Numerical Simulations of Calcium Sulphate Scaling in Full-Scale Brackish Water Reverse Osmosis Pressure Vessels Using Computational Fluid Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Coal Mine Water and Current Treatment Process
2.2. The BWRO Unit
2.3. CFD Model Setup
2.4. Simulation of Scaling Potential on the First-Stage BWRO
2.5. Prediction of CaSO4 Scaling Threshold Conditions
3. Results and Discussion
3.1. CFD Simulation Results on the First Stage of BWRO
3.2. Prediction of the Threshold of Calcium Sulphate Scaling at Different Operating Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fritzmann, C.; Löwenberg, J.; Wintgens, T. State-of-the-art of reverse osmosis desalination. Desalination 2007, 216, 1–76. [Google Scholar] [CrossRef]
- Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review. Desalination 2019, 459, 9–104. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Vanoppen, M.; van Agtmaal, J.M.; Cornelissen, E.R.; Vrouwenvelder, J.S.; Verliefde, A.; van Loosdrecht, M.C.; Picioreanu, C. Cost of Fouling in Full-Scale Reverse Osmosis and Nanofiltration Installations in the Netherlands. Desalination 2021, 500, 114865. [Google Scholar] [CrossRef]
- Ruiz-García, A.; Feo-García, J. Estimation of Maximum Water Recovery in RO Desalination for Different Feedwater Inorganic Compostions. Desalin. Water Treat. 2017, 70, 34–45. [Google Scholar] [CrossRef]
- Jin, D.; Ge, G.; Zhang, Q. New energy saving desalination technology of highly-mineralized mine water. Coal Sci. Technol. 2018, 46, 12–18. [Google Scholar]
- Wang, F.; Wang, Y.; Jing, C. Application overview of membrane separation technology in coal mine water resources treatment in Western China. Mine Water Environ. 2021, 40, 510–519. [Google Scholar] [CrossRef]
- Mao, W.; Zhou, R.; Guo, Z. Zero liquid discharge treatment technology and application for coal mine drainage water. Coal Sci. Technol. 2017, 45, 205–210. [Google Scholar]
- Pervov, A.G. Scale formation prognosis and cleaning procedure schedules in reverse osmosis systems operation. Desalination 1991, 83, 77–118. [Google Scholar] [CrossRef]
- Logan, D.P.; Kimura, S. Control of gypsum scale on reverse osmosis membranes. Desalination 1985, 54, 321–331. [Google Scholar] [CrossRef]
- Alhadidi, A.; Kennedy, M.; Diepeveen, A.; Prummel, H.; Boorsma, M.; Schippers, J.C. Scaling potential calculations using different methods: Case study: Klazienaveen UF/RO plant. Desalin. Water Treat. 2009, 6, 138–143. [Google Scholar] [CrossRef]
- Song, L.; Hong, S.; Hu, J.Y.; Ong, S.L.; Ng, W.J. Simulation of full-scale reverse osmosis membrane process. J. Environ. Eng. 2002, 128, 960–966. [Google Scholar] [CrossRef]
- Ruiz-García, A.; de la Nuez-Pestana, I. A computational tool for designing BWRO systems with spiral wound modules. Desalination 2018, 426, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Kavianipour, O.; Ingram, G.D.; Vuthaluru, H.B. Studies into the mass transfer and energy consumption of commercial feed spacers for RO membrane modules using CFD: Effectiveness of performance measures. Chem. Eng. Res. Des. 2019, 141, 328–338. [Google Scholar] [CrossRef]
- Kavianipour, O.; Ingram, G.D.; Vuthaluru, H.B. Investigation into the effectiveness of feed spacer configurations for reverse osmosis membrane modules using Computational Fluid Dynamics. J. Membr. Sci. 2017, 526, 156–171. [Google Scholar] [CrossRef] [Green Version]
- Kerdi, S.; Qamar, A.; Vrouwenvelder, J.S.; Ghaffour, N. Fouling resilient perforated feed spacers for membrane filtration. Water Res. 2018, 140, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Adjiman, C.S.; Xu, X.Y. The effect of feed spacer geometry on membrane performance and concentration polarisation based on 3D CFD simulations. J. Membr. Sci. 2017, 527, 78–91. [Google Scholar] [CrossRef]
- Han, Z.; Terashima, M.; Liu, B.; Yasui, H. CFD Investigation of the Effect of the Feed Spacer on Hydrodynamics in Spiral Wound Membrane Modules. Math. Comput. Appl. 2018, 23, 80. [Google Scholar] [CrossRef] [Green Version]
- Fimbres-Weihs, G.; Wiley, D. Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules. Chem. Eng. Process. Process. Intensif. 2010, 49, 759–781. [Google Scholar] [CrossRef]
- Karabelas, A.J.; Kostoglou, M.; Koutsou, C.P. Modeling of spiral wound membrane desalination modules and plants—Review and research priorities. Desalination 2015, 356, 165–186. [Google Scholar] [CrossRef]
- Foo, K.; Liang, Y.Y.; Fimbres Weihs, G. CFD study of the effect of SWM feed spacer geometry on mass transfer enhancement driven by forced transient slip velocity. J. Membr. Sci. 2020, 597, 117643. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Fimbres Weihs, G.; Fletcher, D. CFD study of the effect of unsteady slip velocity waveform on shear stress in membrane systems. Chem. Eng. Sci. 2018, 192, 16–24. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Fimbres-Weihs, G.; Setiawan, R.; Wiley, D. CFD modelling of unsteady electro-osmotic permeate flux enhancement in membrane systems. Chem. Eng. Sci. 2016, 146, 189–198. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Fimbres-Weihs, G.; Wiley, D. CFD modelling of electro-osmotic permeate flux enhancement in spacer-filled membrane channels. J. Membr. Sci. 2016, 507, 107–118. [Google Scholar] [CrossRef]
- Su, X.; Li, W.; Palazzolo, A.B.; Ahmed, S. Concentration polarization and permeate flux variation in a vibration enhanced reverse osmosis membrane module. Desalination 2018, 433, 75–88. [Google Scholar] [CrossRef]
- Su, X.; Li, W.; Palazzolo, A.; Ahmed, S. Permeate flux increase by colloidal fouling control in a vibration enhanced reverse osmosis membrane desalination system. Desalination 2019, 453, 22–36. [Google Scholar] [CrossRef]
- Usta, M.; Anqi, A.E.; Oztekin, A. Reverse osmosis desalination modules containing corrugated membranes—Computational study. Desalination 2017, 416, 129–139. [Google Scholar] [CrossRef]
- Haddadi, B.; Jordan, C.; Miltner, M.; Harasek, M. Membrane modeling using CFD: Combined evaluation of mass transfer and geometrical influences in 1D and 3D. J. Membr. Sci. 2018, 563, 199–209. [Google Scholar] [CrossRef]
- Mansouri, N.; Moghimi, M.; Taherinejad, M. Investigation on hydrodynamics and mass transfer in a feed channel of a spiral-wound membrane element using response surface methodology. Chem. Eng. Res. Des. 2019, 149, 147–157. [Google Scholar] [CrossRef]
- Toh, K.Y.; Liang, Y.Y.; Lau, W.J.; Fimbres Weihs, G. 3D CFD study on hydrodynamics and mass transfer phenomena for SWM feed spacer with different floating characteristics. Chem. Eng. Res. Des. 2020, 159, 36–46. [Google Scholar] [CrossRef]
- Thiruvenkatachari, R.; Francis, M.; Cunnington, M.; Su, S. Application of integrated forward and reverse osmosis for coal mine wastewater desalination. Sep. Purif. Technol. 2016, 163, 181–188. [Google Scholar] [CrossRef]
- Karabelas, A.J.; Mitrouli, S.T.; Kostoglou, M. Scaling in Reverse Osmosis Desalination Plants: A Perspective Focusing on Development of Comprehensive Simulation Tools. Desalination 2020, 474, 114193. [Google Scholar] [CrossRef]
- Ruiz-García, A.; de la Nuez-Pestana, I. Performance Assessment of SWRO Spiral-Wound Membrane Modules with Different Feed Spacer Dimensions. Processes 2020, 8, 692. [Google Scholar] [CrossRef]
- Ruiz-García, A.; de la Nuez-Pestana, I. Feed Spacer Geometries and Permeability Coefficients. Effect on the Performance in BWRO Spiral Wound Membrane Modules. Water 2019, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Zou, X.; Ji, X.; Zhou, R.; Zhao, K.; Wang, Y. Analysis of Concentration Polarisation in Full-Size Spiral Wound Reverse Osmosis Membranes Using Computational Fluid Dynamics. Membranes 2021, 11, 353. [Google Scholar] [CrossRef]
- Koutsou, C.P.; Yiantsios, S.G.; Karabelas, A.J. A Numerical and experimental study of mass transfer in spacer -filled channels: Effects of spacer geometrical characteristics and Schmidt number. J. Membr. Sci. 2009, 326, 234–251. [Google Scholar] [CrossRef]
- Ishigami, T.; Matsuyama, H. Numerical modeling of concentration polarization in spacer-filled channel with permeation across reverse osmosis membrane. Ind. Eng. Chem. Res. 2015, 54, 1665–1674. [Google Scholar] [CrossRef]
- Antony, A.; Low, J.H.; Gray, S.; Childress, A.E.; Le-Clech, P.; Leslie, G. Scale Formation and Control in High Pressure Membrane Treatment Systems: A Review. J. Membr. Sci. 2011, 383, 1–16. [Google Scholar] [CrossRef]
- FilmTecTM. Reverse Osmosis Membranes Technical Manual, Version 7; Dupont Water Solutions: Edina, MN, USA, 2021.
- Chemical Pretreatment for RO and NF; Hydranautics, Nitto Group Company: Oceanside, CA, USA, 2013.
- Ashfaq, M.Y.; Al-Ghouti, M.A.; Da’na, D.A.; Qiblawey, H.; Zouari, N. Effect of concentration of calcium and sulfate ions on gypsum scaling of reverse osmosis membrane, mechanistic study. J. Mater. Res. Technol. 2020, 9, 13459–13473. [Google Scholar] [CrossRef]
- Wang, Y. Composite Fouling of Calcium Sulfate and Calcium Carbonate in a Dynamic Seawater Reverse Osmosis Unit. Masters’ Thesis, University of New South Wales, Sydney, Australia, 2005. [Google Scholar]
- Pitzer, K.S.; Mayorga, G. Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 1973, 77, 2300–2308. [Google Scholar] [CrossRef] [Green Version]
- Pitzer, K.S.; Mayorga, G. Thermodynamics of electrolytes. II. Activity and osmotic coefficients for 2-2 electrolytes. J. Solut. Chem. 1974, 3, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, Y.; Waite, T.D.; Leslie, G.L. Numerical simulation of bubble induced shear in membrane bioreactors: Effects of mixed liquor rheology and membrane configuration. Water Res. 2015, 75, 131–145. [Google Scholar] [CrossRef] [PubMed]
Test Parameters | Unit | Feed |
---|---|---|
pH | mg/L | 8.2 |
TDS | mg/L | 2610 |
Alkalinity | as CaCO3 mg/L | 308.5 |
Hardness | as CaCO3 mg/L | 109.5 |
Ca2+ | mg/L | 31.1 |
Mg2+ | mg/L | 8.9 |
Fe2+ | mg/L | 0.08 |
Al3+ | mg/L | 0.22 |
Ba2+ | mg/L | 0.018 |
K + | mg/L | 10.2 |
Na+ | mg/L | 881 |
Cl- | mg/L | 393 |
F- | mg/L | 3.8 |
SO42- | mg/L | 1030 |
NO3- | mg/L | 0.31 |
SiO2 | mg/L | 3.41 |
Variable | Range |
CaSO4 (mg/L) | 25–1325 |
TDS (mg/L) | 1000–25,000 |
Feed pressure (bar) | 10.84–28.12 |
Feed flow velocity (m/s) | 0.03–0.27 |
Element Number | CFD-Simulated Results | WAVE-Simulated Results | Difference in Permeate Flowrate (%) | ||||
---|---|---|---|---|---|---|---|
Feed Pressure (Bar) | Recovery (%) | Permeate Flowrate (m³/h) | Feed Pressure (Bar) | Recovery (%) | Permeate Flowrate (m³/h) | ||
1 | 9.46 | 10.4 | 0.87 | 9.46 | 11.5 | 0.96 | 9.37% |
2 | 9.14 | 11.1 | 0.83 | 9.21 | 12.2 | 0.90 | 7.78% |
3 | 8.87 | 11.7 | 0.78 | 8.99 | 12.9 | 0.84 | 7.14% |
4 | 8.63 | 12.8 | 0.75 | 8.81 | 13.7 | 0.77 | 2.60% |
5 | 8.43 | 13.8 | 0.71 | 8.66 | 14.4 | 0.70 | 1.43% |
6 | 8.25 | 15.4 | 0.68 | 8.53 | 15.1 | 0.63 | 7.94% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, W.; Zou, X.; Guo, Z.; Sun, S.; Ma, S.; Lyv, S.; Xiao, Y.; Ji, X.; Wang, Y. Numerical Simulations of Calcium Sulphate Scaling in Full-Scale Brackish Water Reverse Osmosis Pressure Vessels Using Computational Fluid Dynamics. Membranes 2021, 11, 521. https://doi.org/10.3390/membranes11070521
Mao W, Zou X, Guo Z, Sun S, Ma S, Lyv S, Xiao Y, Ji X, Wang Y. Numerical Simulations of Calcium Sulphate Scaling in Full-Scale Brackish Water Reverse Osmosis Pressure Vessels Using Computational Fluid Dynamics. Membranes. 2021; 11(7):521. https://doi.org/10.3390/membranes11070521
Chicago/Turabian StyleMao, Weidong, Xiang Zou, Zhongquan Guo, Sui Sun, Sai Ma, Shunzhi Lyv, Yan Xiao, Xinxiang Ji, and Yuan Wang. 2021. "Numerical Simulations of Calcium Sulphate Scaling in Full-Scale Brackish Water Reverse Osmosis Pressure Vessels Using Computational Fluid Dynamics" Membranes 11, no. 7: 521. https://doi.org/10.3390/membranes11070521
APA StyleMao, W., Zou, X., Guo, Z., Sun, S., Ma, S., Lyv, S., Xiao, Y., Ji, X., & Wang, Y. (2021). Numerical Simulations of Calcium Sulphate Scaling in Full-Scale Brackish Water Reverse Osmosis Pressure Vessels Using Computational Fluid Dynamics. Membranes, 11(7), 521. https://doi.org/10.3390/membranes11070521