Development of Environment-Friendly Membrane for Oily Industrial Wastewater Filtration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of NBR-GO Membranes
2.3. Characterization of the Membranes
2.4. Performance Studies
- = Permeation flux,
- = Permeate volume collected,
- = Effective membrane area,
- t = Time taken to collect the measured volume of permeate,
- = Oil rejection efficiency, %
- = COD level in permeate,
- = COD level in feed,
- = Permeation flux of synthetic oily wastewater
- = Permeation flux of deionized water
- = Permeation flux of deionized water after membrane cleaning
3. Results
3.1. Characterization of the Membrane
3.2. Performance Study
3.2.1. Tensile Properties
3.2.2. Permeation Flux
3.2.3. Oily Rejection Efficiency of NBR-GO Membranes
3.2.4. Antifouling Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abuhasel, K.; Kchaou, M.; Alquraish, M.; Munusamy, Y.; Jeng, Y.T. Oily wastewater treatment: Overview of conventional and modern methods, challenges, and future opportunities. Water 2021, 13, 980. [Google Scholar] [CrossRef]
- Ezugbe, E.O.; Rathilal, S. Membrane technologies in wastewater treatment: A review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Li, Y.; Gao, S.; Cui, Y.; Qu, Q.; Wang, Y.; Huang, C.; Fu, G. Self-healing and superwettable nanofibrous membranes with excellent stability toward multifunctional applications in water purification. ACS Appl. Mater. Interfaces 2020, 12, 23644–23654. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Hong, S.; Li, M.L.; Li, Y.S. Application of the Al2O3-PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research. Sep. Purif. Tech. 2009, 66, 347–352. [Google Scholar] [CrossRef]
- Ma, W.; Ding, Y.; Zhang, M.; Gao, S.; Li, Y.; Huang, C.; Fu, G. Nature-inspired chemistry toward hierarchical superhydrophobic, antibacterial and biocompatible nanofibrous membranes for effective UV-shielding, self-cleaning and oil-water separation. J. Hazard. Mat. 2020, 384, 121476. [Google Scholar] [CrossRef]
- Ma, W.; Zhao, J.; Oderinde, O.; Han, J.; Liu, Z.; Gao, B.; Xiong, R.; Zhang, Q.; Jiang, S.; Huang, C. Durable superhydrophobic and superoleophilic electrospun nanofibrous membrane for oil-water emulsion separation. J. Col. Interf. Sci. 2018, 532, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Zarghami, S.; Mohammadi, T.; Sadrzadeh, M.; Van der Bruggen, B. Bio-inspired anchoring of amino-functionalized multi-wall carbon nanotubes (N-MWCNTs) onto PES membrane using polydopamine for oily wastewater treatment. Sci. Total Environ. 2020, 711, 134951. [Google Scholar] [CrossRef] [PubMed]
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, 1. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, T.; Guria, C.; Mandal, A. Enhanced performance of salt-induced pluronic F127 and bentonite blended polyvinyl chloride ultrafiltration membrane for the Processing of oilfield produced water. J. Water Proc. Eng. 2020, 34, 101144. [Google Scholar] [CrossRef]
- Ma, W.; Li, Y.; Zhang, M.; Gao, S.; Cui, J.; Huang, C.; Fu, G. Biomimetic durable multifunctional self-cleaning nanofibrous membrane with outstanding oil/water separation, photodegradation of organic contaminants, and antibacterial performances. ACS Appl. Mater. Interf. 2020, 12, 34999–35010. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sun, J.; Lai, Y.; Wang, Y.; Liu, X.; Shi, S.; Chen, X. Effect of thermal aging on uniaxial ratcheting behavior of vulcanized natural rubber. Polym. Test. 2018, 70, 102–110. [Google Scholar] [CrossRef]
- Abuhasel, K.; Jeng, Y.T.; Munusamy, Y.; Kchaou, M.; Alquraish, M. Latex-based membrane for oily wastewater filtration: Study on the sulfur concentration effect. Appl. Sci. 2021, 11, 1779. [Google Scholar] [CrossRef]
- Lu, J.; Gu, Y.; Chen, Y.; Yan, X.; Guo, Y.; Lang, W. Ultrahigh permeability of graphene-based membranes by adjusting D-Spacing with poly (ethylene imine) for the separation of dye wastewater. Sep. Purif. Tech. 2019, 210, 737–745. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, W.; Li, R.; Xu, Y.; Liu, Y.; Sun, T.; Shen, L.; Lin, H. Effect field endowing the conductive polyvinylidene fluoride (PVDF)-graphene oxide (GO)-nickel (Ni) membrane with high-efficient performance for dye wastewater treatment. Appl. Surf. Sci. 2019, 483, 1006–1016. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, X.; Chen, J.; Wang, G.; Yang, F. Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system. Desalination 2014, 340, 59–66. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, X.; Qin, L.; Li, X.; Meng, Q.; Shen, C.; Zhang, G. Enhanced MPBR with polyvinylpyrrolidone-graphene oxide/PVDF hollow fiber membrane for efficient ammonia nitrogen wastewater treatment and highly-density Chlorella cultivation. Chem. Eng. J. 2020, 379, 122368. [Google Scholar] [CrossRef]
- Nawaz, H.; Umar, M.; Ullah, A.; Razzaq, H.; Mahmood Zia, K.; Liu, X. Polyvinylidene fluoride nanocomposite super hydrophilic membrane integrated with polyaniline-graphene oxide nano fillers for treatment of textile effluents. J. Hazard. Mat. 2021, 403, 123587. [Google Scholar] [CrossRef] [PubMed]
- Marjani, A.; Nakhjiri, A.T.; Adimi, M.; Jirandehi, H.F.; Shirazian, S. Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Alammar, A.; Park, S.H.; Williams, C.J.; Derby, B.; Szekely, G. Oil-in-water separation with graphene-based nanocomposite membranes for produced water treatment. J. Membr. Sci. 2020, 603, 118007. [Google Scholar] [CrossRef]
- Abdalla, O.; Wahab, M.A.; Abdala, A. Mixed matrix membranes containing aspartic acid functionalized graphene oxide for enhanced oil-water emulsion separation. J. Environ. Chem. Eng. 2020, 8, 104269. [Google Scholar] [CrossRef]
- Kazemi, F.; Jafarzadeh, Y.; Masoumi, S.; Rostamizadeh, M. Oil-in-water emulsion separation by PVC membranes embedded with GO-ZnO nanoparticles. J. Environ. Chem. Eng. 2021, 9, 104992. [Google Scholar] [CrossRef]
- Moradi, R.; Karimi-Sabet, J.; Shariaty-Niassar, M.; Amini, Y. Air gap membrane distillation for enrichment of H218O is isotopomers in natural water using poly(vinylidene) fluoride nanofibrous membrane. Chem. Eng. Proc. Intensif. 2016, 100, 26–36. [Google Scholar] [CrossRef]
- Su, C.; Li, Y.; Cao, H.; Lu, C.; Li, Y.; Chang, J.; Duan, F. Novel PTFE hollow fibre membrane fabricated by emulsion electronspinning and sintering for membrane distillation. J. Memb. Sci. 2019, 583, 200–208. [Google Scholar] [CrossRef]
- Yu, L.; Kanezashi, M.; Nagasawa, H.; Tsuru, T. Phase inversion/sintering-induced porous ceramic microsheet membranes for high-quality separation of oily wastewater. J. Memb. Sci. 2020, 595, 117477. [Google Scholar] [CrossRef]
- Bai, M.; Qiang, L.; Meng, M.; Li, B.; Wang, S.; Wu, Y.; Chen, L.; Dai, J.; Liu, Y.; Pan, J. Upper surface imprinted membrane prepared by magnetic guidance phase inversion method for highly efficient and selective separation of Artemisinin. Chem. Eng. J. 2021, 405, 126899. [Google Scholar] [CrossRef]
- Liu, H.; Liao, X. The effect of fluorocarbon special surfactant (FS-30) additive on the phase inversion, morphology and separation performance of poly(vinylidene fluoride) (PVDF) membranes. Sep. Purif. Tech. 2019, 212, 619–631. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Barsbay, M.; Aimanova, N.A.; Zdorovets, M.V. Application of silver-loaded composite track-etched membranes for photocatalytic decomposition of methylene blue under visible light. Membrane 2021, 11, 60. [Google Scholar] [CrossRef] [PubMed]
- Pereao, O.; Uche, C.; Bublikov, P.S.; Bode-Aluko, C.; Rossouw, A.; Vinogradov, I.I.; Nechaev, A.N.; Opeolu, B.; Petrik, L. Chitosan/PEO nanofibers electrospun on metallized track-etched membranes: Fabrication and characterization. Mat. Today Chem. 2021, 20, 100416. [Google Scholar] [CrossRef]
- Jiang, Y.; Zeng, Q.; Biswas, P.; Fortner, J.D. Graphene oxides as nanofillers in polysulfone ultrafiltration membranes: Shape matters. J. Memb. Sci. 2019, 581, 453–461. [Google Scholar] [CrossRef]
- Abuabdou, S.M.A.; Bashir, M.J.K.; Aun, N.C.; Sethupathi, S.; Yong, W.L. Development of a novel polyvinylidene fluoride membrane integrated with palm oil fuel ash for stabilized landfill leachate treatment. J. Clean. Prod. 2021, 311, 127677. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Q.; Liu, H.; Zhang, C.; You, Y.; Li, N.; Xiao, C. Preparation, characterization and applications of electrospun ultrafine fibrous PTFE porous membranes. J. Memb. Sci. 2017, 523, 317–326. [Google Scholar] [CrossRef]
- Gao, J.; Wang, J.; Xu, Q.; Wu, S.; Chen, Y. Regenerated cellulose strongly adhered by supramolecular adhesive onto PVDF membrane for highly efficient oil/water separation. Green Chem. 2021, 23, 5633–5646. [Google Scholar] [CrossRef]
- Wang, C.; Chi, H.; Zhang, F.; Wang, X.; Wang, Y.; Zhang, H.; Bai, Y.; Tan, Y.; Xu, K.; Wang, P. Superwettable porous spheres prepared by recyclable Pickering emulsion polymerization for multifarious oil/water separations. Green Chem. 2021, 23, 2372–2381. [Google Scholar] [CrossRef]
- Dacrory, S. Antimicrobial activity, DFT calculations and molecular docking of dialdehyde cellulose/graphene oxide film against Covid-19. J. Polym. Environ. 2021, 1–13. [Google Scholar] [CrossRef]
- Bhadran, B.; Vijayan, D.; George, N.; Chandra, C.J.; Begum, P.S.; Jospeh, R. Reinforcing effect of organocly in nitrile rubber-effect of mill mixing and latex stage mixing. Appl. Clay Sci. 2018, 165, 91–102. [Google Scholar] [CrossRef]
- Yong, T.J.; Munusamy, Y.; Ding, S.J.; Ismail, H. Fabrication of a novel latex-based membrane for oily wastewater filtration: Effect of degassing on the properties of membrane. Iran. Polym. J. 2021, 1–12. [Google Scholar] [CrossRef]
- Yew, G.Y.; Tham, T.C.; Law, C.L.; Chu, D.T.; Orino, C.; Show, P.L. Emerging crosslinking techniques for glove manufacturers with improved nitrile glove properties and reduced allergic risks. Mater. Today Communi. 2019, 19, 39–50. [Google Scholar] [CrossRef]
- Pourziad, S.; Omidkhah, M.R.; Abdollahi, M. Improved antifouling and self-cleaning ability of PVDF ultrafiltration membrane grafted with polymer brushes for oily water treatment. J. Indus. Eng. Chem. 2020, 83, 401–408. [Google Scholar] [CrossRef]
- Valizadeh, S.; Naji, L.; Karimi, M. Controlling interlayer spacing of graphene oxide membrane in aqueous media using a biocompatible heterobifunctional crosslinker for Penicillin-G Procaine removal. Sep. Purif. Tech. 2021, 263, 118392. [Google Scholar] [CrossRef]
- Junaidi, N.F.D.; Othman, N.H.; Shahruddin, M.Z.; Alias, N.H.; Marpani, F.; Lau, W.J.; Ismail, A.F. Fabrication and characterization of graphene oxide-polyethersulfone (GO-PES) composite flat sheet and hollow fiber membranes for oil-water separation. J. Chem. Technol. Biotechnol. 2020, 95, 1308–1320. [Google Scholar] [CrossRef]
- Zhong, Y.; Mahmud, S.; He, Z.; Yang, Y.; Zhang, Z.; Guo, F.; Chen, Z.; Xiong, Z.; Zhao, Y. Graphene oxide modified membrane for highly efficient wastewater treatment by dynamic combination of nanofiltration and catalysis. J. Hazard. Mat. 2020, 397, 122774. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.; Peña-Bahamonde, J.; Wang, M.; Shaffer, D.L.; Hu, Y. Polyacrylic acid-brushes tethered to graphene oxide membrane coating scaling and biofouling on reverse osmosis membranes. J. Memb. Sci. 2021, 630, 119308. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Sun, Y.; Zhang, T.; Wang, L.; Wang, J.; Liang, Y.; Hao, M.; Fu, Q. Green preparation and enhanced gas barrier property of rubber nanocomposite film based on graphene oxide-induced chemical crosslinking. Polymer 2021, 225, 123756. [Google Scholar] [CrossRef]
- Vinayan, B.P.; Zhao-Karger, Z.; Diemant, T.; Chakravadhanula, V.S.K.; Schwarzburger, N.I.; Cambaz, M.A.; Behm, R.J.; Kübel, C.; Fichtner, M. Performance study of magnesium-sulfur battery using a graphene-based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte. Nanoscale 2015, 8, 3296–3306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Yuan, Z.; Shang, Z.; Ye, S. Multi-functional membrane based on montmorillonite/graphene oxide nanocomposites with high actuating performance and wastewater purification. Appl. Clay Sci. 2020, 197, 105781. [Google Scholar] [CrossRef]
- Zhang, Y.; Cho, U.R. Enhanced thermo-physical properties of nitrile-butadiene rubber nanocomposites filled with simultaneously reduced and functionalized graphene oxide. Polym. Comp. 2018, 39, 3227–3235. [Google Scholar] [CrossRef]
- Mensah, B.; Kim, S.; Arepalli, S.; Nah, C. A study of graphene oxide-reinforced rubber nanocomposites. J. Appl. Polym. Sci. 2014, 131, 40640. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, H.; Xia, J.; Zhang, F.; Li, F.; Xia, Y.; Li, Y. Novel GO-blended PVDF ultrafiltration membranes. Desalination 2012, 299, 50–54. [Google Scholar] [CrossRef]
- Lawler, J. Incorporation of graphene-related carbon nanosheets in membrane fabrication for water treatment: A review. Membranes 2016, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Al-Yaari, M. Development of polymeric membranes for oil/water separation. Membranes 2021, 11, 42. [Google Scholar] [CrossRef]
- Chen, A.S.C.; Flynn, J.T.; Cook, R.G.; Casaday, A.L. Removal of oil, grease, and suspended solids from produced water with ceramic crossflow microfiltration. SPE Prod. Eng. 1991, 6, 131–136. [Google Scholar] [CrossRef]
- Amid, M.; Nabian, N.; Delavar, M. Fabrication of polycarbonate ultrafiltration mixed matrix membranes including modified halloysite nanotubes and graphene oxide nanosheets for olive oil/water emulsion separation. Sep. Purif. Technol. 2020, 251, 117332. [Google Scholar] [CrossRef]
- Tanudjaja, H.J.; Hejase, C.A.; Tarabara, V.V.; Fane, A.G.; Chew, J.W. Membrane-based separation for oily wastewater: A practical perspective. Water Res. 2019, 156, 347–365. [Google Scholar] [CrossRef]
- Heylen, C.; Oliveira Aguiar, A.; String, G.; Domini, M.; Goff, N.; Murray, A.; Asatekin, A.; Lantagne, D. Laboratory efficacy of locally available backwashing methods at removing fouling in hollow-fiber membrane filters used for household water treatment. Membranes 2021, 11, 375. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.C.-T.; Lee, D.-J.; Huang, C. Membrane fouling mitigation: Membrane cleaning. Sep. Sci. Tech. 2010, 45, 858–872. [Google Scholar] [CrossRef]
- An, Y.; Wu, B.; Wong, F.S.; Yang, F. Post-treatment of upflow anaerobic sludge blanket effluent by combining the membrane filtration process: Fouling control by intermittent permeation and air sparging. Water Environ. J. 2010, 24, 32–38. [Google Scholar] [CrossRef]
- Ruiz, L.M.; Perez, I.; Gómez, A.; Letona, A.; Gómez, M.A. Ultrasonic irradiation for ultrafiltration membrane cleaning in MBR systems: Opearational conditions and consequences. Water Sci. Tech. 2017, 75, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Arefi-Oskoui, S.; Khataee, A.; Safarpour, M.; Orooji, Y.; Vatanpour, V. A review on the applications of ultrasonic technology in membrane bioreactors. Ultrason. Sonochem. 2019, 58, 104633. [Google Scholar] [CrossRef] [PubMed]
- Gul, A.; Hruza, J.; Yalcinkaya, F. Fouling and chemical cleaning of microfiltration membranes: A mini-review. Polymers 2021, 13, 846. [Google Scholar] [CrossRef] [PubMed]
- AlSawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G. A comprehensive review on membrane fouling: Mathematical modelling, prediction, diagnosis and mitigation. Water 2021, 13, 1327. [Google Scholar] [CrossRef]
- Ding, W.; Chen, M.; Zhou, M.; Zhong, Z.; Cui, Z.; Xing, W. Fouling behavior of poly(vinylidene fluoride) (PVDF) ultrafiltration membrane by polyvinyl alcohol (PVA) and chemical cleaning method. Chin. J. Chem. Eng. 2020, 28, 3018–3026. [Google Scholar] [CrossRef]
- Ren, L.; Yu, S.; Yang, H.; Li, L.; Cai, L.; Xia, Q.; Shi, Z.; Liu, G. Chemical cleaning reagent of sodium hypochlorite eroding polyvinylidene fluoride ultrafiltration membranes: Aging pathway, performance decay and molecular mechanism. J. Memb. Sci. 2021, 625, 119141. [Google Scholar] [CrossRef]
Sample Designation | NBR | NBR-GO 0.5 | NBR-GO 1.0 | NBR-GO 1.5 | NBR-GO 2.0 |
---|---|---|---|---|---|
Materials | (pphr) | ||||
NBR | 100 | 100 | 100 | 100 | 100 |
ZnO | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
ZDEC | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
ZMBT | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
GO | 0 | 0.5 | 1.0 | 1.5 | 2.0 |
KOH | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Sulfur | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
GO Loading (pphr) | Crosslink Density (×10−4 mol/cm3) |
---|---|
0 | 9.1037 ± 0.0038 |
0.5 | 9.0525 ± 0.0018 |
1.0 | 9.2729 ± 0.0045 |
1.5 | 9.1366 ± 0.0063 |
2.0 | 9.0754 ± 0.0025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alquraish, M.; Jeng, Y.T.; Kchaou, M.; Munusamy, Y.; Abuhasel, K. Development of Environment-Friendly Membrane for Oily Industrial Wastewater Filtration. Membranes 2021, 11, 614. https://doi.org/10.3390/membranes11080614
Alquraish M, Jeng YT, Kchaou M, Munusamy Y, Abuhasel K. Development of Environment-Friendly Membrane for Oily Industrial Wastewater Filtration. Membranes. 2021; 11(8):614. https://doi.org/10.3390/membranes11080614
Chicago/Turabian StyleAlquraish, Mohammed, Yong Tzyy Jeng, Mohamed Kchaou, Yamuna Munusamy, and Khaled Abuhasel. 2021. "Development of Environment-Friendly Membrane for Oily Industrial Wastewater Filtration" Membranes 11, no. 8: 614. https://doi.org/10.3390/membranes11080614
APA StyleAlquraish, M., Jeng, Y. T., Kchaou, M., Munusamy, Y., & Abuhasel, K. (2021). Development of Environment-Friendly Membrane for Oily Industrial Wastewater Filtration. Membranes, 11(8), 614. https://doi.org/10.3390/membranes11080614