Development of Methanol Permselective FAU-Type Zeolite Membranes and Their Permeation and Separation Performances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation
2.3. Pervaporation Experiment
2.4. Seed Particles Preparation for Zeolite Membrane
3. Results and Discussions
3.1. Membrane Characterization
3.2. Methanol Separation Performance of CHA, LTA, MFI, and FAU Membranes
3.3. Effect of Si/Al Ratio of FAU Membrane
3.4. Single Alcohol Permeation Performance
3.5. Permeation and Separation Performance of Methanol from Methanol/Organic Solvent Mixture
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Smitha, B.; Suhanya, D.; Sridhar, S.; Ramakrishna, M. Separation of organic–organic mixtures by pervaporation―A review. J. Membr. Sci. 2004, 241, 1–21. [Google Scholar] [CrossRef]
- Dong, G.; Nagasawa, H.; Yu, L.; Wang, Q.; Yamamoto, K.; Ohshita, J.; Kanezashi, M.; Tsuru, T. Pervaporation removal of methanol from methanol/organic azeotropes using organosilica membranes: Experimental and modeling. J. Membr. Sci. 2020, 610, 118284. [Google Scholar] [CrossRef]
- Koh, D.Y.; McCool, B.A.; Deckman, H.W.; Lively, R.P. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes. Science 2016, 353, 804–807. [Google Scholar] [CrossRef] [PubMed]
- Sakai, M.; Kaneko, T.; Sasaki, Y.; Sekigawa, M.; Matsukata, M. Formation process of columnar grown (101)-oriented silicalite-1 membrane and its separation property for xylene isomer. Crystals 2020, 10, 949. [Google Scholar] [CrossRef]
- Kanemoto, M.; Negishi, H.; Sakaki, K.; Ikegami, T.; Chohnan, S.; Nitta, Y.; Kurusu, Y.; Ohta, H. Efficient butanol recovery from acetone-butanol-ethanol fermentation cultures grown on sweet sorghum juice by pervaporation using silicalite-1 membrane. J. Biosci. Bioeng. 2016, 121, 697–700. [Google Scholar] [CrossRef] [PubMed]
- Kita, H.; Fuchida, K.; Horita, T.; Asamura, H.; Okamoto, K. Preparation of Faujasite membranes and their permeation properties. Sep. Purif. Technol. 2001, 25, 261–268. [Google Scholar] [CrossRef]
- Kumakiri, I.; Hashimoto, K.; Nakagawa, Y.; Inoue, Y.; Kanehiro, Y.; Tanaka, K.; Kita, H. Application of FAU zeolite membranes to alcohol/acrylate mixture systems. Catal. Today 2014, 236, 86–91. [Google Scholar] [CrossRef]
- Ikeda, A.; Hasegawa, Y. Efficient transesterification of methyl acetate with 2-propanol by the selective removal of methanol using zeolite membranes. Chem. Lett. 2021, 50, 113–115. [Google Scholar] [CrossRef]
- Ikeda, A.; Matsuura, W.; Abe, C.; Hasegawa, Y. Effect of reaction substrates on membrane-assisted transesterification reactions. Chem. Eng. Process. 2021, 165, 108443. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Abe, C.; Ikeda, A. Pervaporative dehydration of organic solvents using high-silica CHA-type zeolite membrane. Membranes 2021, 11, 229. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, Y.; Matsuura, W.; Abe, C.; Ikeda, A. Influence of organic solvent species on dehydration behaviors of NaA-type zeolite membrane. Membranes 2021, 11, 347. [Google Scholar] [CrossRef] [PubMed]
- Inami, H.; Abe, C.; Hasegawa, Y. Development of ammonia selectively permeable zeolite membrane for sensor in sewer system. Membranes 2021, 11, 348. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, Y.; Kimura, K.; Nemoto, Y.; Nagase, T.; Kiyozumi, Y.; Nishide, T.; Mizukami, F. Real-time monitoring of permeation properties through polycrystalline MFI-type zeolite membranes during pervaporation using mass spectrometry. Sep. Purif. Technol. 2008, 58, 386–392. [Google Scholar] [CrossRef]
- Ohe, S. Data Book of Vapor-Liquid Equilibrium Computation Program by Excel; Shuzo Ohe: Tokyo, Japan, 2002. [Google Scholar]
- Kemme, H.R.; Kreps, S.I. Vapor pressure of primary n-alkyl chlorides and alcohols. J. Chem. Eng. Data 1969, 14, 98–102. [Google Scholar] [CrossRef]
- Lechert, H. The pH-value and its importance for the crystallization of zeolites. In Verified Syntheses of Zeolite Materials, 2nd ed.; Robson, H., Lillerud, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 33–38. [Google Scholar] [CrossRef]
- Breck, D.W. Zeolite Molecular Sieves—Structure, Chemistry, and Use; John Wiley & Sons, Inc.: New York, NY, USA, 1974. [Google Scholar]
- Nishiyama, N.; Gora, L.; Teplyakov, V.; Kapteijin, F.; Moulijn, J.A. Evaluation of reproducible high flux silicalite-1 membranes: Gas permeation and separation characterization. Sep. Purif. Technol. 2001, 22–23, 295–307. [Google Scholar] [CrossRef]
Solvent | Antoine Constant | Reference | ||
---|---|---|---|---|
A | B | C | ||
Methanol | 8.07919 | 1581.34 | 239.65 | [14] |
Ethanol | 8.04494 | 1554.3 | 222.65 | [14] |
1-Propanol | 7.751113 | 1441.6293 | 198.8507 | [14] |
1-Butanol | 4.54607 | 1351.555 | −93.34 | [15] |
CHA | LTA | MFI | FAU(10) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2θ (°) | (h,k,l) | Irel (%) | 2θ (°) | (h,k,l) | Irel (%) | 2θ (°) | (h,k,l) | Irel (%) | 2θ (°) | (h,k,l) | Irel (%) |
9.5 | (1,0,0) | 100 | 7.2 | (2,0,0) | 100 | 7.9 | (0,1,1) | 100 | 6.2 | (1,1,1) | 100 |
12.9 | (2,−1,0) | 47.2 | 10.2 | (2,2,0) | 76.9 | 8.9 | (2,0,0) | 59.7 | 15.6 | (3,3,1) | 33.8 |
20.6 | (1,0,−1) | 50.4 | 16.1 | (4,2,0) | 36.2 | 23.1 | (0,5,1) | 110 | 23.6 | (5,3,3) | 30.7 |
Zeolite | Flux (μmol m−2 s−1) | Separation Factor (-) | |
---|---|---|---|
Methanol | Methyl Hexanoate | ||
CHA | 13,800 | 24.0 | 1270 |
LTA | 1070 | 10.5 | 225 |
MFI | 1300 | 17.2 | 168 |
FAU(10) | 86,600 | 31.9 | 6020 |
SiO2/Al2O3 Ratio (-) | Flux (μmol m−2 s−1) | Separation Factor (-) | |
---|---|---|---|
Methanol | Methyl Hexanoate | ||
5 | 51,900 | 29.5 | 3890 |
10 | 86,600 | 31.9 | 6020 |
13 | 106,000 | 1520 | 155 |
25 | 184,000 | 2710 | 150 |
Solvent | Temperature (K) | Flux (μmol m−2 s−1) | Separation Factor (-) | |
---|---|---|---|---|
Methanol | Solvent | |||
Ethanol | 348 | 14,700 | 11,000 | 8 |
1-Propanol | 348 | 14,400 | 1740 | 40 |
l-Butanol | 348 | 27,900 | 695 | 160 |
1-Hexanol | 348 | 51,200 | 148 | 980 |
Methyl acetate | 328 | 231 | 4.2 | 510 |
Methyl propionate | 328 | 24,400 | 62.0 | 1290 |
Methyl butyrate | 348 | 52,300 | 538 | 270 |
Methyl hexanoate | 348 | 98,200 | 47.0 | 4630 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikeda, A.; Abe, C.; Matsuura, W.; Hasegawa, Y. Development of Methanol Permselective FAU-Type Zeolite Membranes and Their Permeation and Separation Performances. Membranes 2021, 11, 627. https://doi.org/10.3390/membranes11080627
Ikeda A, Abe C, Matsuura W, Hasegawa Y. Development of Methanol Permselective FAU-Type Zeolite Membranes and Their Permeation and Separation Performances. Membranes. 2021; 11(8):627. https://doi.org/10.3390/membranes11080627
Chicago/Turabian StyleIkeda, Ayumi, Chie Abe, Wakako Matsuura, and Yasuhisa Hasegawa. 2021. "Development of Methanol Permselective FAU-Type Zeolite Membranes and Their Permeation and Separation Performances" Membranes 11, no. 8: 627. https://doi.org/10.3390/membranes11080627
APA StyleIkeda, A., Abe, C., Matsuura, W., & Hasegawa, Y. (2021). Development of Methanol Permselective FAU-Type Zeolite Membranes and Their Permeation and Separation Performances. Membranes, 11(8), 627. https://doi.org/10.3390/membranes11080627