivity. ACS Appl. Mater. Interfaces 2020, 12, 39948–39966. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, H. A Pilot Study on Membrane Fouling in the Treatment of Taihu Lake Water by Nanofiltration. China Water Wastewater 2021, 37, 66–70. [Google Scholar]
- Abdelhamid, A.E.; El-Sayed, A.A.; Khalil, A.M. Polysulfone nanofiltration membranes enriched with functionalized graphene oxide for dye removal from wastewater. J. Polym. Eng. 2020, 40, 833–841. [Google Scholar] [CrossRef]
- Dlamini, D.S.; Matindi, C.; Vilakati, G.D.; Tesha, J.M.; Motsa, M.M.; Thwala, J.M.; Mamba, B.B.; Hoek, E.M.V.; Li, J. Fine-tuning the architecture of loose nanofiltration membrane for improved water flux, dye rejection and dye/salt selective separation. J. Membr. Sci. 2021, 621, 118930. [Google Scholar] [CrossRef]
- Yang, S.; Wang, J.; Fang, L.; Lin, H.; Liu, F.; Tang, C.Y. Electrosprayed polyamide nanofiltration membrane with intercalated structure for controllable structure manipulation and enhanced separation performance. J. Membr. Sci. 2020, 602, 117971. [Google Scholar] [CrossRef]
- Si, Z.; Wang, Z.; Cai, D.; Li, G.; Li, S.; Qin, P. A high-permeance organic solvent nanofiltration membrane via covalently bonding mesoporous MCM-41 with polyimide. Sep. Purif. Technol. 2020, 241, 116545. [Google Scholar] [CrossRef]
- Fu, J.; Pang, B.; Jin, X.; Yu, P. Efficiency Analysis and Membrane Regeneration of Tail Water Treatment in Wastewater Treatment Plant by Double Membrane Method. China Water Wastewater 2020, 36, 98–103. [Google Scholar]
- Elakkiya, S.; Arthanareeswaran, G.; Ismail, A.F.; Goh, P.S.; Thuyavan, L.Y. Review on characteristics of biomaterial and nanomaterials based polymeric nanocomposite membranes for seawater treatment application. Environ. Res. 2021, 197, 111177. [Google Scholar]
- Tsui, T.H.; Ekama, G.A.; Chen, G.H. Quantitative characterization and analysis of granule transformations: Role of intermittent gas sparging in a super high-rate anaerobic system. Water Res. 2018, 139, 177–186. [Google Scholar] [CrossRef]
- Tsui, T.H.; Chen, L.; Hao, T.; Chen, G.H. A super high-rate sulfidogenic system for saline sewage treatment. Water Res. 2016, 104, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Z.-Y.; Xia, J.-Z.; Wang, X.-M. Polyethylene-supported nanofiltration membrane with in situ formed surface patterns of millimeter size in resisting fouling. J. Membr. Sci. 2021, 620, 118830. [Google Scholar] [CrossRef]
- Ren, L.; Chen, J.; Lu, Q.; Han, J.; Wu, H. Anti-biofouling nanofiltration membrane constructed by in-situ photo-grafting bactericidal and hydrophilic polymers. J. Membr. Sci. 2021, 617, 118658. [Google Scholar] [CrossRef]
- Guo, Y.; Li, T.Y.; Xiao, K.; Wang, X.M.; Xie, Y.F. Key foulants and their interactive effect in organic fouling of nanofiltration membranes. J. Membr. Sci. 2020, 610, 118252. [Google Scholar] [CrossRef]
- Ngo, M.T.T.; Ueyama, T.; Makabe, R.; Bui, X.T.; Nghiem, L.D.; Nga, T.T.V.; Fujioka, T. Fouling behavior and performance of a submerged flat-sheet nanofiltration membrane system for direct treatment of secondary wastewater effluent. J Water Process. Eng. 2021, 41, 101991. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, J.; Qiu, L.; Xu, J.; Jiang, G.; Xue, T.; Wang, B.; Gu, Z.; Liu, G. Roles of a mixed hydrophilic/hydrophobic interface in the regulation of nanofiltration membrane fouling in oily produced wastewater treatment: Performance and interfacial thermodynamic mechanisms. Sep. Purif. Technol. 2021, 257, 117970. [Google Scholar] [CrossRef]
- Jun, B.M.; Cho, J.; Jang, A.; Chon, K.; Westerhoff, P.; Yoon, Y.; Rho, H. Charge characteristics (surface charge vs. zeta potential) of membrane surfaces to assess the salt rejection behavior of nanofiltration membranes. Sep. Purif. Technol. 2020, 247, 117026. [Google Scholar] [CrossRef]
- Rho, H.; Cho, J.; Westerhoff, P.; Chon, K. Intrinsic pKa of Nanofiltration Membrane Surfaces to Assess Fouling and Cleaning Behaviors Induced by Foulant-Membrane Electrostatic Interactions. Environ. Sci. Technol. 2020, 54, 7706–7714. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.; Li, C.; Li, J.; Dong, Z.; Zhang, M.; Qi, P.; Bai, X.; Jiang, K. Exploring and comparing the roles of Ca2+ and Mg2+ in small-sized natural organics-induced charged nanofiltration membrane fouling. Sep. Purif. Technol. 2020, 251, 117415. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, K.; Guan, H.; Liu, M.; Yu, S.; Gao, C. Improved separation efficiency of polyamide-based composite nanofiltration membrane by surface modification using 3-aminopropyltriethoxysilane. Sep. Purif. Technol. 2021, 274, 119142. [Google Scholar] [CrossRef]
- Zhan, Z.M.; Tang, Y.J.; Zhu, K.K.; Xue, S.M.; Ji, C.H.; Tang, C.Y.; Xu, Z.L. Coupling heat curing and surface modification for the fabrication of high permselectivity polyamide nanofiltration membranes. J. Membr. Sci. 2021, 623, 119073. [Google Scholar] [CrossRef]
- El Meragawi, S.; Akbari, A.; Hernandez, S.; Mirshekarloo, M.S.; Bhattacharyya, D.; Tanksale, A.; Majumder, M. Enhanced permselective separation of per-fluorooctanoic acid in graphene oxide membranes by a simple PEI modification. J. Mater. Chem. A 2020, 8, 24800–24811. [Google Scholar] [CrossRef]
- Li, T.; Xiao, Y.; Guo, D.; Shen, L.; Li, R.; Jiao, Y.; Xu, Y.; Lin, H. In-situ coating TiO(2 )surface by plant-inspired tannic acid for fabrication of thin film nanocomposite nanofiltration membranes toward enhanced separation and antibacterial performance. J. Colloid Interface Sci. 2020, 572, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.M.; Moradi, F.; Farahani, S.K.; Bandehali, S.; Parvizian, F.; Ebrahimi, M.; Shen, J. Carbon nanofibers/chitosan nanocomposite thin film for surface modification of poly(ether sulphone) nanofiltration membrane. Mater. Chem. Phys. 2021, 269, 124720. [Google Scholar] [CrossRef]
- Saffarimiandoab, F.; Gul, B.Y.; Tasdemir, R.S.; Ilter, S.E.; Unal, S.; Tunaboylu, B.; Menceloglu, Y.Z.; Koyuncu, I. A review on membrane fouling: Membrane modification. Desalin. Water Treat. 2021, 216, 47–70. [Google Scholar] [CrossRef]
- Zheng, J.; Li, M.; Yu, K.; Hu, J.; Zhang, X.; Wang, L. Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property. J. Membr. Sci. 2017, 524, 344–353. [Google Scholar] [CrossRef]
- Gu, K.; Wang, S.; Li, Y.; Zhao, X.; Zhou, Y.; Gao, C. A facile preparation of positively charged composite nanofiltration membrane with high selectivity and permeability. J. Membr. Sci. 2019, 581, 214–223. [Google Scholar] [CrossRef]
- Guo, M.; Wang, S.; Gu, K.; Song, X.; Zhou, Y.; Gao, C. Gradient cross-linked structure: Towards superior PVA nanofiltration membrane performance. J. Membr. Sci. 2019, 569, 83–90. [Google Scholar] [CrossRef]
- Abu Seman, M.N.; Johnson, D.; Al-Malek, S.; Hilal, N. Surface modification of nanofiltration membrane for reduction of membrane fouling. Desalin. Water Treat. 2009, 10, 298–305. [Google Scholar] [CrossRef]
- Abu Seman, M.N.; Khayet, M.; Bin Ali, Z.I.; Hilal, N. Reduction of nanofiltration membrane fouling by UV-initiated graft polymerization technique. J. Membr. Sci. 2010, 355, 133–141. [Google Scholar] [CrossRef]
- Wang, Y.; Lyu, Z.; Jiang, P.; Yu, S. Constructing high permeable and anti-fouling coating layer on surface of polyamide thin-film composite membrane. Membr. Sci. Technol. 2020, 40, 31–36. [Google Scholar]
- Xiang, S.; Yang, J.; Cui, Z.; Qin, S.; Qin, Q. Preparation of hollow fiber membrane via grafting tannic acid and its influence on microstructure, permeability and anti-fouling. Mater. Lett. 2021, 285, 129095. [Google Scholar] [CrossRef]
- Li, H.; Liu, G.; Che, Z.; Chen, J.; Guo, C.; Lu, J. Study on Hydrophilic Modification of PTFE Hollow Fiber Membrane by Mineralization. China Plast. Ind. 2020, 48, 152–155. [Google Scholar]
- Dobosz, K.M.; Kuo-Leblanc, C.A.; Bowden, J.W.; Schiffman, J.D. Robust, Small Diameter Hydrophilic Nanofibers Improve the Flux of Ultrafiltration Membranes. Ind. Eng. Chem. Res. 2021, 60, 9179–9188. [Google Scholar] [CrossRef]
- Hu, H.; Dong, J.; Lin, X. Surface hydrophilic modification of brominated poly(phenylene oxide) ultrafiltration membrane. Membr. Sci. Technol. 2020, 40, 22–29. [Google Scholar]
- Zhou, M.; Chen, J.; Zhou, W.; Sun, J.; Tang, H. Developing composite nanofiltration membranes with highly stable antifouling property based on hydrophilic roughness. Sep. Purif. Technol. 2021, 256, 117799. [Google Scholar] [CrossRef]
- Bai, L.; Wu, H.; Ding, J.; Ding, A.; Zhang, X.; Ren, N.; Li, G.; Liang, H. Cellulose nanocrystal-blended polyethersulfone membranes for enhanced removal of natural organic matter and alleviation of membrane fouling. Chem. Eng. J. 2020, 382, 122919. [Google Scholar] [CrossRef]
- Lyly, L.H.T.; Ooi, B.S.; Lim, J.K.; Derek, C.J.C.; Low, S.C. Correlating the membrane surface energy to the organic fouling and wetting of membrane distillation at elevated temperature. J. Environ. Chem. Eng. 2021, 9, 104627. [Google Scholar] [CrossRef]
- Bao, X.; She, Q.; Long, W.; Wu, Q. Ammonium ultra-selective membranes for wastewater treatment and nutrient enrichment: Interplay of surface charge and hydrophilicity on fouling propensity and ammonium rejection. Water Res. 2021, 190, 116678. [Google Scholar] [CrossRef] [PubMed]
- Lay, H.T.; Wang, R.; Chew, J.W. Membrane fouling by mixtures of oppositely charged particles. J. Membr. Sci. 2021, 625, 119093. [Google Scholar] [CrossRef]
- Duznovic, I.; Diefenbach, M.; Ali, M.; Stein, T.; Biesalski, M.; Ensinger, W. Automated measuring of mass transport through synthetic nanochannels functionalized with polyelectrolyte porous networks. J. Membr. Sci. 2019, 591, 117344. [Google Scholar] [CrossRef]
- Feiyang, X.; Dong, W.; Kun, Y. Electrodeposition Assisted Dynamic Assemblies of Chitosan/Alginate Composite Multi-Membrane. IOP Conf. Ser. Mater. Sci. Eng. 2020, 774, 012049. [Google Scholar]
- Zhang, J.; Jia, R.; Li, S.; Su, B. Preparation and properties of covalent layer-by-layer self-assembly nanofiltration membranes. Membr. Sci. Technol. 2020, 40, 139–147. [Google Scholar]
- Moradi, G.; Zinadini, S.; Rajabi, L. Development of nanofiltration PES membranes incorporated with hydrophilic para hydroxybenzoate alumoxane filler for high flux and antifouling property. Chem. Eng. Res. Des. 2020, 158, 148–163. [Google Scholar] [CrossRef]
- Pino-Soto, L.; Schwarz, A.; Vargas, C.; Saravia, F.; Horn, H.; Borquez, R. Influence of multivalent-electrolyte metal solutions on the superficial properties and performance of a polyamide nanofiltration membrane. Sep. Purif. Technol. 2021, 272, 118846. [Google Scholar] [CrossRef]
- Susanto, H.; Julyanti, D.P.; Roihatin, A. Synthesis of Low Fouling Porous Polymeric Membranes. Adv. Mater. Res. 2014, 896, 7–19. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Y.; Ladewig, B.P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 2017, 595, 567–583. [Google Scholar] [CrossRef]
- Qian, Y.; Wu, H.; Sun, S.P.; Xing, W. Perfluoro-functionalized polyethyleneimine that enhances antifouling property of nanofiltration membranes. J. Membr. Sci. 2020, 611, 118286. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, X.; Wang, J.; Tang, C.Y. Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate. Front. Chem. Sci. Eng. 2018, 12, 273–282. [Google Scholar] [CrossRef]
- Li, Q.; Liao, Z.; Fang, X.; Wang, D.; Xie, J.; Sun, X.; Wang, L.; Li, J. Tannic acid-polyethyleneimine crosslinked loose nanofiltration membrane for dye/salt mixture separation. J. Membr. Sci. 2019, 584, 324–332. [Google Scholar] [CrossRef]
- Zarei, F.; Moattari, R.M.; Rajabzadeh, S.; Bagheri, M.; Taghizadeh, A.; Mohammadi, T.; Matsuyama, H. Preparation of thin film composite nano-filtration membranes for brackish water softening based on the reaction between functionalized UF membranes and polyethyleneimine. J. Membr. Sci. 2019, 588, 117207. [Google Scholar] [CrossRef]
- Shen, Q.; Xu, S.J.; Dong, Z.Q.; Zhang, H.Z.; Xu, Z.L.; Tang, C.Y. Polyethyleneimine modified carbohydrate doped thin film composite nanofiltration membrane for purification of drinking water. J. Membr. Sci. 2020, 610, 118220. [Google Scholar] [CrossRef]
Membrane | Rq (nm) | Ra (nm) |
---|---|---|
M0 | 6.71 | 5.27 |
M0-3 | 7.02 | 5.29 |
M0-5 | 6.52 | 5.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, K.; Pang, S.; Zhou, Y.; Gao, C. Sodium Chloroacetate Modified Polyethyleneimine/Trimesic Acid Nanofiltration Membrane to Improve Antifouling Performance. Membranes 2021, 11, 705. https://doi.org/10.3390/membranes11090705
Gu K, Pang S, Zhou Y, Gao C. Sodium Chloroacetate Modified Polyethyleneimine/Trimesic Acid Nanofiltration Membrane to Improve Antifouling Performance. Membranes. 2021; 11(9):705. https://doi.org/10.3390/membranes11090705
Chicago/Turabian StyleGu, Kaifeng, Sichen Pang, Yong Zhou, and Congjie Gao. 2021. "Sodium Chloroacetate Modified Polyethyleneimine/Trimesic Acid Nanofiltration Membrane to Improve Antifouling Performance" Membranes 11, no. 9: 705. https://doi.org/10.3390/membranes11090705
APA StyleGu, K., Pang, S., Zhou, Y., & Gao, C. (2021). Sodium Chloroacetate Modified Polyethyleneimine/Trimesic Acid Nanofiltration Membrane to Improve Antifouling Performance. Membranes, 11(9), 705. https://doi.org/10.3390/membranes11090705